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Abstract—Process monitoring contributes significantly
to reducing the risk of downhole faults and preventing un-
desirable events. This study proposes a process monitor-
ing method based on operation mode recognition and dy-
namic feature extraction for geological drilling processes.
The main idea is to develop different monitoring procedures
for various operation modes based on dynamic changes
in drilling signals, so as to achieve reliable monitoring
for a full drilling cycle including transient and steady-state
processes. The contributions are threefold: 1) an operation
mode recognition method is developed for drilling process-
es based on rules discovered from multivariate time series;
2) a long-short term dynamic feature extraction method is
proposed to design a process monitoring method for tran-
sient processes; 3) a data-driven model based on the long
short-term memory is established for time series prediction
to monitor steady-state processes. Industrial case studies
from a drilling project demonstrate the effectiveness and
superiority of the proposed method.

Index Terms—Geological drilling, process monitoring,
operation mode recognition, dynamic features.

I. INTRODUCTION

GEological drilling has long been the main way to explore
deeply buried natural resources [1]. With the increase in

drilling depth, the challenges to drilling safety operations are
gradually becoming important. Process monitoring ensures en-
gineering quality and process safety [2], [3]. Generally, drilling
process variables are monitored online to ensure signals are
within the allowable bounds and the operation is within the
safe envelope. However, a drilling cycle is composed of several
operation modes [4]. A shift in operation mode causes non-
stationarity of the drilling signal; if it is not handled correctly,
it can lead to a large number of false alarms and thus reduce
trust in the monitoring system. Therefore, a well-designed
monitoring system is crucial in reducing the risk of faults and
preventing undesirable events that endanger drilling safety.
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With the wide application of the data acquisition systems,
several advanced data-driven drilling process monitoring meth-
ods are proposed and typically derived from the operational
data [5], [6]. The main idea of machine learning-based ap-
proaches is to learn a latent structure model that can describe
the system’s normal behavior based on specific information
in the data. A large majority of process monitoring methods
are based on three typical data representation forms, namely,
original samples, their probability distribution, and time series.

A common way to ensure drilling safety is by monitoring
the original samples. Some advanced drilling systems were
equipped with alarm configuration modules to make moni-
toring decisions by checking whether the samples exceeded
a pre-defined limit. However, the limit setting depends on
the operator’s prior experience and is often subjective [7].
Regarding monitoring methods, the principal component anal-
ysis was used to extract latent variables related to the stuck
fault [8]. Neural networks were used to diagnose downhole
faults with online collected samples as the input [9]. However,
these methods are challenging to capture the dynamic features
of drilling signals, so they are only applicable at steady-state.

The probability distribution is an essential tool to describe
the shape of a dataset [10], [11]. It is possible to conduct
drilling process monitoring by detecting changes in data
distribution. The generalized likelihood tests and multivariate
t-distribution were combined to make efficient washout de-
tection [12]. Considering the limited faulty drilling data, the
difference between standard reference and online data distri-
bution is calculated to monitor drilling safety. The Kullback-
Leibler divergence was used as a dissimilarity index to detect
bit bounce faults [13]. Although this kind of method shows
advantages in incipient fault detection, it is difficult to monitor
the dynamic properties of drilling signals without considering
time series dependencies.

Typical approaches for analyzing drilling time series include
trend analysis and distance calculations [14]. The presence
of faults can change the dependencies of the time series;
this makes the trend features of drilling signals importan-
t information for process monitoring [15]. For instance, a
downhole fault detection algorithm was developed based on
global trend and local trend extraction [16]. Abnormal trends
in drilling time series were extracted based on reconstruction
analysis and time series segmentation methods [17]. The frac-
turing pressure time series was modeled by locally weighted
linear regression to develop an early warning model [18].
Further, if the relationship from derivatives to faults is not
straightforward, they can be transformed into a set of symbols
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relating to trend features. Symbolic time series were used to
build a downhole fault diagnosis model [19]. Besides trend
features, distance calculation between time series is another
idea for drilling fault detection. First, calculating the labeled
time series templates corresponding to certain conditions in
advance; then, determining the state by measuring the distance
between the target signal and templates. The kick probability
was calculated by a similarity measure algorithm based on
the Euclidean distance and pattern recognition model [20]. A
diagnostic decision was made using dynamic time warping and
density-based clustering [21]. Nevertheless, the distance-based
machine learning method fails to detect faults effectively and
timely since it requires a longer time series in a fault state.

According to the above literature survey, existing methods
have limitations in their design for drilling process monitoring.
On the one hand, most methods designed for fault detection
focus on the steady-state of the process, regardless of other
transient operation processes in a drilling cycle. On the other
hand, the drilling signal changes dynamically due to the
formation uncertainty; existing methods fall short of fully
capturing the time series dependencies. Motivated by the above
challenges, this paper proposes a systematic drilling process
monitoring method based on operation mode recognition and
dynamic feature extraction. The main contributions of the pro-
posed method are threefold: 1) an operation mode recognition
method is developed for drilling processes based on rules
discovered from multivariate time series; 2) a long-short term
dynamic feature extraction method is proposed to design a
process monitoring method for transient processes; 3) a data-
driven model based on long short-term memory is established
for time series prediction to monitor steady-state processes.
Case studies with actual drilling data are provided to illustrate
the practical effectiveness of the method.

The remainder of this paper is organized as follows: The
problem is formulated in Section II. The proposed monitoring
methodology is presented in Section III. Case studies are given
in Section IV, followed by conclusions in Section V.

II. PROBLEM FORMULATION

A geological drilling process consists of three main systems,
namely, rotary system, hosting system, and hydraulic system.
The main function of the first two systems is to provide power
to break downhole rocks. The schematic of the hydraulic
system is shown in Fig. 1, where a mud pump delivers the mud
fluid from a mud pit to the drill bit through a drillstring, and
then the mud returns to the surface from the annulus between
the drillstring and formation.

In a drilling process, a mud pump delivers the mud fluid
from a mud pit to the drill bit through a drillstring, and
then the mud returns to the surface from the annulus between
the drillstring and formation [13]. The flowing mud removes
downhole broken stones to improve efficiency, while the mud
column provides hydrostatic pressure to balance formation
pressures, preventing wall collapse, lost circulation, and kick
incidents. The standpipe pressure (SPP) is the sum of pressure
drops in the mud cycle circuit; and the mud flow in (MFI) is
defined as the mud flow rate into the well. In practice, drilling

operators monitor the drilling condition mainly by observing
the changes in the key variable SPP, and the adjustment of
the operational variable MFI directly affects the monitoring
variable SPP.

Drillstring

Mud fluied

Drill bit

Mud pump

Formation

SPP MFI
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Fig. 1. Schematic of the hydraulic system in a drilling process. The red
arrows represent the directions of mud fluid flows. The process variables
SPP and MFI are displayed on dashed green rectangles.
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Fig. 2. Normalized SPP and MFI signals in a drilling cycle including
transient and steady-state operation modes in the normal state.

The SPP and MFI signals reflect the safety of the hydraulic
system. The SPP signal typically fluctuates in a small range
in the normal state configured with a constant MFI setpoint.
However, this relationship does not hold when a fault occurs.
Notably, the MFI setpoint is adjusted during the start-up and
shut-down operations, thereby leading to the non-stationarity
of the SPP signal. Drilling signals exhibit different dynamic
information in normal, start-up, and shut-down operations. For
example, Fig. 2 shows the MFI and SPP signals in a typical
drilling cycle. The MFI signal rose sharply at t = 2500 and
dropped discernibly at t = 10000. Meanwhile, the SPP signal
showed an upward trend during the start-up process within
t ∈ (2500, 4000), and exhibited a downward trend in the
shut-down process within t ∈ (9000, 10000). By contrast, the
SPP signal fluctuated smoothly during the steady-state mode
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between start-up and shut-down. This leads to the development
of different monitoring methods based on the dynamic features
of signals in various operation modes.

As shown in Fig. 2, the dynamic changes of the MFI and
SPP signals are sensitive to the operation mode, so discovering
the rules related to dynamic changes is critical for mode recog-
nition. Thus, this study is motivated by human experiences
and aims to propose a data-driven method to conduct drilling
process monitoring based on the key variables SPP and MFI.
Drilling operation modes are divided into transient and steady-
state modes; typical transient operation modes occur during the
start-up and shut-down processes, and the steady-state mode
corresponds to the stable drilling process between the start-up
and shut-down.

III. THE PROPOSED METHOD

This section presents the drilling process monitoring
method. Fig. 3 shows the framework of the method. The
drilling process data include time series of SPP and MFI. First,
the drilling operation mode is recognized based on symbolic
aggregate approximation (SAX) and association rules. Then,
the long-short term dynamic features are extracted for the tran-
sient process monitoring; and a time series prediction model
based on long short-term memory (LSTM) is established for
the steady-state process monitoring.

A. Operation mode recognition

Considering that the drilling process is dynamic, the in-
formation associated with operation modes is reflected in the
signal variations instead of the original value [22]. The key
problem is to extract the trends of multiple drilling signals ac-
curately. Then, the trends extracted at each moment constitute
a continuous sequence of events. Further, another problem is
to establish the relationship between the event sequences and
the drilling operational mode based on association rules, which
can be extracted from historical data.

The drilling time series composed of continuous numerical
values is difficult to describe by rules related to the operation
mode. To solve the problem, the first step is to discretize the
time series and represent it with a set of symbols. Time series
representation not only reduces computational complexity,
but also discovers the trends of change and associates them
with rules. Here, SAX converts the time series into a set of
customizable symbols. The main idea is to divide the time
series into several segments with a sliding window and assign
a symbol to each point to represent the current variational
direction.

The time series of the original SPP and MFI are represented
by xo

s and xo
m, respectively. First, the original data xo

s and xo
m

are normalized as

xv(t) =
xo
v(t)− xo

v,min

xo
v,max − xo

v,min

, (1)

where v ∈ {s,m}, t denotes the time stamp, xo
v,min and

xo
v,max represent the minimum and the maximum values in

xo
v, respectively.

To preserve the dynamic information of xv(t), a local linear
regression model is used to fit xv as

xv(t) = pv(k)t+ qv(k), t ∈ [k + 1− w, k], (2)

where pv(k) represents the slope parameter, qv(k) denotes the
intercept parameter, and w is considered as the sliding window
length. The estimated values of pv(k) and qv(k) are obtained
by minimizing the error as follow,

(p̂v(k), q̂v(k)) = argmin
k∑

t=k+1−w

(xv(t)− pv(k)t− qv(k)) ,

(3)
then, the analytic form of the estimated value is

p̂v(k) =

∑k
t=k+1−w (xv(t)− x̄v(k)) (t− t̄)∑k

t=k+1−w(t− t̄)2
, (4)

where x̄v(k) and t̄ are the mean values of xv(t) and t in the
interval t ∈ [k + 1− w, k].

Next, the p̂v is converted into a set of symbols to describe
the variational direction; here, every element p̂v(k) is mapped
to one of the discrete intervals with a certain symbol, i.e.,

cv(k) =

 0 lv ≤ p̂v(k) ≤ uv

−1 p̂v(k) < lv
1 uv < p̂v(k)

(5)

where the symbols 0, -1, and 1 represent stable, downward,
and upward trends, respectively; lv and uv denote the lower
and upper bounds for p̂v(k), respectively. The bounds are cal-
culated based on three-sigma limits for the estimated Gaussian
distribution of normal historical data [23].

In drilling processes, measurement noises and downhole
interference are inevitable. This leads to introducing the delay
timer in alarm management to avoid repeated changes in cv(k)
caused by signal fluctuations [24]. Specifically, if cv(k)=α,
cv(k + τv) changes to β (α ̸= β) only when all elements
in {p̂v(i)|i = k, k + 1, ..., k + τv} satisfy the conditions
corresponding to β in eq. (5), where τv is a delay parameter;
otherwise, the value of cv does not change, i.e. cv(k+ τv)=α.

In the steady-state mode, the variational direction of the
drilling signal rarely changes. By contrast, transient oper-
ations always accompany changes in variational directions.
It is possible to discover the time series segments that the
co-occurrence of changes in variational directions of SPP
and MFI signals; then, the association rules related to these
segments are extracted from the historical data to recognize
the transient mode.

A symbolic segment of multiple adjacent variational direc-
tions is regarded as an event. For example, during the start-up
process, MFI rises first, and SPP climbs up later. This can
be formulated as a rule that an increase in SPP (event A) is
followed by a rise in MFI (event B). The event A describes
the transition of the variational direction of MFI from stable
(cm = 0) to upward (cm = 1), i.e. [0,0,1,1]; while the event
B expresses that cs shifts from 0 to 1, i.e. [0,0,1,1]. The
association rule from event A to event B is denoted as A → B.
By combining the variational direction vectors corresponding
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Fig. 3. A framework of the proposed process monitoring method for geological drilling.

to A and B, a reference matrix CA→B representing the rule
A → B is given as follow:

CA→B =

(
0 0 1 1 1
0 0 0 1 1

)
. (6)

The rows of C correspond to drilling variables; the columns
are samples of variational directions. Then, the reference
matrix corresponding to each operation mode is prepared for
online mode recognition.

B. Transient process monitoring using dynamic features

This section proposes a transient process monitoring method
based on long-short term features of the SPP signal, so as
to prevent false alarms due to shifts in operation modes and
ensure the safety of transient processes of the mud pump.

1) Short-term monitoring with a dynamic range: The goal
of the short-term monitoring is to determine whether the
SPP signal xs changes significantly in a small interval. To
detect abrupt rises or falls of xs signal, the relative difference
between two adjacent samples is calculated as the short-term
dynamic feature and monitored in a step-by-step manner.
The dynamic range θ(k) for xs(k) is designed based on
the previous sample xs(k − 1) and the limits for the slope
parameter ps in eq. (4). The historical data under the transient
process is used to calculate the maximum limit pmax

s and the
minimum limit pmax

s for the slope parameter ps, where the
boundaries are determined using three-sigma limits.

The range θ(k) is calculated based on the local linear
regression model. First, boundaries qmax

s (k) and qmin
s (k) of

the intercepts correspond to pmax
s and pmin

s at k are given by:

qmax
s (k) = xs(k − 1)− pmax

s ∗ (k − 1), (7)

qmin
s (k) = xs(k − 1)− pmin

s ∗ (k − 1). (8)

Then, the upper and lower limits of xs(k) are calculated as:

xmax
s (k) = pmax

s ∗ k + qmax
s (k), (9)

xmin
s (k) = pmin

s ∗ k + qmin
s (k). (10)

Last, the dynamic range θ(k)=[xmin
s (k), xmax

s (k)] for xs(k)
is established for short-term monitoring.

However, the dynamic range can only monitor the change
of xs in a short-term. Since the pmax

s and pmin
s represent

the extreme cases of slope values, even if xs(k) ∈ θ(k), the
system may deviate from the normal state. For example, the

xs should continue to increase during the start-up process,
but pmin

s may be negative due to signal fluctuations; if xs

keeps slowly decreasing, such an undesirable event is difficult
to discover due to ps > pmin

s . To address this problem, the
long-term dynamic feature is introduced to monitor the trend
of xs.

2) Long-term monitoring based on dynamic trend extrac-
tion: During the start-up and shut-down processes, the trend
information of the signal plays a vital role in safety mon-
itoring. The Mann-Kendall (MK) test showed outstanding
performance in the trend extraction of time series in industrial
processes [25]. The MK test is a nonparametric test designed
to statistically calculate a signal’s increasing or decreasing
trend over time. Compared with the short-term monitoring that
only models the one-step change, the MK test can capture a
long-term dependency, and thus is introduced to calculate the
long-term dynamic feature of xs.

The observations of xs obtained over time form a time
series [xs(k − n + 1), ..., xs(k − 1), xs(k)], where n denotes
the number of observations. Under the assumption that each
observation is independent and identically distributed, the MK
summation M is defined to compare observations obtained
earlier and those obtained later, that is,

M(k) =
k−1∑

j=k−n+1

k∑
i=j+1

sign (xs(i)− xs(j)) , (11)

where sign(·) denotes a symbolic function determined by the
sign of xs(i)− xs(j) as

sign(xs(i)− xs(j)) =

 1 xs(i)− xs(j) > 0
0 xs(i)− xs(j) = 0

−1 xs(i)− xs(j) < 0
. (12)

If the number of observations is sufficient (n > 10), the test is
conducted by calculating the variance VM and the MK statistic
Z as follows [25]

VM (k) =
n(n− 1)(2n+ 5)

18
, (13)

Z(k) =


(M(k)−1)√

VM (k)
M(k) > 0

0 M(k) = 0
(M(k)+1)√

VM (k)
M(k) < 0

. (14)

The sign of Z(k) is related to the trend of xs over time, and
the absolute value of Z(k) is associated with the degree of
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change of xs in the interval t ∈ [k − n + 1, k]. If Z(k) > 0,
it indicates that the xs shows an upward trend; if Z(k) < 0,
it means that the xs exhibits a downward trend.

According to expert rules and drilling knowledge, the ref-
erence directions of change of SPP under normal transient
processes can be summarized as follows: the SPP signal should
increase (i.e., Z(k) > 0) in the start-up process and decrease
(i.e., Z(k) < 0) in the shut-down process.

C. Steady-state process monitoring via time series pre-
diction

The monitoring of the steady-state process mainly includes
two parts: the SPP signal is predicted based on a prediction
model, and then a residual signal is generated and compared
with a pre-calculated threshold to detect potential faults.

1) Prediction of SPP signal based on LSTM network: In an
actual drilling process, the time-varying SPP signal is related
to both the current condition and the previous moments. This
leads to the SPP signal showing both long-term and short-
term dynamic characteristics. For example, kick and loss faults
often cause slow varying changes in the SPP signal, while the
failure of broken tools usually leads to abrupt changes in the
SPP signal. Recently, many studies found that Long Short-
Term Memory (LSTM) is useful in time series modeling tasks.
Adopting the LSTM network to predict SPP can compensate
for the weakness of using only the information within the
sliding window, and thus it is used to build the prediction
model.

Fig. 4 shows the architecture of the prediction model based
on the LSTM network. For online collected SPP samples, the
information flow into the LSTM is controlled by three gates:
a forget gate, an input gate, and an output gate; in addition
to the current input, the output also depends on the cell state
associated with historical inputs.

Forget gate

c(k-1)

c(k)

f(k)

i(k)

xs(k)

n

n

tanh

n

o(k)

h(k-1)

h(k)

tanh

Input gate

Output gate

Cell state

Fig. 4. Architecture of LSTM-based SPP prediction model.

The SPP sample and hidden state at the current time stamp k
are xs(k) and h(k−1), respectively. A part of the information
in cell state c(k−1) at the previous moment is removed from
the cell c(k) by the forget gate f(k) as

f(k) = ν(Wfxs(k) + Ufh(k − 1) + bf ), (15)

where ν denotes a control function, Wf and Uf are weight
parameters, and bf is the bias parameter. In the following

eqs. (16-19), {Wi,Wo,Wc} and {Ui, Uo, Uc} indicates weight
parameters, and {bi, bo, bc} are bias parameters.

To determine which information in xs(k) and h(k − 1)
should be passed to cell c(k), the input gate i(k) is designed
to control the effect of the input as

i(k) = ν (Wixs(k) + Uih(k − 1) + bi) . (16)

Based on f(k) and i(k), the information contained in the
cell c(k−1) is partially forgotten, then the cell is updated via
the following procedure

c(k) = f(k) ⋆ c(k − 1)

+ i(k) tanh (Wcxs(k) + Uch(k − 1) + bc) ,
(17)

where ⋆ represents an element-wise product function. Here, the
range of f(k) is [0, 1]; if f(k) approaches 0, the historical
information is almost completely forgotten. On the contrary,
all historical information is preserved.

Then, the output h(k) of the LSTM model is determined
by the output gate o(k) and the cell sate c(k):

o(k) = ν(Woxs(k) + Uoh(k − 1) + bo), (18)

h(k) = o(k) ⋆ tanh(c(k)), (19)

where h(k) is equal to the predicted SPP signal x̂s(k + 1).
In the training process, the weights W and U , and bias b in

eqs. (15-19) are determined based on historical drilling data.
Then, the SPP signal is predicted online based on the trained
LSTM network.

2) Residual signal generation and threshold calculation:
Residual signal generation and threshold calculation are the
two key steps to determine whether the drilling system has
deviated from the normal state. First, the predicted future SPP
signal x̂s and the measured SPP signal xs are fed into a
residual generation model. Then, the generated residual signal
r(k) is compared with a pre-defined threshold γ determined
from historical data in the normal state to make a decision.

The residual r(k) is generated by calculating the absolute
difference of the predicted and measured signals as

r(k) = |x̂s(k)− xs(k)|. (20)

Further, the drilling process monitoring following the residual
signal discrimination can be formulated as a hypothesis-testing
problem:{

H0 : xs(k) is in a normal state,
H1 : xs(k) is in an abnormal state,

(21)

where the null hypothesis H0 indicates that the system is in
the normal state, and the alternative hypothesis H1 indicates
that the system is in an abnormal state.

If r(k) exceeds a threshold for the normal state, it implies
that the system deteriorated into an abnormal state. Further, the
decision rule for the hypothesis-testing problem in eq. (21) is
rewritten as {

Decide on H0 when r(k) ≤ γ,
Decide on H1 when r(k) > γ,

(22)

where γ represents a pre-defined threshold determined from
r(k) in the normal state, and the threshold is calculated based
on the three-sigma rule.
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Assume that the residuals corresponding to the historical
SPP data in steady-state processes are denoted as Θ =
[rs(1), rs(2), ..., rs(N)], where N is the number of elements.
The estimated probability density function ĝ(r) of Θ is ob-
tained using the kernel density estimation as

ĝ(r) =
1

Nb

N∑
i=j

K(
r − rs(j)

b
), (23)

where K(·) is the Gaussian kernel function, rs(j) represents
the jth element in Θ, and the bandwidth b is determined by a
general formula as [13]

b =

(
4σ5

s

3N

) 1
5

, (24)

where σs denotes the variance of rs. Next, the threshold γ
under a confidence level α is calculated as follow:

P(r ≤ γ) =

∫ γ

0

ĝ(r)dr = α. (25)

D. Summary of the proposed method

The online monitoring procedure is summarized in Algo-
rithm 1. The input is the data collected online. The output is
the alarm state, i.e., normal (alarm = 0) or faulty (alarm = 1),
where the default value of alarm is 0. The steady-state mode,
start-up mode, and shut-down mode are respectively denoted
as ρs, ρu, and ρo, and reference matrices corresponding to
these modes are respectively expressed as Cs, Cu, and Co.
The operation mode at k is denoted as ρc(k).
Remark 1. This study is motivated by drilling signals showing
different variation characteristics in drilling operation modes.
Compared with the existing work, the proposed method is nov-
el in the following aspects: 1) the proposed method determines
drilling operation modes prior to process monitoring, which
does not exist in any literature [8], [16]; 2) short-term dynamic
alarm ranges are designed for transition process monitoring,
where many existing methods are based on fixed or adaptive
thresholds [1], [13]; 3) the proposed method introduces a time
series prediction model with long-term memory for steady-
state process monitoring, whereas the sequence dependencies
are not considered by most existing methods [21].

IV. CASE STUDY

This study provides an industrial case study with data from
a geological drilling site in Jiaodong Peninsula, China. The
effectiveness of the proposed method is verified in terms of
operation mode recognition, transient process monitoring, and
steady-state process monitoring. The dataset consists of MFI
and SPP data from depths of 2477 to 2930 meters with a
sampling interval of 1 second. The training dataset consists of
60,000 historical samples of multiple segments under normal
drilling conditions.

Algorithm 1 Online monitoring for the drilling process.
Input: Data collected online;
Output: Alarm states;
while data samples are updated at k do

Sliding the window to t ∈ [k + 1− w, k];
Calculate pv(k) and cv(k) using eqs. (4-5);
Create the matrix C with cm and cs;
if C = Cg, Cg ∈ {Cs, Cu, Co} then

ρc(k) = ρg, ρg ∈ {ρs, ρu, ρo};
else

ρc(k) = ρc(k − 1);
end if
if ρc(k) = ρs then

Predict x̂s(k) using the LSTM-based model;
Calculate r(k) using eq. (20);
if r(k) > γ then

return alarm=1;
end if

else
Calculate θ(k) using eqs. (7-10);
if xs(k) /∈ θ(k) then

return alarm=1;
else

Calculate Z(k) using eq. (14);
if ρc(k) = ρu and Z(k) ≤ 0 then

return alarm=1;
else

if ρc(k) = ρo and Z(k) ≥ 0 then
return alarm=1;

end if
end if

end if
end if

end while

A. Operating mode recognition

According to the method in Section III-A, the historical time
series of MFI and SPP were segmented by sliding windows
with w=60 and converted to symbols {0,−1, 1}. The delay
parameters for SPP and MFI are τs = 10 and τm = 10. Table I
summarizes the association rules discovered from historical
data for recognizing drilling modes. For example, the rule
for the start-up mode is that the SPP signal rises following
the rise of the MFI signal from zero. The above two events
are described using cm = [0, 0, 1, 1] and cs = [0, 0, 1, 1].
According to Table I, a switch label cl indicating the co-
occurrence of the exact variational directions in cm and cs
is defined as

cl(k) =

 1 Start-up
−1 Shut-down
0 Steady-state

, (26)

where a positive cl(k) represents the start of the start-up mode,
and a negative represents the start of the shut-down mode.

Using the association rules in Table I, the mode recognition
results covering three drilling cycles are shown in Fig. 5,
where the blue curve denotes the MFI signal, the green curve
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TABLE I
ASSOCIATION RULES FOR DRILLING OPERATION MODE RECOGNITION.

Pattern cm → cs
Start-up mode [0, 0, 1, 1] → [0, 0, 1, 1]

Shut-down mode [0, 0, -1, -1] → [0, 0, -1, -1]
Steady-state mode Otherwise

represents the SPP signal, the blue and green stars indicate
the variational directions cm and cs, respectively, and the red
stars represent the switch label cl. The three start-up and shut-
down modes were successfully recognized using cl, and other
moments were correctly recognized as the steady-state mode.
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Fig. 5. Time series plots of process signals for three drilling cycles,
where the blue curve denotes the MFI signal, the green curve represents
the SPP signal, the blue and green stars indicate the dynamic features
cm and cs, respectively, and the red stars represent the switch label cl.

To show the recognition process more clearly, Fig. 6 only
shows time series of process signals during a single start-up
process in Fig. 5. First, an upward trend in MFI was captured
and then caused cm to change from zero to positive. Then,
cs went from zero to positive after detecting a rise in SPP.
Changes in cm and cs caused the switch label cl to become
positive, indicating that the system shifted to the start-up mode
at t = 45990, so the start-up mode was correctly recognized.

B. Transient process monitoring
After the transient operation mode is recognized, it is neces-

sary to monitor the dynamic change of the SPP signal. Fig. 7
shows the time series plot of SPP and the corresponding long-
short term dynamic features in two start-up cases. The blue
curves denote SPP signals; the dashed red and yellow curves
indicate upper and lower limits, respectively, which were
calculated at the 95% significance level based on historical
data for start-up processes. In Figs. 7(a) and (c), the SPP
signal was within the upper and lower limits, and the MK
statistics Z kept rising, indicating that the long-term trend for
SPP was upward, which was consistent with the rule for the
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Fig. 6. Time series plots of process signals for a start-up process.

normal start-up mode. In Figs. 7(b) and (d), an abnormal event
occurred at t = 270s, causing the SPP signal that should be
rising to drop. The abnormal interval is highlighted with red
backgrounds; the SPP signal exceeded the dynamic range, and
the MK indicator Z dropped. The long-short term dynamic
features indicated that the system was abnormal.

Fig. 7. Time series plots of SPP and the corresponding dynamic features
for two start-up cases. In (a) and (b), the blue curves denote the SPP
signal, the dashed red and yellow curves represent the upper and lower
limits, respectively. In (c) and (d), the blue curves show the MK statistics.

Figs. 8(a) and (b) show the time series plots of SPP and
the corresponding dynamic ranges in two shut-down cases. It
can be seen that the SPP signals denoted by blue curves were
always in the intervals between the upper and lower limits. The
long-term dynamic trend of SPP for the shut-down mode is
the opposite of that of the start-up mode. In Figs. 8(c) and (d),
the MK statistics Z in both cases were negative, expressing
that SPP signals showed long-term downward trends, which
matched the rule for the shut-down mode. The above results
illustrate the effectiveness of the long-short term dynamic
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feature for transient process monitoring.
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Fig. 8. Time series plot of SPP and corresponding long-short term
dynamic features in two shut-down cases.

C. Steady-state process monitoring
The steady-state mode accounts for most of the drilling

time. Fig. 9 shows the time series plots for SPP and its residual
signals. The LSTM model was trained on 30,000 samples of
normal operations. In Fig. 9 (a), the blue solid curve and
red dashed curve denote the original and predicted signals,
respectively. The residual signal generated by the difference
between the above two signals is shown in Fig. 9 (b), where
the red background indicates the abnormal conditions, and
the red dashed line denotes the alarm threshold. A downhole
abnormal event caused significant changes in the SPP signal in
t ∈ [2700, 2900], resulting in the residual signal rising sharply
and violating the threshold. After that, the signal also showed
an abnormal rise at t = 3700s, and the abnormality lasted
about 100 seconds. Then, the operator found the abnormality
and adjusted other drilling parameters. Obviously, these abnor-
mal events were successfully detected with the significant rise
of the residual signal. Apart from these events, the residual
signal was almost always below the threshold, indicating that
the system was in a normal state.

To demonstrate the superiority of the method to other
methods, monitoring results using different methods in the
steady-state operation mode are shown in Table II. The false
alarm rate (FAR) and missed alarm rate (MAR) are used as
indicators to evaluate monitoring performance [26]. The FAR
and MAR of the proposed method were 0.77% and 1.06%. The
results of the back-propagation neural network (BPNN) were
worse than those of the other three methods. Compared with
the principal component analysis (PCA) and autoencoder, the
proposed method showed a lower FAR when the MARs were
similar. Therefore, the performance of the proposed method
outperformed the other three methods.

V. CONCLUSION

This paper proposes a process monitoring method based on
operation mode recognition and dynamic feature extraction for

Fig. 9. Time series plots of SPP and residual signals; (a) the blue solid
curve and red dashed curve denote the original signal and the predicted
signal, respectively; (b) the blue solid curve denotes the residual signal,
and the red dashed line represents the alarm threshold.

TABLE II
COMPARISON OF MONITORING RESULTS USING DIFFERENT METHODS.

Method FAR (%) MAR (%)
T 2 of PCA 10.07 1.95

BPNN 9.80 3.57
Autoencoder 9.71 1.96

The proposed method 1.02 2.12

the geological drilling process. Association rules related to the
drilling operation mode are discovered based on variational
directions, and then the operation mode is recognized with
the association rules. For the transient mode, a time-varying
dynamic range is designed to monitor the SPP in the short-
term; the long-term dynamic trend is extracted to calculate
the direction of change. For the steady-state mode, a residual
signal is generated using the future SPP signal predicted by
the prediction model; then, a monitoring decision is made by
comparing the residual signal with a pre-defined threshold.
Case studies involving the data collected from a drilling
project demonstrated the effectiveness of the method and
its superiority over the other three methods. The proposed
method enables reliable process monitoring performance for
a complete drilling cycle. However, in addition to changes in
operating modes, formation changes can create uncertainties
in process monitoring. As a promising future direction, it
is necessary to investigate how to overcome the challenges
brought by stratigraphic uncertainty, so as to meet the appli-
cation requirements in different geological environments.
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