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Abstract: In drilling processes, non-stationary phases corresponding to shifts between oper-
ating conditions and changes in downhole formations typically lead to false alarms. Extracting
these frequent event patterns is critical to build drilling process monitoring and fault diagnosis
models. This study aims to extract the frequent event patterns associated with non-stationary
phases in drilling time series. In this way, diversified information related to signal changes
under normal conditions can be obtained, which is beneficial for suppressing false alarms and
improving fault detection performance. The main contributions of this study are twofold: 1) a
non-stationary phase detection method is proposed to extract drilling frequent event patterns
based on t-distributed stochastic neighbor embedding and relative unconstrained least-squares
importance fitting; 2) an event sequence generation method is proposed to express drilling
frequent event patterns with a group of symbols. The effectiveness of the proposed method is
demonstrated by data from a real drilling project.

Keywords: Drilling processes, pattern extraction, change point detection, event sequence
generation, frequent event pattern.

1. INTRODUCTION

Geological drilling plays an essential part in obtaining
deeply buried resources, such as minerals, oil, and natural
gas (Gan et al., 2020). With the depletion of shallow
resources, the complex and harsh downhole environments
bring challenges to deep drilling processes. On the one
hand, the risk of downhole faults increases with the drilling
depth; On the other hand, the drilling operator needs
to adjust the operational variable timely to adapt to
the varying downhole formations. Statistically, more than
20% of the engineering time was devoted to dealing with
downhole faults, such as the lost circulation, kick, and
stuck pipe (Willersrud et al., 2015). Therefore, process
monitoring and fault detection are significant to ensure
drilling safety and reduce maintenance costs.

Traditional downhole fault detection methods are usually
based on mechanism models, such as a hydraulic or kine-
matic model described by differential equations. The main
idea is to detect parameter changes that are sensitive to
downhole faults in the mechanism model. The hydraulic
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model is widely used in fault diagnosis of drilling fluid
systems. A downhole fault detection method was proposed
based on adaptive observers and single phase hydraulic
model (Willersrud et al., 2015). Further, a fault classifica-
tion method was developed using an unscented Kalman
filter based on pressure and flow rate responses (Jiang
et al., 2020). Considering that the motion characteristics
of drillstring were related to downhole faults, differential
equation models describing the stick-slip fault were estab-
lished in (Kamel and Yigit, 2014). However, due to the
limitation of measurable variables, establishing mechanism
models is rather tricky in geological drilling processes.

Recently, data driven fault detection methods have re-
ceived plentiful attention with the popularity of data ac-
quisition and storage (Zhao and Zhao, 2020). A notable
advantage of this method is that the underlying structure
of the drilling process can be learned from historical data
without the first principle model. By transforming the
fault diagnosis into a binary or multi-classification prob-
lem, supervised learning approaches were adopted to diag-
nose downhole faults based on multi-class SVM and neural
networks (Li et al., 2020; Zhang et al., 2018). Besides,
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unsupervised learning algorithms were also introduced to
establish fault detection models. The main idea is to an-
alyze drilling time series based on distance metrics, such
as the morphological distance (Zhao et al., 2019), local
distance (Zhang et al., 2021), and dynamic time warp-
ing (Li et al., 2021a). Further, Tang et al. (2019) defined
two indicators calculated from time series to predict the
probability of the kick incident. Regarding incipient fault
detection, distribution-based approaches exhibited good
performance in capturing changes in drilling data. The
generalized Gaussian distribution was used to describe the
drilling data, enabling a detection decision by comparing
the Kullback Leibler divergence from the distribution of
normal data to that of online data (Li et al., 2021b). The
above methods achieved good fault diagnosis performance
under the stationary drilling phase by extracting the data
features under normal and faulty conditions. However, the
false alarms generated during the non-stationary phases
are rarely considered.

Due to the changes in formation and shifts between oper-
ating conditions, the drilling operation is not always in
a stationary phase. This makes it necessary to analyze
the characteristics of non-stationary phases that are prone
to cause false alarms, so as to suppress the false alarms
and enhance the overall performance. According to the
above analysis, most methods assume that the templates
of all drilling modes are known and well-prepared, while
few studies discuss how to obtain these templates. Hence,
extracting these non-stationary phases that lead to false
alarms from historical drilling data is an essential prerequi-
site for the design of fault diagnosis and process monitoring
methods.

This work aims to extract the frequent event patterns as-
sociated with non-stationary phases in drilling time series.
Motivated by the above discussions, a frequent pattern
extraction method is proposed for drilling processes based
the change point detection and event sequence generation.
The main contributions are two folds:

(1) A non-stationary phase detection method is proposed
to extract drilling frequent event patterns based on
t-distributed stochastic neighbor embedding and rel-
ative unconstrained least-squares importance fitting;

(2) An event sequence generation method is proposed to
express drilling frequent event patterns with a group
of symbols.

Historical data from real drilling processes is used to
demonstrate the effectiveness of the proposed method.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly describes the drilling process and the prob-
lem. The frequent pattern extraction method is introduced
in Section 3, including the dominant feature extraction,
non-stationary phase detection, and event sequence gener-
ation. Section 4 shows the industrial case study, followed
by conclusions in the final section.

2. PRELIMINARIES

This section describes the background of the drilling
process, introduces the key variables involving the drilling
process, and points out the frequent pattern extraction
problem.

2.1 Description of drilling systems

A typical drilling system is composed of two subsystems,
namely, the drilling rig subsystem and the circulation
subsystem. The drilling rig subsystem mainly provides
drilling power. On the one hand, the drilling rig provides
torque to drive the drillstring, so as to rotate the drill
bit to break the downhole rock. On the other hand, a
hook carries part of the weight of the drillstring, and the
rest is applied to the drill bit to provide weight on bit.
Fault-related variables in the drilling rig subsystem are
the Weight On Bit (WOB), hook load, Torque (TRQ),
Rotary Per Minute (RPM), and Armature Current (AC)
of a rotary motor. As for the circulation subsystem, it is
designed to transport downhole cuttings and ensure the
stability of the wellbore. The drilling fluid stored in a mud
pit is pumped down to the drill bit by a mud pump, and
then returns to the surface with cuttings. Critical variables
in the circulation subsystem include Stand Pipe Pressure
(SPP), mud flow in, and mud pit volume.

However, there is a strong correlation between variables
in the same subsystem. For example, the WOB is directly
converted from the hook load. In addition, a downhole
fault can hardly cause abnormal changes in signals such
as mud flow in, so they are not considered for process
monitoring. To avoid redundant information, only part
of the variables are kept for pattern extraction. Table 1
summarizes the full names, abbreviations, and units of the
above variables.

Table 1. List of drilling process variables.

Method Full name Abbreviation Unit
1 Weight on bit WOB kN
2 Torque TRQ N.m
3 Rotary per minutes RPM r/min
4 Armature Current AC A
5 Stand pipe pressure SPP MPa

2.2 Problem description

Frequent event pattern refers to drilling conditions or
operations that trigger alarms. Among them, the alarm
caused by the non-stationary phase of the drilling process
is known as a false alarm. The main goal is to extract
those non-stationary phases caused by the shifts between
operating conditions and changes in downhole formations.
Given the historical data under the normal condition, the
first step is to obtain a dominant feature sensitive to the
drilling operation state, which is reflected by changes in
multivariate drilling signals. Then, non-stationary phas-
es can be identified by monitoring the variation of the
dominant feature signal. It is necessary to extract the
common features of non-stationary phases and transfor-
m them into knowledge representations. Considering the
noise and disturbance, the corresponding signals of these
non-stationary phases are concluded and converted into
symbols. This can be helpful in exploring the common
features of the frequent event patterns compared with the
original drilling data.

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

6718



3. THE PROPOSED METHOD

This section presents the pattern extraction method for
drilling time series. First, the dominant feature of the
multivariate drilling time series is extracted based on the t-
distributed stochastic neighbor embedding (t-SNE); then,
the non-stationary phase that may cause false alarms is
detected using a change point detection algorithm; last,
event sequences that correspond to the non-stationary
pattern are generated with a group of event symbols.

3.1 Dominant feature extraction based on t-SNE

The drilling process is a typical multivariate process, in-
cluding WOB, TRQ, RPM, AC, and SPP. As different
variables show different characteristics, using only one
variable to determine whether the drilling process is sta-
ble is challenging. Hence, a dominant feature describ-
ing the drilling operation needs to be extracted. The t-
SNE method is a non-linear algorithm for dimensional-
ity reduction and data visualization based on manifold
learning. The main idea of t-SNE is to transform the
high-dimensional data into a low-dimensional space using
similarity probabilities. The t-SNE is utilized to obtain
the single dominant feature of drilling signals to handle
multiple drilling variables.

As the magnitude varies by variable, the original multi-
variate drilling signals xo are normalized to 0 to 1 as

x(k) =
xo(k)− xo

min

xo
max − xo

min

, (1)

where xo
min and xo

max represent the minimum and maxi-
mum values of xo, respectively.

Suppose X = {x1, x2, ..., xM} and Y = {y1, y2, ..., ym}
denote the normalized drilling signals and the low-
dimensional dataset, respectively, where M represents the
number of original drilling variables, and m indicates the
data space after t-SNE.

The conditional probability distribution pj|i is used to
calculate the similarity of xi and xj as

pj|i =
exp(−∥xi − xj∥/2σ2

i )∑
k ̸=i exp(−∥xi − xk∥/2σ2

i )
, (2)

where σi denotes the variance of the Gaussian distribution
centered on xi. In the same way, a similar conditional
probability representing the similarity between yi and yj
in the low-dimensional space is denoted as qj|i. Further,
the joint probability distribution pij of xi and xj in the
high-dimensional space is given by

pij =
pj|i + qj|i

2M
, (3)

where pii = 0 and pj|i = qj|i.

The t-SNE method aims to find low-dimensional data as
close as possible to high-dimensional data points, ideally,
pj|i = qj|i. It measures the similarity from the distribution
Pi given all datapoint xi to the distribution Qi given
all datapoint yi using Kullback-Leibler divergence (KLD).
Hence, the goal is to minimize the difference between pj|i
and qj|i and the cost function E is designed to minimize
the sum of KLDs as:

E =
∑
i

KL(Pi∥Qi) =
∑
i

∑
j

pij log
pij
qij

. (4)

Using the gradient descent algorithm, the gradient of
eq. (4) is denoted as

∂E

∂yi
= 4

∑
j

(pij − qij)(yi − yj)
(
1 + ∥yi − yj∥2

)−1
. (5)

Using eqs. (4-5), the low-dimensional signal Y is obtained
and prepared for extracting the non-stationary phase in
the drilling process.

3.2 Non-stationary phase detection using change point
detection

In drilling processes, the situation in which the sig-
nal changes drastically under normal conditions is of-
ten referred to as the non-stationary phase. This can be
caused by set-point adjustments, mode switching, forma-
tion changes, etc. As non-stationary phases usually cause
dynamic changes in the time series, the change point
detection method is introduced here to detect the change
point in the drilling time series, so as to extract all non-
stationary phases in historical data.

Change point detection methods are typically divided
into two classes, namely amplitude change detection and
distribution change detection Truong et al. (2020). Some
pioneering studies demonstrated that distribution change
detection is more sensitive to changes in the signal. The
main idea is to detect changes by the difference between
the corresponding distributions of two signals. This study
exploits the Pearson (PE) divergence to calculate the
distance from distributions P (A) to P (B), where P (A) is a
stable template signal, and P (B) denotes the new collected
signal. Because it is difficult to find a typical distribution
that accurately describes drilling data, the density-ratio

function P (A)
P (B) is estimated directly instead of separately

estimating P (A) and P (B).

Suppose that P (y) denotes the distribution of the low-
dimensional signal Y , and Pr(y) denotes the distribution
of a stable reference signal. The PE divergence PE(P∥Pr)
between P (y) and Pr(y) is given as:

PE(P∥Pr) =
1

2

∫
Pr(y)

(
P (y)

Pr(y)
− 1

)2

dy, (6)

where the PE(P∥Pr) ≤ 0.

Considering that the analytic forms of P (y) and Pr(y)

are unknown, the density ratio P (A)
P (B) is estimated analyt-

ically based on the Relative unconstrained Least-Squares
Importance Fitting (RuLSIF) algorithm. The α-relative
PE divergence is given as (Yamada et al., 2013)

PEα(P∥Pr) = PE(P∥gα)

=
1

2

∫
Pr(y)

(
P (y)

gα(y)
− 1

)2

gα(y)dy,
(7)

gα(y) = αP (y) + (1− α)Pr(y) (8)

where α ∈ (0, 1). Then, the α-relative density ratio is given
by

rα(y) =
P (y)

gα(y)
, (9)
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which is bounded by α−1 (Liu et al., 2013). To solve eq. (9),
rα(y) is estimated based on the sum of kernel models as:

r̂α(y) = h(y) =
n∑

i=1

ϕiK(y, yi), (10)

where n denotes the length of a sliding window, ϕ =
(ϕ1, ..., ϕn) can be trained based on historical data, and
K represents the Gaussian kernel function as:

K(y, yi) = exp

(
−∥y − yi∥2

2σ2

)
, (11)

where the width of the kernel σ is determined empirical-
ly (Li et al., 2021b).

Further, the α-relative PE divergence in eq. (7) is es-
timated using the two adjacent online segments Y1 =
[y(1), y(2), ..., y(m)] and Y2 = [yr(L+1), yr(L+2), ..., yr(L+
m)] as (Yamada et al., 2013)

P̂Eα(P∥Pr) =
1

2m

m∑
j=1

(
2ĥ(yj)− αĥ(yj)

2
)

−
m∑
i=1

(1− α)

2ñ
ĥ(yri )

2 − 1

2
.

(12)

where m denotes the length of the segment. As the original
PE-divergence is asymmetric, the symmetrized form of
PEα is defined as

PEs
α = PEα(P∥Pr) + PEα(Pr∥P ). (13)

Using the symmetrized PE divergence, the change point
detection can be conducted by determining if PEα cal-
culated based on Y1 and Y2 exceeds a normal threshold,
which is determined by the historical data. Specifically,
the threshold PEs

th is calculated using the cumulative
distribution as

P (s ≤ PEs
th) =

∫ PEs
th

0

Γ(s)ds = β. (14)

where β is the confidence level, and Γ(s) represents the
distribution of PEs

α. By comparing the target PEs
α and a

corresponding threshold PEs
th, the change point is extract-

ed using the following hypothesis testing, i.e.,{
PEs

α ≤ PEs
th : y(k) is not a change point,

PEs
α > PEs

th : y(k) is a change point.
(15)

Once a point is identified as a change point, it is regarded
as a frequent event pattern.

3.3 Event sequence generation

As the change point is related to the non-stationary phase,
signal segments under the non-stationary phase can be
found with change points. Then, the multi-signal features
of the non-stationary phase need to be extracted and
represented. It is well known that event sequences are more
robust to noises and disturbances, favoring pattern forma-
tion over time. Thus, the drilling signals are transformed
into event sequences to express non-stationary patterns
that may lead to alarms.

Assuming L represents the length of the sliding window,
and a change point is detected at in t ∈ (k−L+1, k). Let
X(k) = {x1(k), x2(k), ..., xM (k)}T denotes an instant of
the multivariate time series at k, while the corresponding

event sequence is E(k) = {e1(k), e2(k), ..., eM (k)}, where
ei = {a, b, c}, i ∈ {1, 2, ...,M}; X (k) = {X(k − L +
1);X(k − L + 2); ...;X(k)} represents M time series of
length L, while a corresponding event sequence matrix is
E(k) = {E(k − L+ 1);E(k − L+ 2); ..., E(k)}.
The main idea is to assign an event symbol for each sample
to represent the current trend information. Here, symbolic
aggregate approximation (SAX) is used to convert the
multivariate time series X (k) into the event sequence
matrix E(k) as

E = {Ei(k)|∀i ≤ k,Ei(k) = fi(Xi(k), ηi)}, (16)

where Ei(k) denotes the i column of E(k), Xi(k) represents
the ith column of X (k), fi indicates the SAX model for
Xi, and ηui and ηli are parameters in fi.

With the help of fi, every element xi(j) of Xi(k) is mapped
to one of the discrete intervals with a certain event symbol
as

ei(j) =

 a ηli ≤ xi(j) ≤ ηui
b xi(j) < ηli
c ηui < xi(j)

(17)

where j ∈ [1, L], ηli and ηui denote the lower and upper
bounds for the ith variable, respectively. The bounds are
calculated based on three-sigma limits for the estimated
Gaussian distribution of normal historical data (Wheeler
and Chambers, 1992).

4. INDUSTRIAL CASE STUDY

The industrial data from a real drilling project located
in Shandong province, China, is provided to illustrate
the effectiveness and practicality of the proposed method.
The five involved drilling variables, namely, WOB, RPM,
AC, TRQ, and SPP, are selected to extract the frequent
event patterns. As an industrial application case, the
proposed method was applied to analyze a historical
segment, including multiple frequent event patterns.

First, the segment of 5,000 historical samples of the 5
variables was normalized to 0 to 1. Fig. 1 shows the
time series plots of the normalized drilling process signals
under a normal condition. During the period, there were
several non-stationary phases, such as t ∈ [200, 400],
t ∈ [2000, 2200], and t ∈ [3600, 3800], which can lead to
alarms. Since all 5 signals exhibited significant changes
serval times, it is rather difficult to extract non-stationary
phases using only a single signal.

Then, the multiple signals were reduced to a one-
dimensional dominant feature. Fig. 2 shows the time series
plot of the extracted one-dimensional feature based on t-
SNE. According to Figs. 1 and 2, the difference between
non-stationary and stationary phases is insignificant. Even
if a perfect detection threshold is applied, only a few non-
stationary phases can be found from the time series plot
of the feature. For example, non-stationary phases such as
t ∈ [1400, 1500] and t ∈ [4500, 4600] were hard to capture.

The presence of non-stationary phases is usually associated
with dramatic changes in the one-dimensional feature.
Hence, the PE divergence from a normal stable signal to
the current signal is calculated to detect change points.
As shown in Fig. 3, segments of time series corresponding
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Fig. 1. Time series plots of drilling process signals.
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Fig. 2. Time series plot of the extracted dominant feature
based on t-SNE.

to non-stationary phases were determined by assessing
whether the PE divergence changes significantly, where the
red dashed line representing the threshold (PEs

th=0.19) is
determined by the mean of a stationary historical signal.

Further, drilling process signals corresponding to non-
stationary phases were expressed by a group of Event
Sequences (ES). Fig. 4 shows time series plots of WOBES,
RPMES, ACES, TRQES, and SPPES, where the symbol
’a’ denotes high, ’b’ indicates normal, ’c’ represents low,
and ’nul’ correspond to stationary phases. The five non-
stationary phases were detected successfully and expressed
with symbols ’a’, ’b’, and ’c’. Fig. 5 concludes frequent
event patterns correspond to non-stationary phases by a
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Fig. 3. Change point detection result for the one-
dimensional feature based on PE divergence, where
the red dashed line represents the alarm threshold.
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Fig. 4. Time series plots of the generated event sequences
for drilling signals.

group of event sequences. The five frequent event patterns
correspond to non-stationary intervals [168, 198], [1380,
1410], [2050, 2080], [3670, 3700], and [4600, 4630] in Fig. 4
respectively. It can be found that the first and third non-
stationary phases share identical sequences, and thus they
are grouped into the same pattern.

For example, the first pattern is characterized by a high
WOB value, low RPM value, low AC value, low TRQ
value, and high TRQ value. If an alarm is generated with
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A

Fig. 5. Frequent event patterns correspond to non-
stationary phases extracted from the above signals.

drilling signals exhibiting the above characteristics, it can
be judged as a false alarm. Fig. 5 shows only part of
frequent event patterns extracted in historical data. By
extracting frequent sequences that occur multiple times,
the frequent sequences corresponding to false alarms can
be obtained, which provides a path to improve the safety
monitoring performance by reducing false alarms.

5. CONCLUSION

This paper proposes an original framework for extracting
frequent event patterns based on change point detection
and event sequence generation in the drilling process. As
multiple drilling variables exhibit different variation char-
acteristics, the dominant feature of various variables is ex-
tracted based on t-SNE to describe the drilling operation.
Further, the non-stationary phase is identified from the
dominant feature based on change point detection. The
RuLSIF algorithm is exploited to detect the change point
by calculating the relative PE divergence. After that, the
frequent pattern associated with the non-stationary phase
is determined; the corresponding drilling signals are trans-
formed into event sequences as frequent event patterns
that may lead to alarms. Industrial case studies involving
the data collected from a drilling project demonstrated the
effectiveness of the proposed method.

In conclusion, this study is designed to increase the diversi-
ty of training samples by extracting more drilling patterns
from historical data. Based on the extracted frequent event
patterns, it is helpful to develop novel condition iden-
tification, alarm system design, and process monitoring
methods for drilling processes. An obvious benefit is the
promise of a lower false alarm rate.
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