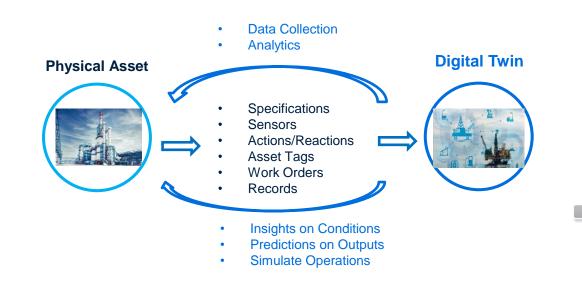


Neural network and Sparse Identification of Nonlinear Dynamics Integrated Algorithm for Digital Twin Identification Jingyi Wang *, Jesús Moreira **, Yankai Cao *, R. Bhushan Gopaluni * July 9th, 2023 * Department of Chemical and Biological Engineering University of British Columbia ** Digital, Innovation and Lean Capability Development Team Imperial Oil Company **IFAC 2023**

Outline

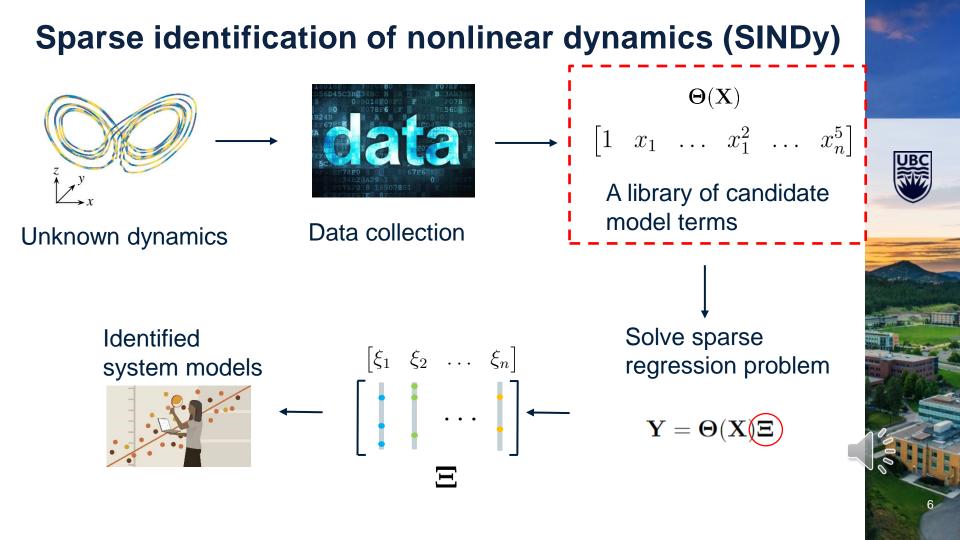
- Background introduction
- Neural network and sparse identification of nonlinear dynamics integrated algorithm
- Case study
- Conclusions


Background Introduction

H

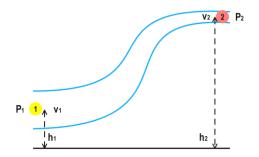
Digital twin

A digital twin is a computer-based mathematical representation that simulates the behavior of a given process. Digital twins are used to interact with and simulate real-world processes [1].



Sparse identification of nonlinear dynamics (SINDy)

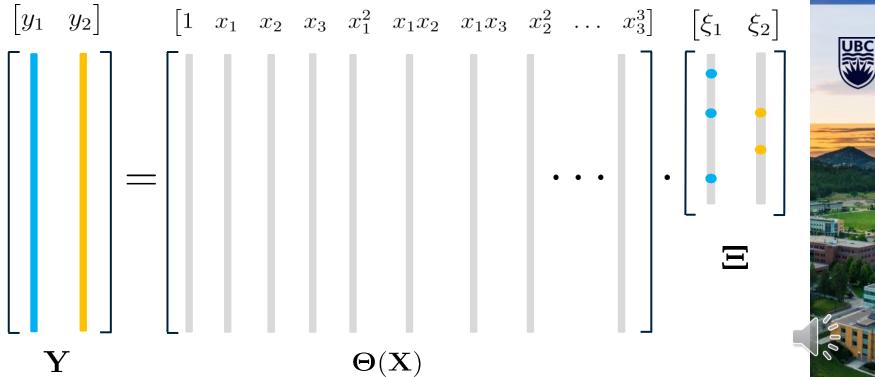
The SINDy uses a three-step sparse regression framework to automatically discover the underlying governing equation of dynamic systems from the process data [2].


Feature generation

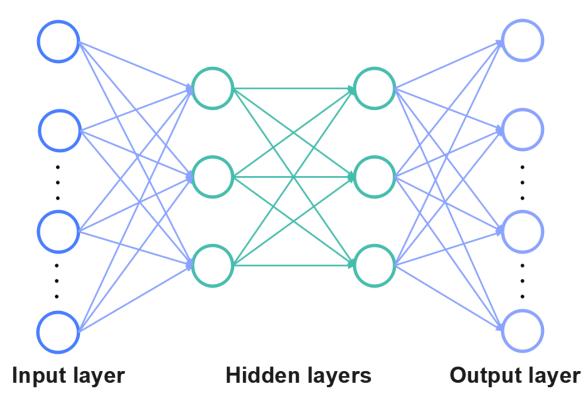
Data-driven feature generation:

$$\boldsymbol{\Theta}(\mathbf{X}) = \begin{bmatrix} \mathbf{1} \ \mathbf{X} \ \mathbf{X}^{\mathrm{PO}_2} \dots \sin(\alpha \mathbf{X}) \dots \tanh(\beta \mathbf{X}) \end{bmatrix}$$

Hybrid feature generation:

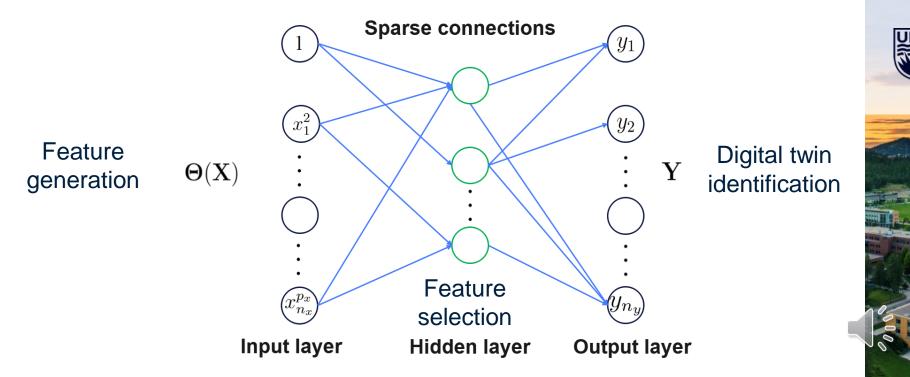

$$\boldsymbol{\Theta}(\mathbf{X}) = \begin{bmatrix} \mathbf{1} \ \mathbf{X} \ \mathbf{X}^{\mathrm{PO}_2} \ \dots \ \rho g(h_2 - h_1) \ \mathrm{UA}\Delta T \ \dots \end{bmatrix}$$

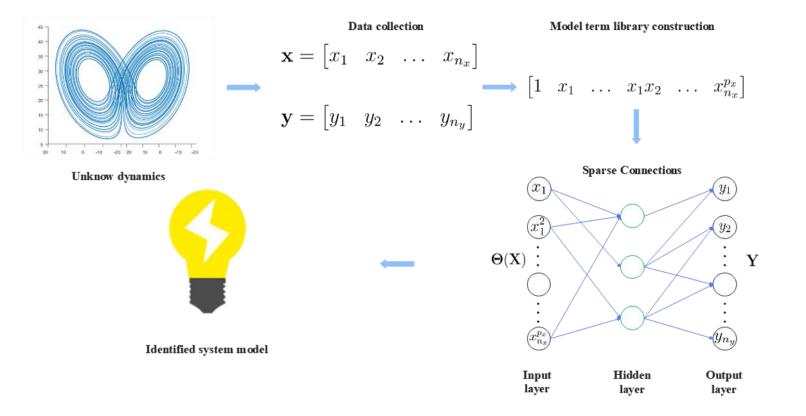
Feature selection



Research Motivations

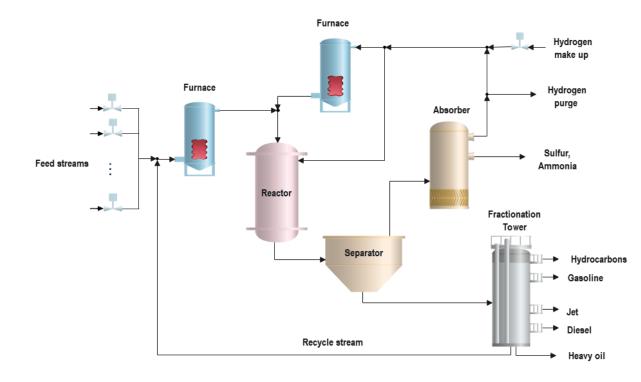
- 1. SINDy has been applied to successfully identify governing equations in various fields, including to fluid dynamics [1], biology [3], chemical process [4], etc.
- 2. SINDy's feature engineering procedure allows users to combine first-principles information and data-driven techniques seamlessly.
- 3. SINDy is limited to identify linear-in-parameter relationships.
- 4. Artificial neural networks are more applicable to capture complex nonlinear relationships, such as rational relationships and implicit relationships.


Artificial Neural Network


Neural network and SINDy integrated algorithm for digital twin identification

Neural network and SINDy integrated algorithm for digital twin identification

Neural network and SINDy integrated algorithm for digital twin identification



Case study

and lot 4

Data availability

	Real operational data	First-principles data
Sample number	8161	142
Number of input variables	37	13

Feature generation

 $\mathbf{FP}(\mathbf{X}^{\mathrm{PO}_2})$

$$\frac{1}{\rho} e^{-\frac{E_a}{RT}}$$

$$\boldsymbol{\Theta}(\mathbf{X}) = \left[\mathbf{1} \ \mathbf{X} \ \tanh(0.8\mathbf{X}) \ e^{(\mathbf{X})} \ \mathbf{FP}(\mathbf{X}^{\mathrm{PO}_2}) \ \frac{1}{\rho} \ e^{-\frac{\mathbf{E}_a}{\mathrm{RT}}}\right]$$

Performance comparison among the SINDy, the conventional single-layer neural network, and the proposed algorithm in terms of MSE

0	Output yields (BPH)			
Methods	Gasoline	Diesel	Jet	
SINDy	0.096	0.237	0.0839	
Conventional single-layer				
neural network	0.068	0.2410	0.110	
Proposed algorithm	0.058	0.202	0.068	

19

Conclusions

- A neural network and SINDy integrated algorithm is proposed to automatically identify the complicated nonlinear digital twin model combining both firstprinciples knowledge and data-driven techniques.
- Compare to SINDy, the proposed method is more applicable to identify largescale complex nonlinear relationships.
- Compare to traditional neural networks, the proposed approach combines both first-principles knowledge and data-driven techniques to improve the prediction accuracy and prevent overfitting.

Acknowledge

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Imperial Oil
- University of British Columbia

References

- [1] M.Day, "Discussing digital twins,"[Online]. Available: https://aecmag.com/features/discussing-digital-twins/, 2020.
- [2] S. L. Brunton, J. L. Proctor, and J. N. Kutz, "Discovering governing equations from data by sparse identification of nonlinear dynamical systems," Proceedings of the National Academy of Sciences, vol. 113,no. 15, pp. 3932–3937, 2016.
- Inferring Mangan N Μ al., 2016. Biological Networks Sparse Iden-• [3] et by of IEEE Multi-Scale tification Nonlinear Dynamics. Trans. Mol. Biol. Commun. 2, (1):52–63.
- S.-I, 2019. Machine learning-[4] Bhadriraju Β, Narasingam Α, and Kwon J ٠ identification based adaptive model of systems: Application to chemа ical Eng. Res. Des. 152,372-383. Chem. process.

Thank you and Questions?

