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SUMMARY

Protein biomarkers can be used to characterize symptom classes, which describe the metabolic or immu-
nodeficient state of patients during the progression of a specific disease. Recent literature has shown that
machine learning methods can complement traditional clinical methods in identifying biomarkers. How-
ever, many machine learning frameworks only apply narrowly to a specific archetype or subset of dis-
eases. In this paper, we propose a feature extractor which can discover protein biomarkers for a wide
variety of classification problems. The feature extractor uses a special type of deep learning model, which
discovers a latent space that allows for optimal class separation and enhanced class cluster identity. The
extracted biomarkers can then be used to train highly accurate supervised learning models. We apply our
methods to a dataset involving COVID-19 patients and another involving scleroderma patients, to demon-
strate improved class separation and reduced false discovery rates compared to results obtained using
traditional models.

INTRODUCTION

Background

Machine learning (ML) is a powerful, emerging modeling approach which can potentially complement traditional clinical tasks, such as dis-

ease diagnosis,1 protein biomarker identification,2–4 and drug discovery.5 Despite the abundance of ML-related literature, there is currently a

lack of unified framework in deep learning (DL)6 models, with respect to these clinical tasks. In this article, we propose a DL-based workflow

which accomplishes the following. Given a raw dataset containing N patient samples, d raw variables, and C known conditions or symptom

classes, the main objectives are to accurately predict the class membership for each patient, as well as discover key signatures or biomarkers

characterizing each class.

The high-dimensional nature of many clinical datasets is addressed by two main families of ML models. The first family consists of

Dimensionality reduction (DR) algorithms, which include principal component analysis (PCA),7,8 multi-dimensional scaling (MDS),9 t-distrib-

uted stochastic neighbor embedding (t-SNE),10 uniform manifold approximation and projection (UMAP),11 locally linear embedding

(LLE),12 and isometric mapping (ISOMAP).13 The second family consists of Feature Engineering models, such as Feature Selectors,14–19

Feature Extractors,20–25 and kernel basis-function methods.26,27 Both ML families are used as a precursor to classification problems, in

hope of discovering a latent space with clearly distinguishable class clusters. However, due to the nuances present in any given dataset,

the analyst may exhaust all traditional options and still fail to obtain a class-separable latent space. To address this problem, we propose

the use of DL6 models to actively seek out a class-separable latent projection. DL models are not constrained by the type of underlying

data structure, as they are universal function approximators28 which can closely estimate any non-linearity by sheer brute-force combina-

tion of activation units. Moreover, DL models are Supervised Learning in nature, which means they can utilize any information available in

the outcome labels to guide the discovery of a class-separable latent space. Since traditional DL objective functions focus on minimizing

prediction error, we enhance class cluster identity by including an additional discriminative center-loss (DCL) term, an adaptation of the

original idea in Wen et al.29 The DCL term penalizes widely spread or loose clusters, and therefore the discovered latent spaces are guar-

anteed to carry the most tightly-knit clusters possible. This in turn leads to significantly increased prediction accuracies, as well as the abil-

ity to perform meaningful feature extraction.

The specific objectives of our work are as follows. First, we show that the proposed discriminative center-loss deep learning

(DCLDL) model discovers class clusters that are more well-defined, compared to those discovered by traditional DR algorithms. More-

over, we also show that meaningful features can be extracted from the DCLDL-discovered latent space, which manifest as protein

biomarker sets associated with each patient class. From a clinical perspective, the main contributions of our work include the
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Figure 1. Proof-of-concept workflow for our proposed ML approach
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significant reduction of false diagnosis rates, as well as a means of discovering influential biomarkers which may be used to guide

subsequent precision treatment. The overall workflow can be seen in Figure 1. In each case study, we highlight the strengths of

our methodology by comparing the predictive diagnosis and feature map results obtained across a wide variety of ML algorithms

(Figure 2). We demonstrate the efficacy of our approach through 4 case studies, starting with a proof-of-concept using the IRIS30

and MNIST31 benchmark datasets. This is followed by the analysis of two clinical datasets concerning real patients, related to the

COVID-193 and scleroderma diseases (Figure 3).
RESULTS AND DISCUSSION

Benchmark datasets

We begin by demonstrating the predictive and feature extraction capabilities of the proposed algorithm on two well-knownML benchmarks.

The first is the Fisher IRIS dataset,30 and the second is theModified National Institute of Standards and Technology (MNIST) digits dataset.31

These benchmarks represent classification problems which are straightforward in nature, with data classes that are easily distinguishable by

any competent model. This is evidenced by many highly accurate models that already exist in literature, such as DL models with sub-1% error

rates.32–34 Hence, our goal with these benchmarks is to pick a baseline DL model with sufficient accuracy, and show that the integration of the

DCLDL loss (Equation 9) results in improved class-specific accuracies as well as the correct identification of relevant features or feature maps.

Conversely, if the DCLDL integration cannot provide any improvement in classification accuracy for these baselines, then there is no point

considering DCLDL for more complicated scenarios.
Figure 2. Detailed ML workflow for the Scleroderma patient dataset
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Figure 3. Proteomic sample acquisition and analysis workflow for the Scleroderma patients
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IRIS benchmark

The first benchmark is the Fisher IRIS dataset30 which contains N = 150 total flower samples. The samples are distributed evenly

into C = 3 flower classes (Setosa - Class 0, Versicolor - Class 1, and Virginica - Class 2), with 50 samples belonging to each class.

The d = 4 raw variables describing each flower are sepal length, sepal width, petal length, and petal width. In our demonstration,

we construct a baseline ANN model, then insert the DCLDL term (Equation 9) into the existing loss function and observe any

resulting effects on class prediction accuracy. We intentionally train a baseline model with slightly sub-100% accuracy, so that

there would be room for the DCLDL loss to improve upon. Both models are 2-layer fully connected ANNs, with 8 neurons in

the first hidden layer and C = 3 neurons in the second and last hidden layer. We use a learning rate of a = 5,10� 3 and regularizer

(weight decay) of 5,10� 2 for both models. For the DCLDL-included model, we use a center-binding strength of l = 2:5, 10� 1 to

tighten the spread of each class cluster. In order to place the two models on equal footing for subsequent comparison, we

randomly select training and testing samples, but use the same selected samples to evaluate performance for both models.

We train both models over 1000 epochs, whilst ensuring that each loss reaches an acceptably low number. After the DCLDL-

included model is sufficiently-trained, we perform feature extraction using weight traceback to determine the most important fea-

tures that distinguish the 3 flower classes.

The results from this benchmark study are as follows. First, the class-specific accuracies summarized in Table 1 show that we achieve

perfect (100%) training and testing accuracy for the Setosa (Class 0) and Virginica (Class 2) flowers. The only misclassified class is that of

Versicolor (Class 1), which has 95% training accuracy and 80% testing accuracy in the baseline model. The addition of the DCLDL loss

results in a significant improvement to both model training and generalization, specifically a 2:5% increase in training accuracy and a

10% increase in testing accuracy. In both models, the misclassified Versicolor (Class 1) flowers are falsely identified as Virginica (Class

2) flowers, as shown in Figure 4. Neither model has trouble distinguishing Setosa (Class 0) from the remaining two classes, as evidenced

by the Setosa class cluster being comfortably distanced from the others. Moreover, notice that the spread of the class clusters is

reduced by the addition of the DCLDL loss, as originally expected. Finally, both models show difficulty distinguishing between Versi-

color (Class 1) and Virginica (Class 2) flowers, as indicated by the slight overlap between the two class clusters. The DCLDL-included

model reduces the overlap by tightening the class clusters, which results in an improved classification accuracy for the Versicolor

(Class 1) flowers (Table 1).

The DCLDL-included model is not only capable of improving class-specific accuracy, but is also capable of identifying the correct

important features. According to existing domain knowledge regarding the IRIS flowers,30 petal length and petal width are the key

decisive features distinguishing the classes apart. On the other hand, sepal width and sepal length are much less consequential.

This expected result is reflected in the following Figure 5, which show significantly larger feature weights for petal length and petal

width than those for sepal width and sepal length. Since petal length has a wider numerical range of 1:0 � 6:9 cm compared to

petal width with a range of 0:1 � 2:5 cm, it makes sense that petal length has much larger feature weights compared to petal width.

Moreover, the key feature distinguishing Setosa flowers from the rest is a petal length of < 1:9 cm. This explains why petal length
Table 1. Performance comparison between ANN models, with and without the DCLDL loss, on the IRIS dataset

Class

ANN ANN + DCLDL

Train Acc ð%Þ Test Acc ð%Þ Train Acc ð%Þ Test Acc ð%Þ
0 (Setosa) 100.0 100.0 100.0 100.0

1 (Versicolor) 95.0 80.0 97.5 90.0

2 (Virginica) 100.0 100.0 100.0 100.0

iScience 26, 108006, November 17, 2023 3



Figure 4. The distribution of class clusters in the last hidden layer of each ANN model
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appears as the most important feature for the Setosa class in Figure 5, as well as the heavy negative correlation. As for the remain-

ing two classes, the data shows that Versicolor flowers typically have a of petal length between 3:0 cm and 5:1 cm, and a petal

width between 1:0 cm and 1:8 cm. On the other hand, the majority of Virginica flowers are characterized by a petal length of >

5:1 cm, with only a small remainder of them having a petal length between 4:5 cm and 5:1 cm. The petal width of Virginica flowers

ranges between 1:4 cm and 2:5 cm. The overlaps in petal length and petal width ranges between Versicolor and Virginica flowers

explains why the classifiers have a difficult time separating these two classes. Moreover, in Figure 5, the positive weights for Versi-

color flowers reflect the distinction between Versicolor and Setosa flowers, which are smaller in petal length and petal width. Simi-

larly, the negative weights reflect the distinction between Versicolor and Virginica flowers, which are larger in petal length and petal

width. The majority of Versicolor flowers are characterized by lower values of petal length, followed by lower values of petal width;

this explains why they are more negatively-correlated with petal length and petal width rather than positively-correlated. Specifically,

Versicolor flowers only need a condition of petal length > 1:9 cm to be distinguished from Setosa flowers, whilst requiring a more

nuanced set of conditions to be separated from Virginica flowers.
4 iScience 26, 108006, November 17, 2023



Figure 5. Ranked importance of each flower feature, determined by weight-traceback feature extraction
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MNIST benchmark

The second benchmark is the MNIST dataset,31 which contains N = 70000 grayscale handwritten images of the ten numerical digits

0 through 9. Each image is a 2-dimensional square of 28 pixel rows and 28 pixel columns. The total N = 70000 images are divided

into pre-specified sets of Ntrain = 60000 training images and Ntest = 10000 testing images. For this benchmark study, we selected the
Table 2. Performance comparison between two LeNet-5 models, with and without the DCLDL loss, on the MNIST digits dataset

Digit

LeNet-5 LeNet-5 + DCLDL

Train Acc ð%Þ Test Acc ð%Þ Train Acc ð%Þ Test Acc ð%Þ
0 98.4 98.8 99.1 99.2

1 97.7 99.1 98.4 99.2

2 94.4 95.1 98.3 98.5

3 91.7 93.4 97.3 98.2

4 98.0 98.1 97.7 97.1

5 89.6 88.3 97.7 97.4

6 98.0 97.2 98.4 97.8

7 95.0 93.2 97.8 96.7

8 92.5 93.7 93.3 94.6

9 86.4 87.5 96.0 96.0

iScience 26, 108006, November 17, 2023 5



Figure 6. The distribution of digit image clusters in the last hidden layer of each LeNet-5model, visualized in 2-D space bymeans of t-SNE compression
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LeNet-5 Convolutional Neural Network (CNN)35 as the baseline, due to its widespread acceptance as a high-performance classifier.

After this baseline model is established, we add the DCLDL term (Equation 9) to its existing loss function, and observe any effects

on class prediction accuracy and feature map clarity. Both CNN models are trained using a total of 300 epochs, whilst ensuring that

the training loss has settled around an acceptably low value. Both models use a regularizer (weight decay) of 1,10� 2 and a learning

rate of a = 1,10� 2. Finally, the DCLDL-included model uses a center-binding strength of l = 5,10� 4 to tighten the spread of each

class cluster.

The results of this benchmark study are as follows. First, Table 2 shows that the traditional LeNet-5 CNN is able to achieve >

90% training and testing accuracy for 8 out of the 10 numerical digits. However, it struggles to correctly classify the digits 5 (89:6%

training accuracy, 88:3% testing accuracy) and 9 (86:4% training accuracy, 87:5% testing accuracy). This is reflected in the cluster

distributions in Figure 6, which shows a dispersed digit 9 cluster that overlaps extensively with other digits. Many digit 9 images

are confused with digit 7 and digit 4 clusters, and this makes sense intuitively due to the similarity in shape between these three

digits. Moreover, the extent of overlap between the training set clusters is higher than those between the testing set clusters. The

higher testing set accuracies in Table 2 reflect this point. Table 2 also shows a performance improvement in all digits due to the

inclusion of the DCLDL loss, except for the digit 4 (0:3% drop in training accuracy and 1% drop in testing accuracy). The DCLDL
6 iScience 26, 108006, November 17, 2023



Figure 7. DCLDL model used to analyze the patients from the COVID-19 dataset
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loss tightens the spread of each class cluster, thereby reducing inter-cluster overlap. The digits 5 and 9, which the baseline

LeNet-5 CNN struggled with, saw the largest improvements. Specifically, the training accuracy of digit 5 images improved by

8:1%, and the testing accuracy by 9:1%. Similarly, the training accuracy of digit 9 images improved by 9:6%, and the testing ac-

curacy by 8:5%.
Biological datasets

COVID-19 dataset

In this demonstration, we apply our proposed DL model to a pre-existing COVID-19 patient dataset, which can be found in the original

publication by Shu et al.3 We focus our analysis on the first patient cohort, which contains N = 62 total patient samples and abundance

counts from 865 protein types. The patients fall into C = 4 symptom categories, which consist of 8 Healthy (Class 0) samples, 20 Mild

(Class 1) samples, 14 Severe (Class 2) samples, and 20 Fatal (Class 3) samples. In terms of data pre-processing, we first removed any

protein with zero abundance in more than 70% of all patients, a step which was also performed by Shu et al.3 This resulted in d =

530 remaining non-sparse proteins. We then normalized all remaining protein abundance counts to a value range between 0 and 1.

The preprocessed data is then compressed using the traditional DR algorithms of PCA, MDS, ISOMAP, LLE, and UMAP. We also

perform compression using two DL models: a traditional one without the DCL component, and our proposed DCLDL model. The

DCLDL network (Figure 7) has 2 hidden layers, and k½1� = 45 neurons in its first layer. This number is chosen such that the dimensionality

is compressed by a factor of approximately 11 in each layer.

The latent spaces discovered by traditional DR techniques are shown in the following Figures 8A through 8E. Although LLE and

UMAP appear to be the most successful in discovering class-separable latent spaces, overlap still exists between the Severe and Fatal

class clusters. The latent spaces discovered by the remaining methods of PCA, MDS, and ISOMAP yield weakly-identifiable class clus-

ters with high extents of overlap. The only redeeming result is the fact that the Healthy patient cluster appears to be safely distanced

from all remaining class clusters. This implies a fundamental difference in the underlying data structure of the Healthy class, compared

to all other classes. When we compare and contrast the feature maps discovered by two DL models (Figures 8F and 8G), the largest

improvement can be visualized as the significantly increased distances between class clusters. The clusters in the DCLDL feature

map are safely distanced apart, which means false diagnosis is almost impossible. On the other hand, the cluster overlaps in the other

feature maps imply potential risks of false discoveries.

We now show that the clearly-separated class clusters in the DCLDL feature map (Figure 8G) have improved the accuracy of

patient classification. We use every feature map in Figure 8 to train Supervised Learning classifiers, and compare the prediction

accuracy of all 4 patient classes. We select Random Forests (RFs) and Support Vector Machines (SVMs) as the classifiers, training

them using 80% of the available patient samples, and testing on the remaining 20%. A total of 100 RF and SVM models are trained;

every run uses different, randomly-selected sets of training and testing samples. The final model accuracy for each model type is

expressed as an ensemble average taken across all 100 models. The overall RF and SVM model accuracies are reported in Figure 9.
iScience 26, 108006, November 17, 2023 7



Figure 8. Comparison of feature maps discovered by various ML algorithms
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Note that these plots do not show the specific accuracies achieved by the models for each patient class. To elucidate these class-

specific accuracies, we report the test set performances averaged across 100 runs, in form of confusion matrices in Figures 10

and 11. Note that we make a comparison to the base-case scenario, in which all d = 530 proteins are used as inputs. In the

base-case scenario, RF models were able to diagnose Healthy and Mild patient classes with zero false discoveries. For the remain-

ing classes, RF models correctly diagnosed 77% of all Severe patients, with the remaining 23% misdiagnosed as Fatal patients. RF

models also correctly diagnosed 98% of all Fatal patients, with the remaining 2% misdiagnosed as Severe patients. On the other

hand, the SVM models performed poorly overall. In the base-case scenario, SVMs completely misdiagnosed the Healthy patient

class, mistaking 90% of them as Mild patients and 10% as Fatal patients. SVMs also completely missed Severe patients, misdiag-

nosing 88% of them as Fatal and 12% of them as Mild. Although SVM performance was better for Mild (98% accuracy) and Fatal

patients (96%), its overall diagnosis accuracy is still low. When the feature maps from LLE and UMAP are used, some visible but

inconsistent accuracy improvements are observed. For instance, by using UMAP latent features (Figure 10G), RF models were

able to diagnose Severe patients with 89% accuracy vs. 77% in base case, whereas the performance degraded for Mild and Fatal

patients. By using LLE latent features (Figure 11F), SVM models were able to perfectly diagnose Healthy, Mild, and Fatal patients,

with 27% of Severe patients being misdiagnosed. When the biomarkers discovered by Shu et al.3 are used for Supervised Learning,

performance is similar or improved compared to baseline (Figures 10H and 11H). However, the 4 patient classes still remain
8 iScience 26, 108006, November 17, 2023



Figure 9. RF and SVM model accuracies obtained by training on the COVID-19 dataset

The bars represent average accuracy across 100 runs, while the vertical error bars represent maximum and minimum accuracies.
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confounded with significant false discovery rates. Finally, when the DCLDL latent features are used for diagnosis, perfect classifica-

tion is possible with zero false discoveries (Figures 10I and 11I). This result is unsurprising, as the class clusters in Figure 8G are

clearly separated from one another, thereby allowing even linear classifiers to easily identify separating boundaries.

We now analyze the protein biomarkers identified by performing weight traceback on the DCLDL model, and compare them with the

biomarkers identified by Shu et al.3 Our method extracted a decisive biomarker set consisting of [LILRA2, IGLV5-39, CCDC158, MCAM],

in terms of overall diagnosis. On the other hand, Shu et al.3 identified [CETP, FETUB] as the main biomarkers for overall diagnosis. The

two sets of biomarkers are obviously inconsistent; however, our biomarkers allow perfect diagnosis of each patient class (Figures 10I

and 11I), whereas the biomarkers extracted by Shu et al.3 lead to misclassifications (Figures 10H and 11H). This result strengthens

the argument that from a pure predictive standpoint, biomarkers identified using ML may outperform those discovered by traditional

assays. In Table 3, we report the top biomarkers that distinguish Mild patients from Severe patients. Although many of them are again

inconsistent with the biomarkers identified by Shu et al.,3 both sets of results agree on ORM2 and AZGP1 as decisive biomarkers differ-

entiating the two patient classes. ORM2 is a biomarker associated with inflammatory pathways controlled by cytokines, while AZGP1 is

an adipokine related to lipid metabolism.

The biomarkers distinguishing Severe from Fatal patients are detailed in Table 4. Note that Shu et al.3 identified [S100A9, S100A8, CFP,

CRP, CETP] as the most relevant biomarker set. Two biomarkers within this set, CRP and S100A9, are also identified by our DCLDL model.

S100A9 is a biomarker related to pathways associated with platelet and neutrophil degranulation, whereas CRP is related to pathways asso-

ciated with complement activation. This result shows that ML models are capable of identifying the same biomarkers which decide whether

severely-affected COVID patients die from the disease. Further details regarding the DCLDL-discovered biomarkers can be found in

Figures S3, S4, and S5.

Scleroderma dataset

The final case study involves the diagnosis of two types of Scleroderma patients. Details regarding the Scleroderma condition, laboratory

analysis and sample acquisition can be found in the supplement. The dataset involves N = 10 total patients, divided evenly into two classes

of 5 ACA + (Class 1) patients and 5 Scl 70+ (Class 2) patients. The raw variables in this dataset consist of abundance counts across d = 531

protein types. Due to most of the abundance counts being heavily skewed toward zero, we applied a 10-base logarithmic transformation to

obtain amore reasonably-balanced distribution. The transformed abundance counts were then normalized to a value range of 0 � 1. The final

pre-processed result can be visualized in the following Figure 12.

After the data was pre-processed, we performed DR using 6 traditional techniques: PCA, MDS, ISOMAP, LLE, t-SNE, and UMAP. In each

case, the number of latent features was selected as k = 3, which allows the feature maps to be visualized by the human eye. The results in

Figure 13 show that none of the 6 traditional DR techniques are capable of producing perfectly-separated class clusters.
iScience 26, 108006, November 17, 2023 9



Figure 10. RF model testing accuracy with respect to each of the 4 patient classes, averaged across 100 runs
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We now perform DR using a DCLDL model (with the architecture shown in Figure S1) and examine the resulting feature maps. Fig-

ure 14 shows 6 feature maps discovered by varying the DCLDL center-binding strength l between the values of 1, 10� 1, 10� 2, 10� 3,

10� 4, and 10� 5. In each case, the feature map spanned by the two latent variables Z1 and Z2 result in perfect separation of Patient Clas-

ses 1 and 2. This is in direct contrast to the confounded feature maps shown in Figure 13, where the clusters overlap too much to allow

for salient classification. As expected, the clusters grow looser with decreasing l; however, any l value smaller than 10� 3 does not

appear to further reduce cluster tightness. Therefore, we ultimately selected the feature map corresponding to l = 10� 1 (Figure 14B),

which strikes a suitable balance between cluster tightness and alignment with the latent axes (a mathematical property crucial for sub-

sequent feature extraction).

The next step is to compare the performance of supervised learning models, RFs and SVMs, for all types of input data used. These

inputs include the original d = 531 proteins in the raw data, the aforementioned feature maps from traditional DR algorithms (PCA,

MDS, ISOMAP, LLE, t-SNE, and UMAP), the DCLDL feature map, and univariate features extracted by feature selectors (RF-MDG,

RF-RFE, and SVM-RFE). The ensemble-averaged results across each of the 100 RF and SVM models are compiled in the following

Tables 5 and 6.

The Supervised Learning results in Figures 15 and 16 show that the feature map discovered by the DCLDL model result in perfect

(100%) class-specific accuracies, with an equivalent AUC score of 1. Therefore, from a diagnosis standpoint, the DCLDL feature map

clearly outperforms all other available feature maps. Out of all RF models, the second-best performer uses individual protein biomarkers

discovered by RF-RFE (Figures 16C and 16D), which results in a model with AUC = 0:93, a Class 1 accuracy of 100%, and a Class 2

accuracy of 85%. Out of all SVM models, the second-best performer uses individual protein biomarkers discovered by SVM-RFE (Figures
10 iScience 26, 108006, November 17, 2023



Figure 11. SVM model testing accuracy with respect to each of the 4 patient classes, averaged across 100 runs
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17E and 17F), resulting in a model with AUC = 0:90, a Class 1 accuracy of 100%, and a Class 2 accuracy of 80%. In terms of univariate

feature selectors, the RF-RFE biomarkers (Figures 16C, 16D, 17C, and 17D) and SVM-RFE biomarkers (Figures 16E, 16F, 17E, and 17F)

result in much more accurate classifications for both classes, when compared to the base-case of using all d = 531 proteins (Figures

18A, 18B, 15A, and 15B). When comparing the modeling predictive capabilities with respect to the two classes, the results show an

overall poorer performance on the Class 2 patients. This can be observed especially in the SVM models (Table 6), which achieved a

Class 2 accuracy of less than 50% in 7 out of the total 11 models explored. The increased difficulty in the modeling of Scl 70+ (Class

2) patients suggest that they may exhibit clinical nuances, which are not fully captured by the proteomic data. Finally, RF models

perform better overall (in terms of both Class 1 and 2 accuracies) compared to SVM models. This is likely due to RF models partitioning

the variable space via multiple decision splits, thus allowing for more nuanced classifications. On the other hand, SVM models try to

separate the two classes up using a single, linear boundary. If no such boundary exists for the input data, then the misclassification

rate will be non-zero for at least one class, thereby reducing the overall SVM performance.

In this final set of results, we present the top 8 protein biomarker sets discovered by the DCLDL model, with respect to both

Class 1 and 2 patients. These biomarkers were identified using the weight traceback procedure illustrated in Figure S2. From the

following Figures 19, 20, 21, and 22, we can make the following observations. First, the membership composition of each biomarker

set is nearly identical, with minor differences. Moreover, the individual biomarkers most positively associated with ACA + patients

are the ones most negatively associated with Scl 70+ patients, and vice versa. The 3 biomarkers most positively associated with

ACA + patients are HV372, KV108, and HEG1, which are the same 3 biomarkers most negatively associated with Scl 70+ patients.
iScience 26, 108006, November 17, 2023 11



Table 3. Protein biomarkers that distinguish Mild (Class 1) from Severe (Class 2) patients

DCLDL Shu et al.3

Biomarker Weight Biomarker

IFFBP6 0.210 AZGP1

NAPIL1 0.190 ORM1

IGLV4-3 0.182 ORM2

MYL9 0.180 CETP

CCDC158 0.146 PF4

APOM 0.145 PPBP

IGHV3-30-5 0.141 LRG1

IGFBP4 0.138 LGALS3

ORM2 0.134 LAMP1

AZGP1 0.133 MT1

IGLV4-60 0.127 ST1

The biomarkers identified by Shu et al.3 are not ranked, as they are considered equally important.
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The 5 biomarkers most negatively-associated with ACA + patients are LAMP2, S22AE, SMRC1, SARDH, and RHG30, which are the

same 5 biomarkers most positively-associated with Scl 70+ patients. Moreover, the results suggest that an increase in abundance of

the biomarker set [HV372, KV108, HEG1] increases the likelihood that one is diagnosed as a ACA + patient, and decreases the

likelihood that one is diagnosed as a Scl 70+ patient. Conversely, an increase in abundance of the biomarker set [LAMP2,

S22AE, SMRC1, SARDH, RHG30] increases the likelihood that one is diagnosed as a Scl 70+ patient, and decreases the likelihood

that one is diagnosed as an ACA + patient. Additional details regarding the clinical significance of these biomarkers can be found

in Figures S6 and S7.
Limitations of the study

The most critical limitation concerning the aforementioned case studies is the total sample size N. Ideally, we would have preferred

datasets with N> 1000 patient samples, to fulfill a bare-minimum statistical confidence. However, our two biological datasets involve

sample sizes of N = 62 and N = 10, respectively. These extremely small sample sizes are likely to result in model bias or overfitting.

Nevertheless, many patient datasets are small-N in nature; if these problems are refused solely based on their small-N nature, then

no advancement would be made in the field of clinical bioinformatics. Therefore, we propose the following approaches to combat

the small-N problem. First, instead of using discriminative models (ex. RF, SVM, etc.) which provide deterministic conclusions, proba-

bilistic models such as Bayesian networks can instead be used to infer likelihoods for each patient class and each discovered biomarker.
Table 4. Protein biomarkers that distinguish Severe (Class 2) from Fatal (Class 3) patients

DCLDL Shu et al.3

Biomarker Weight Biomarker

MCAM 0.292 S100A9

IGLV5-39 0.265 S100A8

LILRA2 0.250 S100A4

CAVIN2 0.245 IGLV3-27

IGKV1-13 0.240 CFP

FERMT3 0.220 CRP

IGLV2-8 0.217 CETP

CCDC158 0.215 ST1

IGHV1-2 0.190 FT1

CRP 0.176 FT4

S100A9 0.152 COLEC10

The biomarkers identified by Shu et al.3 are not ranked, as they are considered equally important.
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Figure 12. Violin plots showing the proteomic data distributions before and after pre-processing
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Successful applications of Bayesian methods can be found in recent publications.5,36–38 Moreover, generative adversarial networks

(GANs)39 and variational autoencoders (VAEs)40 can be used to estimate the underlying distribution of any given dataset. However,

since these methods typically require a large number of training samples, they present a ‘‘chicken-and-egg’’ problem when applied

to small-N datasets.

Finally, the scope of the proposed DL model can be expanded to include regression problems, instead of being limited to classi-

fication problems. Moreover, the extracted biomarkers should be rigorously validated in order to determine their ultimate clinical

importance. This would require a further study which compares the biomarkers discovered by ML to those identified traditionally, using

rigorous statistical procedures such as hypothesis testing. However, even if the ML-discovered biomarkers are not consistent with tradi-

tional knowledge, they may still be used to train Supervised Learning models with improved diagnosis accuracy. If this is true, then they

suggest the existence of important protein combinations which are previously undiscovered using traditional methods, thereby justi-

fying the necessity of ML models.
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Figure 13. The feature maps discovered by traditional dimensionality reduction techniques
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Figure 14. The latent feature maps discovered using the Discriminative Center Loss Deep Learning approach for different values of center-binding

tightness l

(see Equation 9)
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Table 5. Performance of Random Forest (RF) models averaged across 100 training runs, using different features as inputs

Input features AUC

ACA + (Class 1) Scl 70+ (Class 2)

TNR ð%Þ FPR ð%Þ TPR ð%Þ FNR ð%Þ
All 531 proteins 0.73 84 16 62 38

PCA 0.85 83 17 88 12

MDS 0.49 63 37 34 66

ISOMAP 0.54 58 42 49 51

LLE 0.56 54 46 58 42

t-SNE 0.48 37 63 59 41

UMAP 0.66 77 23 54 46

RF-MDG 0.77 68 32 86 14

RF-RFE 0.93 100 0 85 15

SVM-RFE 0.84 93 7 75 25

DCLDL 1.00 100 0 100 0

ll
OPEN ACCESS

iScience
Article
SUPPORTING CITATIONS

The following references appear in the supplemental information: 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, and 55.
REFERENCES

1. Myszczynska, M.A., Ojamies, P.N., Lacoste,

A., Neil, D., Saffari, A., Mead, R., Hautbergue,
G.M., Holbrook, J.D., and Ferraiuolo, L.
(2020). Applications of machine learning to
diagnosis and treatment of
neurodegenerative diseases. Nat. Rev.
Neurol. 16, 440–456.

2. Swan, A.L., Mobasheri, A., Allaway, D.,
Liddell, S., and Bacardit, J. (2013). Application
of machine learning to proteomics data:
classification and biomarker identification in
postgenomics biology. OMICS A J. Integr.
Biol. 17, 595–610.

3. Shu, T., Ning, W., Wu, D., Xu, J., Han, Q.,
Huang, M., Zou, X., Yang, Q., Yuan, Y., Bie, Y.,
et al. (2020). Plasma proteomics identify
biomarkers and pathogenesis of covid-19.
Immunity 53, 1108–1122.

4. Demichev, V., Tober-Lau, P., Lemke, O.,
Nazarenko, T., Thibeault, C., Whitwell, H.,
Table 6. Performance of Support Vector Machine (

Input features AUC

All 531 proteins 0.44

PCA 0.56

MDS 0.38

ISOMAP 0.51

LLE 0.59

t-SNE 0.53

UMAP 0.49

RF-MDG 0.67

RF-RFE 0.86

SVM-RFE 0.90

DCLDL 1.00

16 iScience 26, 108006, November 17, 2023
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Figure 15. Performance of Support Vector Machine (SVM) models using various types of inputs, averaged across 100 training runs
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Figure 16. Performance of Random Forest (RF) models using univariate extracted features, ensemble-averaged across 100 training runs
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Figure 17. Performance of Support Vector Machine (SVM) models using univariate extracted features, ensemble-averaged across 100 training runs
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Figure 18. Performance of Random Forest (RF) models using various types of inputs, averaged across 100 training runs
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Figure 19. Positively associated protein biomarker groups and theirmembers, with respect to ACA + (Class 1) patients, ensemble-averaged across 100

DCLDL models

100 DCLDL models.
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Figure 20. Negatively associated protein biomarker groups and their members, with respect to ACA + (Class 1) patients, ensemble-averaged across
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Figure 21. Positively associated protein biomarker groups and their members, with respect to Scl 70+ (Class 2) patients, ensemble-averaged across

100 DCLDL models
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Figure 22. Negatively associated protein biomarker groups and their members, with respect to Scl 70+ (Class 2) patients, ensemble-averaged across

100 DCLDL models
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

IRIS Flowers Data This paper https://github.com/yitingtsai90/Sclero_BM_Discovery

MNIST Digits Data This paper https://github.com/yitingtsai90/Sclero_BM_Discovery

COVID-19 Patient Data This paper https://github.com/yitingtsai90/Sclero_BM_Discovery

Scleroderma Patient Data This paper https://github.com/yitingtsai90/Sclero_BM_Discovery

Software and algorithms

Python 3.7 Python Software Foundation https://www.python.org/

PyTorch Linux Foundation https://pytorch.org/

Traditional ANN Classifier This paper https://github.com/yitingtsai90/Sclero_BM_Discovery

DCLDL Model and Feature Extractor This paper https://github.com/yitingtsai90/Sclero_BM_Discovery
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Yiting Tsai (e-mail: yttsai@chbe.

ubc.ca, tsaiy10@mcmaster.ca).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All relevant data have been deposited at Github and is publicly available as of the date of publication. DOI is listed in the key resources

table.
� All original code has been deposited at Github and is publicly available as of the date of publication. DOI is listed in the key resources

table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Albumin Depletion for Sclerdoerma patient blood samples

Albumin Depletion was performed using a Pierce Kit (85160) purchased form Thermo Scientific Inc., Mississauga, ON, CANADA. The kit

contains a Pierce Albumin Depletion Resin (Immobilized Cibacron Blue dye agarose resin) which binds a variety of species-specific albu-

mins, a Binding/Washer Buffer (25mM Tris, 75mM NaCl, pH 7.5), and 24 Pierce Spin Columns. The resin bottle was shaken gently and

400mL of the resin was transferred into a spin column using a wide-bore micropipette tip. Then, the bottom closure of spin column

was twisted off and the column was placed into a 2 mL collection tube. The tube was spun at 123103 g (note: g = 9:81m
s2
) for 1 min

to remove excess solution. The flow-through was discarded and the spin column was placed into the same collection tube. Afterward,

200 mL of Binding/Washer Buffer was added to the column followed by centrifugation at 123103 g for 1 min. Then, the column was placed

into a new collection tube and 50 mL of albumin-containing patient sample was added to the resin. The column was incubated for 2 min at

room temperature and then spun at 123103 g for 1 min. To ensure maximal albumin-resin binding, the collected flow-through was re-

applied to spin column and incubated for 2 more minutes at room temperature. Finally, the column was placed into a new collection

tube followed by adding 50 mL of Binding/Washer Buffer and spun at 123103 g for 1 min. The albumin-depleted flow-through including

unbound proteins was retained for further analysis.

Mass spectrometry for scleroderma patient blood samples

Prior toMass Spectrometry (MS) analysis, the patient blood samples underwent a series of preparation steps. First, they were reconstituted in

50 mM ammonium bicarbonate with 10 mM TCEP [Tris (2-carboxyethyl) phosphine hydrochloride; Thermo Fisher Scientific] and vortexed for

1 h at 37�C. Chloroacetamide (Sigma-Aldrich) was added for alkylation to a final concentration of 55 mM. The samples were vortexed for

another hour at 37� C; 1 mg of trypsin was added and digestion was performed for 8 h at 37�C. Finally, the samples were dried down and
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solubilized in 4 % Formic Acid (FA). During the MS analysis, the peptides were loaded and separated on a home-made reversed-phase col-

umn (150-mm i.d. by 200mm) with a 56-min gradient from 10 to 30 % ACN-0.2 % FA and a 600-nL/min flow rate on a Easy nLC-1000 connected

to an Orbitrap Fusion (Thermo Fisher Scientific, San Jose, CA). Each full MS spectrum acquired at a resolution of 120,000 was followed by

tandem-MS (MS-MS) spectra acquisition on the most abundant multiply charged precursor ions for a maximum of 3s. Tandem-MS experi-

ments were performed using collision-induced dissociation (CID) at a collision energy of 30 %. The data were processed using PEAKS X

Pro (Bioinformatics Solutions, Waterloo, ON) and a Uniprot human database (20366 entries). Mass tolerances on precursor and fragment

ions were 10 ppm and 0.3 Da, respectively. Fixed modification was carbamidomethyl (C). Variable selected posttranslational modifications

were oxidation (M), deamidation (NQ), phosphorylation (STY) along acetylation (N-ter). The data were visualized with Scaffold 4.0 (protein

threshold, 99 %, with at least 2 peptides identified and a False-Discovery Rate (FDR) of 1 % for peptides).
Supervised Learning model details

In the data pre-processing step concerning the clinical studies, we apply a log10-scaling step to remove skew in the raw data. This is followed

by a normalization to scale all values between 0 and 1. We prefer normalization over autoscaling (i.e., transforming data to 0-mean and unit-

variance), since we require all data to be 0 or positive in order for the feature extraction steps to function properly. In all Supervised Learning

models, we split all available data using a 80:20 training-to-testing set ratio. For the Support Vector Machine (SVM)models, we use theOne-

Versus-Rest (OVR) variant27 and a simple linear kernel. For each input case, both SVM and RandomForest (RF)models are trained for a total of

100 times, and the results are ensemble-averaged to obtain a more unbiased majority vote. The models are coded in Python using the sciki-

tlearnpackagesRandomForestClassifier and SVC in the sklearn.ensemblemodule. In order tomeasure the performance for each classifier, we

report class-specific prediction accuracy (Equation 1) instead of overall accuracy, since the latter can be misleading if the classes are

unbalanced.

Accuracy for Class c :
Number of Class c samples predicted as Class c

Total number of Class c samples

=
1

Nc

X
ci:yðiÞ = c

1
�by ðiÞ = yðiÞ� (Equation 1)

These class-specific accuracies are also reported using confusion matrices. If the classification problem is binary, we also report the

Receiver Operating Characteristic (ROC) curves. This applies specifically to the Scleroderma dataset: by defining ACA+ (Class 1) patients

as negative class and SCI70+ (Class 2) patients (i.e., Patient Class 2) as positive, then Equation 1 can be equivalently expressed as the

following:

True Negative Rate ðTNRÞ : =
Number of Class 1 samples predicted as Class 1

Total number of Class 1 samples
(Equation 2)
True Positive Rate ðTPRÞ : =
Number of Class 2 samples predicted as Class 2

Total number of Class 2 samples
(Equation 3)

Conversely, the misclassification rates for each class can also be expressed as:

False Negative Rate ðFNRÞ : =
Number of Class 2 samples predicted as Class 1

Total number of Class 2 samples
(Equation 4)
False Positive Rate ðFPRÞ : =
Number of Class 1 samples predicted as Class 2

Total number of Class 1 samples
(Equation 5)

DCLDL model and feature extractor

TheDiscriminative Center-Loss Deep Learning (DCLDL)model used for the Scleroderma case study is shown in the following Figure S1. Note

that the architecture and the number of classesC can be generalized for any classification problem. The raw patient dataset isX, aRN3d matrix

(i.e., N total samples and d raw variables). It is the input of the DCLDL model, and is first compressed into a set of k½1� = 32 latent features in

Hidden Layer 1, Z ½1�. Similarly, Z ½1� is compressed into a final set of k½2� = C = 2 latent features for classification. Note that we specifically

selected k½1� = 32 such that the compression between each hidden layer is approximately 16-fold. The variables involved in each hidden layer

are related as follows:

Input Layer to Hidden Layer 1 : Z ½1� = A½1�
�
XW ½1� +B½1�

�
Hidden Layer 1 to Hidden Layer 2 : Z ½2� = A½2�

�
Z ½1�W ½2� +B½2�

� (Equation 6)

With respect to anyHidden Layerm,A½m� represents the activation function to be applied, Z ½m� the latent variables,W ½m� the weightmatrix, and

B½m� the corresponding bias matrix. The dimensions of the matrices are X ˛RN3d , W ½1� ˛Rd3k½1� , B½1� ˛RN3k½1� , Z ½1� ˛RN3k½1� , W ½2� ˛ Rk½1�3k½2� ,
26 iScience 26, 108006, November 17, 2023
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B½2� ˛RN3k ½2� , and Z ½2� ˛RN3k½2� . Also, we chose Rectified Linear Unit (ReLU) as the activation function for both hidden layers in both layers.

Combining everything, we obtain the following relationship between inputs X and the final Hidden Layer neurons Z ½2�:

Z ½2� = ReLU
�
ReLU

�
XW ½1� + B½1�

�
W ½2� + B½2�

�
(Equation 7)

In traditional DL models, the objective is to minimize the softmax loss in the final hidden layer, which can be interpreted as the negative log

likelihood that all data samples xðiÞ; i˛ ½1;/;N� are correctly predicted as belonging to their corresponding classes:

L
�
Z ½2�

�
= �

XN
i = 1

log
exp

�
wyðiÞ = cz

½2�ðiÞ�PC
c = 1 exp

�
wyðiÞ = cz½2�ðiÞ

� (Equation 8)

In standard ML literature, log refers to the natural logarithm, and objective functions are usually minimized. Maximizing a desired log likeli-

hood can therefore be equivalently expressed as minimizing the same negative log likelihood. Note that the optimal latent space Z ½2� found
byminimizing Equation 8 is not guaranteed to produce distinct, non-overlapping class clusters. To address this issue, we enhance the identity

of each cluster by utilizing the concept of Discriminative Center Loss Deep Learning (DCLDL), which is inspired by the original work of Wen

et al.29 Themain difference between the authors’ implementation and our implementation is as follows.Wen et al.29 describe theDCLDL term

as any general function which represents the spread of the clusters. Here, we specifically define the DCLDL loss as the sum of Euclidean ([2)

distances between all members of a specific class and the class centroid:

L
�
Z ½2�

�
= �

XN
i = 1

log
exp

�
wyðiÞ = cz

½2�ðiÞ�PC
c = 1 exp

�
wyðiÞ = cz½2�ðiÞ

� +
l

2

XN
i = 1

��z½2�ðiÞ � zcentðyðiÞ = cÞ
��2

2
(Equation 9)

Moreover, we explicitly calculate and update the coordinates of the class centroid zcentðyðiÞ = cÞ on each iteration, using the entire training set

(since our total sample size N is small). On the other hand, Wen et al.29 update the centroid using only a mini-batch of training samples (as

opposed to the entire training set), by gradient descent with a controlled learning rate. The second term on the right-hand-side of Equation 9

represents the sum of distances between all samples their respective class centroids zcentðyðiÞ = cÞ. Alternatively, it can be physically interpreted

the tightness of each cluster. The centroid can bemathematically defined inmany ways, but here we use themost straightforward definition of

an arithmetic average between all relevant class members:

zcentðyðiÞ = cÞ =
1

Nc

XN
i = 1

z½2�ðiÞ
yðiÞ = c

(Equation 10)

In Equation 10, the term Nc represents the total number of samples that belong to class c. The tightness of each cluster can be adjusted by

varying the value of l in Equation 9, with a larger l value resulting in smaller clusters, and vice versa. The optimal DL weights w are found by

minimizing Equation 9 using Adam,41 a popular variant of the Stochastic Gradient Descent (SGD) algorithm. After Equation 9 is minimized,

feature extraction can be performed using a weight-traceback procedure, which can be summarized as follows:

1. Train a DL model on all available data samples, with the 2-hidden-layer architecture specified in Figure S1. Specify the loss function as

the Discriminative Center Loss in Equation 9.

2. For all patient classes c ˛ ½1;/;C�, do the following:
(a) For Hidden Layer 2, specify reasonable numbers of desired top positive and negative weights as n
½2�
+;c and n

½2�
� ;c , respectively.

(b) Identify the n
½2�
+;c most positive elements from the cth column of W ½2�. Record these values as W

½2�
+;c and their positions as p

½2�
+;c .

(c) Identify the n
½2�
� ;c most negative elements from the cth column of W ½2�. Record these values as W

½2�
� ;c and their positions as p

½2�
� ;c .

(d) For Hidden Layer 1, specify the number of desired top positive and negative weights as n
½1�
+;c and n

½1�
� ;c , respectively.

(e) For all previously-identified top weight positions p
½2�
+;c and p

½2�
� ;c , pick out the same columns fromW ½1�. For each picked column, do

the following:

i. Identify the n
½1�
+;c most positive elements. Record their values as W

½1�
+;c and their positions as p

½1�
+;c .

ii. Identify the n
½1�
� ;c most negative elements. Record their values as W

½1�
� ;c and their positions as p

½1�
� ;c .
(f) Determine the final protein biomarker identities as:

� Positively-associated groups.
i. The proteins at positions p
½1�
+;c , in each of the columns p

½2�
+;c of W

½1�.
ii. The proteins at positions p

½1�
� ;c , in each of the columns p

½2�
� ;c of W ½1�.
� Negatively-associated groups.

i. The proteins at positions p
½1�
+;c , in each of the columns p

½2�
� ;c of W ½1�.

ii. The proteins at positions p
½1�
� ;c , in each of the columns p

½2�
+;c of W

½1�.
The total number of positive and negative biomarker groups extracted are 2,n½2�+;c and 2,n½2�� ;c , respectively. This is due to two possible com-

binations existing for each of the positive and negative associations, which are detailed in Table S1. These associations can be justified as
iScience 26, 108006, November 17, 2023 27
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follows. First, X has been pre-processed to only contain positive values, and X is related to Z ½2� via monotonic ReLU functions (Equation 7).

Therefore, if the topweights inW ½1� andW ½2� are all positive, an increase in a particular element in Xwill result in an increase in the correspond-

ing element in Z ½2�. Similar rationalizations can be applied for the remaining possible cases in Table S1, and for any number of hidden layers.

The entire weight traceback procedure can be visualized as the reverse-engineering of matrix multiplication in Figure S2.

DCLDL computational cost

The excess computational cost incurred by including the DCLDL term, compared to the same baseline model without DCLDL, can be quan-

tified as follows.We break down each sub-stepwithin theweight traceback procedure and evaluate the runtime required for every extra oper-

ation, in terms of big-O complexity notation.

1. Adding the DCLDL loss to the existing cross-entropy loss: Calculating the centroids zcentðyðiÞ = cÞ for all C classes requires the averaging

of N total arrays with k½2� = C elements each, which costs OðN ,CÞ. The squared-norm term involves the subtraction of two length C

arrays (cost ofOðCÞ), the squaring of C elements (cost ofOðCÞ), followed by a sum over C � 1 elements (cost ofOðCÞ), and multipled

over N total samples, which implies a total cost of OðN ,CÞ. Adding everything together, the total cost of this step is OðN ,CÞ.
2. For each patient class c ˛ ½1;/;C�:
28
(a) Specify the number of top positive and negative weights for Hidden Layer 2: This step requires no extra cost.

(b) Identify the n
½2�
+;c most positive elements from the cth column of W ½2�, and recording their positions: This requires the sorting of an

array with k½1� elements, which can be performed usingQuicksortwith abest-case cost ofOðk½1� ,logðk½1�ÞÞ, and aworst-case cost of

Oðk½1�2Þ with probability 2
k½1� !.

42,43

(c) Identify the n
½2�
� ;c most negative elements from the cth column ofW ½2�, and recording their positions: This step is already completed

as a consequence of the previous one, and therefore no extra cost is incurred.

(d) Specify the number of top positive and negative weights for Hidden Layer 1: This step requires no extra cost.

(e) For all columns in W ½1� with positions p
½2�
+;c and 2p

½�
� ;c :

i. Identify the n
½1�
+;c most positive elements and record their positions: This requires the sorting of an array containing d elements.

UsingQuicksort and repeating over ðn½2�+;c +n
½2�
� ;cÞ arrays requires a best-case cost ofOððn½2�+;c +n

½2�
� ;cÞ ,d ,logðdÞÞ and worst-case

cost of Oððn½2�+;c +n
½2�
� ;cÞ ,d2Þ, with probability 2

d!.

ii. Identify the n
½1�
+;c most positive elements and record their positions: This is already done by completing the previous step, so no

extra cost is incurred.
(f) Determine the positively and negatively-associated protein biomarkers: These positions have already been identified and recorded

as a result of performing Step 2ðeÞi, therefore no extra cost is required.
Combining all extra costs incurred by Steps 1 and 2 above, and by taking all classes C into account, the total excess cost per training iter-

ation is OðC ,ðN + k½1� ,logðk½1�Þ + ðn½2�+;c +n
½2�
� ;cÞ ,d ,logðdÞÞÞ in the best-case scenario, and OðC ,ðN + k½1�2 + ðn½2�+;c +n

½2�
� ;cÞ ,d2ÞÞ in the worst-

case scenario. However, note that the worst-case scenario occurs with extremely low probability ( 2
k½1� ! and

2
d! for the respective terms). In most

practical cases, the bulk of the excess computational cost will originate from the number of measured proteins d, which is in the order of hun-

dreds or thousands. The second largest expense will likely originate from the number of patient samples N, which is in the order of at least

hundreds for an adequately-sampled dataset. The number of neurons in the first hidden layer of the DL model, k½1�, is user-defined, usually

with a reasonable value between 10 and 100. Finally, the number of top positive and negative weights n
½2�
+;c and n

½2�
� ;c and the number of classes

C are usually in the single-digit range. Therefore, the excess computational time will scale in a linearithmic fashion with respect to d and k½1� on
average, and linearly with respect to N.
iScience 26, 108006, November 17, 2023
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