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Abstract: Digital twins play a critical role in simulating industrial manufacturing systems to
increase productivity and reduce time spent on troubleshooting. Owing to the complexity of real-
world industrial systems, automatic sparse identification has emerged as an attractive approach
to perform digital twin modelling. The sparse identification of nonlinear dynamics (SINDy) is a
machine learning algorithm that performs feature engineering by generating a model term library
and then solves a sparse regression problem between the objective outputs and the generated
features. By solving a linear-in-parameter sparse regression problem, SINDy provides automatic
discovery of system governing equations. However, the performance of SINDy-based algorithms
may decline dramatically when applied to identify complex nonlinear relationships, such as
implicit relationships. The substantial number of input variables for a real industrial process
may further complicate the modelling procedure. We therefore propose the neural network
and SINDy integrated algorithm to automatically select the critical features from a model
term library and utilize the neural network to capture the process nonlinearity that cannot be
captured by a linear-in-parameter model. SINDy performs feature generation considering both
numerical methods and first-principles knowledge, making the proposed algorithm a hybrid
system identification approach. A diesel hydrotreating unit case study with 37 input variables
is analyzed in this paper to demonstrate the advantages of the proposed algorithm for nonlinear
digital twin identification. By combining the advantages from both SINDy and neural networks,
the proposed algorithm is able to improve the output prediction accuracy for all the three
objectives.

Keywords: Digital twin, Feature engineering, Hybrid modelling, Industry 4.0, Nonlinear model
reduction, Sparse process modelling and identification.

1. INTRODUCTION

The development of computing technology and the accel-
eration of data processing enable more efficient system
information transfer and system identification, hence facil-
itating significant production innovations (Brettel et al.,
2014). Digital twins have been identified as a promising
approach to integrate physical operations and digital sim-
ulation for design, optimization, and control of production
loops (Wang et al., 2022a). It has the potential to make
considerable contributions to industrial processes in the
future, opening the way for Industry 4.0. The development
and widespread applications of digital twin technologies
have facilitated the convergence of physical production
systems with virtual simulations. In (Min et al., 2019),
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the authors integrated the machine learning technique
with the internet of things (IoT)-collected, real-time data
to develop a digital twin construction framework for the
petrochemical industry. In (Park et al., 2019), a digital
twin was designed and implemented for a connected micro-
smart factory to assist the managers in decision-making
and, as a result, lower production costs and enhance man-
ufacturing efficiency. The digital twin technique expedited
the design of individual portions of the comprehensive
automated flow-shop manufacturing system (Liu et al.,
2018). The developed digital twin used grey-box modelling
to provide a reliable digital simulation of the flow-shop
pre-production system.

Reliable and practical identification methods are critical to
the comprehensive digital twin construction and extensive
digital twin applications. One of the most pressing issues
in digital twin identification is to automatically perform
feature engineering and identify the complicated, nonlinear
digital twin model with high accuracy (Shah et al., 2020).



The SINDy preforms feature engineering by creating a
model term library containing all the potential digital twin
model terms. Incorporating both data-driven terms, such
as polynomial terms, and first-principles terms into the
construction of the model term library enables a hybrid
system identification procedure. Despite its flexibility in
feature generation and selection, the SINDy is restricted
to identifying linear-in-parameter system dynamics, and
is unable to approximate certain complex nonlinear rela-
tionships, such as rational relationships (Kaheman et al.,
2020).

In the meanwhile, neural networks have made substantial
contributions to smart manufacturing and industrial 4.0.
In conjunction with fog computing, a deep convolutional
neural network was adapted to construct an inspection
model to enhance factory productivity (Li et al., 2018).
Moreover, a deep neural network (DNN)-based soft sensor
was developed in (Villalba-Diez et al., 2019) to implement
automatic quality control by comparing the scanned sur-
face to the engraved file. This DNN-based soft sensor was
able to provide an automated classification accuracy of
98.4%. As the universal approximator, the deep neural
network can use its first few layers to perform feature
engineering and then use the remaining layers for re-
gression (Hornik, 1989). However, a deep neural network
contains numerous parameters and will require a signif-
icant amount of training data. In addition, as a black-
box model, the deep neural network is susceptible to
overfitting and lacking of interpretability. In the proposed
neural network and SINDy integrated algorithm, a sparse-
connected, single-layer, feed-forward neural network with
the input layer composed of library model terms is used to
improve the model efficiency and accuracy. The proposed
approach can be applied to general industrial systems,
such as petroleum production, biochemical product man-
ufacturing, and wastewater treatment, to automatically
perform feature engineering for the various input variables
and construct accurate nonlinear digital twin models to
improve operational efficiency.

The remaining sections of this paper is organized as fol-
lows. Section 2 introduces the SINDy algorithm as well
as its current limitations. This section also introduces
the research objective. Section 3 introduces the three
major steps of the proposed neural network and SINDy
integrated algorithm. Afterward, Section 4 uses a diesel
hydrotreating unit case study to demonstrate the pro-
cedure of applying the proposed algorithm to identify
the multi-input multi-output (MIMO) digital twin model.
Performance from the generalized SINDy (GSINDy) and
a conventional single-layer, feed-forward neural network is
used as benchmark. Finally, Section 5 concludes this paper.

2. RELATED WORK AND PROBLEM STATEMENT

Accurately identifying a process model while reducing the
time consumption is important for the development and
operation of an effective digital twin (Cimino et al., 2022).
The SINDy (Brunton et al., 2016) initially established
the framework of linear-in-parameter sparse identification
to automatically identify parsimonious system governing
equations. However, this algorithm focuses on identifying
continuous nonlinear state dynamics,

ẋt = fx(xt), (1)

where x represents the state and fx indicates the contin-
uous nonlinear state dynamics. In this relationship, the
output is the derivative of the input, and the number of
variables for input and output is equal. The continuous-
time dynamics and restrictions on output variables limit
SINDy’s applications on the identification of general digi-
tal twin models.

In (Wang et al., 2022b), the authors extended SINDy
to the GSINDy to identify general MIMO relationships
between measurable system inputs and outputs,

yt = fy(xt), (2)

where yt represents the general prediction objectives,
which is no longer limited to a derivative, and fy is the
nonlinear relationship between system inputs, xt, and the
outputs. The number of output variables can then differ
from number of input variables. Following that, a linear-
in-parameter sparse regression problem is solved,

Y = Θ(X)Ξ, (3)

where Y is the output matrix, Θ, (X) is the model term
library, and Ξ is the sparse parameter matrix with most
of its entries equaling zero to promote model sparsity.
Usually, the sequential least squares (SLS) regression ap-
proach will be used to solve the sparse regression prob-
lem in SINDy-based algorithms. When implementing the
SLS regression, a thresholding parameter λ is selected to
determine the minimum parameters’ magnitude of feature
selection (Brunton et al., 2016). The regression parameters
inside the sparse parameter matrix, Ξ, whose magnitudes
are smaller than λ will be forced to be zero, indicating
the corresponding model terms are not selected for digital
twin modelling.

Both SINDy and GSINDy have successfully identified gov-
erning equations for a variety of systems, including fluid
dynamics, biology, and petroleum production (Champion
et al., 2019; Mangan et al., 2016; Wang et al., 2022a,b).
However, both of these methods are restricted to identify-
ing linear-in-parameter relationships between prospective
model terms and objective outputs. Consequently, when
applied to identify complicated nonlinear relationships,
such as rational relationships or implicit dynamics, their
performance will decrease (Kaheman et al., 2020). Under
these circumstances, the neural network, with its universal
approximation capacity, are more applicable to identify
the complex nonlinear digital twin models for an indus-
trial process. In this research, we focus on integrating the
feature engineering procedure from SINDy with the single-
layer, feed-forward neural network to promote model sim-
plicity and the digital twin identification accuracy.

3. THE NEURAL NETWORK AND SPARSE
IDENTIFICATION OF NONLINEAR DYNAMICS

INTEGRATED ALGORITHM

In this section, the neural network and SINDy integrated
algorithm is introduced, which combines the SINDy’s
feature engineering with a single-layer, feed-forward neural
network utilizing sparse connections among the three
layers.



3.1 Data Collection

The initial stage of constructing a digital twin model is to
collect input and output data. With the help of industrial
internet of things (IoT), the input and output data will be
collected as follows,

X = [xt,1 xt,2 . . . xt,m]
T
, (4)

where x represents the multivariate input measurements
and x ∈ Rn, and t ∈ Rm is the number of time instants
of data collection. Similarly, the output measurements are
recorded as a function of time,

Y = [yt,1 yt,2 . . . yt,m]
T
, (5)

where y is the multivariate objective output and y ∈ Rj .
In this analysis, x is assumed to be the easy-to-measure
process variable, such as temperature and pressure, and
y is the critical process variable, which usually hard-to-
measure or available is a slow-rate.

3.2 Generation of a Model Term Library

Compare with general system identification, to improve
the model’s domain of applicability, first-principles infor-
mation should be incorporated during the construction
of a digital twin model. In the proposed algorithm, the
critical step for combining both first-principles knowledge
and data-driven techniques is to create an appropriate
model term library. If the library is too complicated, even
when a proper regularization approach is implemented, the
resulting model can still overfit the data. If the model term
library is too simple, the sparse nonlinear identification
algorithm will not be able to identify the necessary model
terms, resulting in inaccurate predictions.

Generally, when developing the model term library for
digital twin identification, the library complexity should
be gradually increased until the model’s performance sud-
denly decreases. When first-principles information is avail-
able, the library construction can begin with involving only
first-principles terms and then incorporating data-driven
terms progressively. For instance, suppose that we would
like to identify the Bernoulli’s equation for pressure esti-
mation. Fig.1 shows a graphical illustration of this prob-
lem. Use P to represent pressure, v to represent fluid ve-
locity, and h to represent the location height. Then, assign
y = P2 and x = [P1 v1 v2 h1 h2], where the subscripts
1 and 2 correspond to two ends of a flow system. Our
objective is to determine the equation that can accurately
predict P2. According to first-principles knowledge about
fluid dynamics, we identify, ρgh as a potential model term,
where ρ is the fluid density, g is gravity, and h represents
the relative height. Then, we can construct a data-driven
and first-principles integrated model term library of the
form,

Θ(X) =
[
1 X XPO2 ρg(h2 − h1)

]
, (6)

where 1 represents the bias term, X represents all the
input variables, and XPO2 represents all the second-order
polynomial combinations of the inputs. According to the
first-principles knowledge, only h1 and h2 are used to
generate the last model term, representing the hydrostatic
pressure.

If no prior knowledge is available for a target process,
we can construct a polynomial model term library and

Fig. 1. Fluid dynamics example graphical illustration.

then gradually increase its complexity by including more
data-driven terms. A sample data-driven, polynomial and
trigonometric library is of the form,

Θ(X) =
[
1 X XPO2 . . . sin(αX) . . . tanh(βX)

]
. (7)

where α and β are scaling parameters to scale the input
values within a data-driven term.

3.3 Integration of the SINDy-based Feature Engineering
with the Neural Network

The neural network is capable of capturing more complex
nonlinearities, such as rational relationships and implicit
relationships, than linear-in-parameter identification ap-
proaches. By increasing the number of hidden layers, deep
neural networks can perform feature engineering at the
expense of increased model complexity and computational
cost. To promote model simplicity and lower the compu-
tational cost, a single-layer, feed-forward neural network
is utilized with the input layer comprised of all the terms
from the SINDy-based library. Typically, the number of
model terms within the model term library is sizeable. To
perform feature selection and promote the model sparsity,
sparse connections are utilized among the three layers
within the single-layer, feed-forward neural network. The
sparse connections can also help to save computational
time costs and memory storage (Kepner et al., 2018;
Mishra et al., 2021; Kepner et al., 2019).

The overall procedure of the proposed neural network
and SINDy integrated algorithm is shown in Fig. 2. The
initial step of applying the proposed algorithm to identify
a digital twin model is to collect process data. After defin-
ing input and output variables, a comprehensive digital
twin model term library is constructed by combining first-
principles knowledge with data-driven techniques when
feasible. Then, the model terms inside the library will
constitute the input layer of the neural network. As the
number of input variables increases, the size of the li-
brary would increase dramatically. Then, sparse connec-
tions are applied to perform feature selections. To im-
plement the sparse connections among the three layers, a
fully-connected neural network is first trained. Then, the
weights whose magnitudes are less than a predetermined
threshold will be reduced to zero. Then, the neural net-
work is re-trained on the active links. As a consequence,
only critical features will contribute to the digital twin
identification. When tuning the threshold of the weight



magnitudes, the threshold value is progressively increased
until the prediction accuracy decreases sharply.

4. CASE STUDY

In Section 3, the proposed neural network and SINDy
integrated digital twin identification algorithm is discussed
in detail. In this section, we use the diesel hydrotreating
(DHT) unit case study as an example to illustrate the
algorithm implementation procedure and demonstrate the
advantages of using it to identify the digital twin model.

The DHT unit is a critical component in the petroleum
industry to ensure that the product fulfils the certification
and commercialization standards (Garcia et al., 2014).
Fig. 3 shows a graphical representation of the DHT unit.
The overall inlet to the reactor consists of feed streams,
recycling streams, and a hydrogen make-up stream. Prior
to getting into the reactor, these streams are preheated
through the furnaces. The primary diesel hydrotreating
reaction happens in the presence of catalysts in the reactor.
To regulate the reactor temperature, a portion of unheated
hydrogen gas is introduced directly into the reactor as
the quench gas. After the output of the reactor has been
cooled, it enters the separator for a rough separation of
light and heavy products. The light reaction products will
enter an absorber for sulfur and ammonia removal. The
heavy reaction products will go through the fractionation
tower, producing light hydrocarbons, gasoline, jet, diesel,
and heavy bottom products (Carelli and da Souza, 2009;
Bandyopadhyay et al., 2019; Wang et al., 2022a).

Two data sets are available in this project, including
real operational samples collected from real operations
and first-principles samples that are calculated using the
onsite first-principles software. After data preprocessing,
5713 real operational samples are used for training and
2448 real operational samples are used for testing. In the
mean while, 142 first-principles samples are available for
analysis. In total 37 input variables are available, includ-
ing various feed streams’ flowrates and densities, recy-
cling stream’s flowrate and density, reactor inlet streams’
pressures and temperatures, etc. We have three major
prediction objectives, including gasoline, diesel, and jet
production rates, in the unit of barrels per hour (BPH). All
the data have been normalized owing to proprietary rea-
sons. The first-principles equations are unavailable during
analysis and only the 142 samples from the first-principles
software are accessible.

Compare with the real operational data set, the first-
principles data set is less noisy and less complicated. Since
the number of input variables is significant. If we put
all the second-order polynomial combinations of inputs
(666 combinations) to the overall model term library, the
library will be too complex. In this case, we first apply
the GSINDy algorithm to select the second-order features
using the first-principles data set. Afterward, the selected
second-order polynomial combinations will be directly in-
volved in the real operational data model term library.
From the first-principles data set, ten common second-
order terms are identified to predict the objectives. The
overall data-driven and first-principles knowledge com-
bined model term library created for the real operational
data is as follows,

Θ(X) =

[
1 X tanh(0.8X) e(X) FP(XPO2)

1

ρ
e−

Ea
RT

]
,

(8)
The trigonometrical term, tanh(0.8X), and the first expo-
nential term, e(X), are included to increase the nonlinearity
of the library, and each of these two terms contains 37
components, one for each input variable. Next, FP(XPO2)
represents the ten second-order polynomial components se-
lected from the first-principles data set. The last two terms
are generated from diesel hydrotreating first-principles
knowledge, where ρ and T are process variables and Ea

and R are constants. Specifically, ρ is the fresh feed stream
density in the unit of kg/m3; T is the reactor temperature
in Kelvin; Ea is the reaction activation energy and equals
21.4 KJ/mol in this case study; R is the gas-law constant
and equals 8.314 J/molK. In total, the model term library
contains 124 model term components, with 122 compo-
nents from the data-driven creation and 2 components
form the first-principles knowledge. Subsequently, these
124 model terms are used to form the input layer of the
single-layer, feed-forward neural network.

The comparative evaluation uses the performance of
GSINDy and a fully-connected, single-layer, feed-forward
neural network without feature engineering as bench-
marks, and the results are presented in Table 1 in terms of
mean squared error (MSE). The same model term library
is used for both GSINDy and the proposed algorithm.
Since the fully-connected, single-layer, feed-forward neural
network does not have access to the model term library,
its input layer consists only of the 37 individual input
variables. After cross-validation, the structure of 37 - 2
- 3 with L1 regularizers among the three layers, pro-
vided optimal performance for the conventional single-
layer neural network. The neural network employed in
the proposed approach has 124 terms in the input layer.
Then, a structure of 124 - 4 - 3 provided its optimal
performance. For the neural network parameter optimiza-
tions, ADAM optimizer is used in this study. To promote
model simplicity and further prevent overfitting, 80% of
weights among the three layers are set to zero, leading
to sparse connections. Between the input layer and the
hidden layer, the linear activation function is used, while
the tanh activation function is used between the hidden
layer and the output layer.

Table 1. Performance comparison among the
GSINDy, the conventional single-layer neural
network, and the proposed algorithm in terms

of MSE.

Output yields (BPH)

Methods Gasoline Diesel Jet

GSINDy 0.096 0.237 0.0839
Conventional single-layer

neural network 0.068 0.2410 0.110
Proposed algorithm 0.058 0.202 0.068

According to the numerical comparison from the three
methods, the conventional single-layer, feed-forward neu-
ral network has smaller prediction error in gasoline pro-
duction, while has inferior prediction accuracy in diesel
and jet yields than the GSINDy. This result indicates
that even though a neural network better captures the
system nonlinearity than the linear-in-parameter sparse



Fig. 2. Graphical illustration of the neural network and SINDy integrated algorithm.

identification, lack of feature engineering reduces the pre-
diction accuracy. By integrating the feature engineering
from SINDy with the sparse-connected, single-layer, feed-
forward neural network, the proposed algorithm achieves
the lowest MSE for all the three predictions, and as a
result, provides a more accurate digital twin model.

5. CONCLUSION

In this study, we proposed a neural network and SINDy
integrated algorithm for nonlinear digital twin identifica-
tion combining both first-principles knowledge and data-
driven techniques. The feature engineering procedure from
the SINDy is utilized to develop a model term library
for digital twin identification. In the proposed algorithm,
the input layer of the neural network comprised of all the
model terms from the library. To ensure only critical model
terms are selected to contribute to the digital twin identifi-
cation, sparse connections are applied among the three lay-
ers. The advantages of the proposed approach are demon-
strated through a DHT unit case study, with 37 input vari-
ables and three major output variables. Compare to the
GSINDy approach, the proposed algorithm is applicable
to identify digital twin models for more complicated non-
linear systems. Similarly, compare to conventional single-
layer, feed-forward neural network, the proposed approach
automatically performs feature engineering and considers
the first-principles information to improve the models’
domain of applicability. As a consequence, the proposed
neural network and SINDy integrated digital twin identi-
fication approach automatically performs feature engineer-
ing for a nonlinear industrial system by creating a model
term library considering both first-principles information
and data-driven techniques. In addition, the proposed
algorithm can not only identify the linear-in-parameter
digital twin models but also more complicated nonlinear
models, such as implicit relationships. Besides the DHT
unit, the proposed approach can be applied to identify
digital twin models for general industrial systems, such

as those in pulp and paper, automobile manufacturing,
mining, as well as mineral and metal processing. In the
future, the proposed technique can be further extended
to involve model predictive control to achieve automatic
identification and control simultaneously.
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