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Abstract11

In the era of big data driven by the advent of the Internet of Things (IoT), process industries12

face the challenge of analyzing massive and complex data to extract relevant information for13

effective process monitoring. Despite exploring various approaches, scalability and interpretabil-14

ity continue to present practical limitations. To address these limitations, we propose a new15

framework called visual analytics. Visual analytics offers a new perspective on solving process16

monitoring problems. It involves transforming historical process data into visual clues, thereby17

converting traditional fault detection problems into image classification problems. This ap-18

proach allows process experts to visually analyze patterns and textures within the data, making19

interpretation much easier compared to traditional time domain analysis. Moreover, by treating20

process data as images, visual analytics can leverage a wide range of computer vision techniques,21

including convolutional neural networks (CNNs), to accurately classify and detect faults. By22

integrating human visual perception with advanced computer vision techniques, visual analytics23

enables the effective analysis of massive and complex process data. To empirically validate the24

proposed visual analytics approach, we conduct experiments on both the simulated continuous25

stirred tank heater (CSTH) benchmark and the industrial arc loss benchmark. The experi-26

mental results from both benchmarks demonstrate that the proposed visual analytics approach27

yields competitive performance in predicting process faults while enhancing interpretability by28

providing meaningful and informative visual representations.29

Keywords— Fault detection and diagnosis (FDD), Deep learning, Image analysis, Time-Series imaging,30

Convolutional neural networks (CNNs), Applications.31
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1 Introduction32

With the increasing automation of industries and advancement in connectivity, modern industries generate33

large volumes of data continuously [1, 2]. These industrial systems are equipped with a wide range of sensors34

strategically placed throughout the process, resulting in data being dispersed across multiple dimensions35

and time [3, 4]. This type of data, referred to as time-series data, encompasses sequential observations or36

measurements recorded over time, capturing the temporal aspect of system behavior [5, 6]. The classification37

of these time-series data is crucial in detecting faults, ensuring safety, and upholding high product quality38

standards [7]. In fact, process monitoring tasks, such as fault detection and diagnosis (FDD), can be39

configured as time-series classification (TSC) problems.40

Traditionally, TSC methods have relied on manually extracting relevant features from the input data [8].41

The goal of these methods is to identify important local or global patterns within the time-series that are42

associated with specific categories or classes [9]. A common feature-based method is the k-nearest neighbors43

(k-NN) classifier with handcrafted features [10]. In this approach, a set of relevant features is manually44

extracted from each time-series, such as statistical features (e.g., mean, standard deviation) or frequency45

domain characteristics (e.g., Fourier coefficients). These features capture key aspects of the time-series data46

that are assumed to be relevant for classification. The k-NN algorithm then classifies an unseen time-series47

by measuring the similarity between its extracted features and those of labeled examples in the training set.48

However, traditional feature-based approaches have significant drawbacks. Firstly, their performance49

heavily relies on selecting relevant features, which can be labor-intensive and time-consuming [11]. Different50

problems may require distinct sets of discriminatory features, limiting the generalizability of these methods.51

Secondly, feature extraction can result in the loss of information present in the original data [12]. For example,52

fine-grained temporal changes that are important for understanding the behavior of a dynamic process can53

be smoothed out or overlooked during feature extraction. Moreover, the computational complexity of these54

methods evolves according to a power law with respect to the input data size. As industrial data scale55

up, the computational demands of these methods increase exponentially, rendering them impractical for56

managing the large-scale datasets prevalent in industrial applications [13].57

More recently, deep learning (DL) has sparked numerous breakthroughs across various problem domains,58

including computer vision and natural language processing [14]. The core strength of DL models lies in their59

ability to directly learn high-level representations from input data, bypassing the tedious feature engineering60

process [15]. As a result, DL has garnered significant research interest in addressing TSC problems. For61

instance, Wang et al. [11] proposed deep neural networks such as multilayer perceptron (MLP) and long62

short-term memory (LSTM) networks as robust baseline approaches for TSC. These models achieved com-63

petitive performance in TSC tasks, effectively learning discriminative representations from raw time-series64

data, thereby highlighting the effectiveness of DL in TSC. In addition, Zerveas et al. [16] applied the trans-65

former architecture, originally developed for natural language processing tasks, to the realm of multivariate66

time-series classification (MTSC). By leveraging self-attention mechanisms, transformers directly capture67

temporal dependencies in time-series data.68

TSC presents unique challenges compared to traditional supervised learning for structured data, as69

algorithms must effectively handle and exploit the temporal information embedded within the signal [9]. In-70

terestingly, there are striking parallels between TSC and computer vision problems like image classification71

and object localization [17]. In the latter, successful algorithms learn from the spatial information contained72

in images. Similarly, in TSC, the core problem is fundamentally the same, albeit with one fewer dimension73

[13]. Inspired by these observations, the opportunity for applying DL-based computer vision algorithms to74

TSC becomes apparent. One such example is using convolutional neural networks (CNNs), a powerful class75
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of models commonly used for image classification. Although CNNs were originally designed to operate ex-76

clusively on spatial data, they can be adapted to handle time-series data by treating the temporal dimension77

as analogous to the spatial dimension in images [18]. Using the hierarchical feature extraction capabilities,78

CNNs have achieved competitive results in TSC and FDD tasks, often surpassing traditional approaches79

[19–22].80

At the same time, many practical limitations remain, especially when dealing with industrial process81

data. First, process variables in data samples are typically arranged according to their order in the process-82

ing procedure. Although CNNs can effectively learn correlations between variables within the same local83

receptive field, they may not fully capture the various correlations among variables that are distant in the84

physical topological structure (i.e., variables order within the dataset) [20]. The limited scope of the recep-85

tive field in the first convolutional layers prevents the learning of correlations between process variables that86

are not in the same local receptive field. Consequently, higher-level representations inadequately capture87

these correlations. Furthermore, interpretability is crucial for understanding and explaining model predic-88

tions, particularly for FDD applications [23]. However, CNNs are black-box models, making it challenging89

to interpret their decisions and restricting their practical applicability in critical industrial settings [24].90

To address the aforementioned gaps, we introduce a new paradigm for process monitoring called visual91

analytics. The main idea behind visual analytics involves the transformation of time-series data (i.e., process92

data) into visual images, thereby enabling the use of computer vision algorithms (e.g., CNNs) [25]. This93

approach capitalizes on the strengths of CNNs while acknowledging the inherent dissimilarities between94

time-series data and images. By representing the data as visual images, process operators can interact with95

the data more intuitively compared to time-series data analyzed in the time domain. In addition, this visual96

representation allows operators to develop a deeper understanding and intuition in relating different image97

patterns to different process operating modes.98

The remainder of this paper proceeds as follows. In Section 2, we provide the necessary background99

and discuss related work. Section 3 presents a supervised learning-based visual analytics framework for100

FDD and describes the network architecture and its main building blocks. In Section 4, we describe the101

implementation details of our proposed approach with a simulation and industrial case studies. Finally, we102

conclude with closing remarks in Section 5, highlighting potential future prospects.103

2 Background & Related Work104

In this section, we begin by introducing the fundamental concepts and definitions relevant to our study.105

Following that, we provide an overview of TSC and delve into the foundational aspects of convolution106

operations, which serve as the primary component in CNNs. Lastly, we discuss two widely known time-107

series imaging tools.108

2.1 Definitions109

The focus of this work revolves around time-series data. A univariate time-series signal, denoted as110

S ={s1, s2, ..., sL}, represents a sequence of L chronologically ordered observations recorded over time.111

Each observation is associated with a timestamp from the set T ={t1, t2, .., tL}. When multiple time-series112

signals are recorded simultaneously by a set of p sensors, we refer to the data as a multivariate time-series113

(MTS) signal denoted as X ={S1, S2, ..., Sp}, where Si ∈ RL. We consider MTS with a fixed and synchro-114

nized sampling along all dimensions. As a result, we omit the time index from the MTS definition. In this115

work, we consider an MTS dataset D = {(X1, Y1), (X2, Y2), . . . (XN , YN )}, containing a collection of paired116
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samples (Xi, Yi). Each sample consists of an MTS signal Xi with p dimensions and a length of L, and its117

corresponding label Yi. The task of TSC involves training a classifier C on dataset D that maps an input Xi118

to its true label Yi (i.e., C : X −→ Y ). In the context of FDD, the labels represent the operating condition119

of a system, where Y = 0 denotes a normal condition and Y = 1 denotes a faulty condition. Therefore,120

the goal of TSC in FDD is to accurately classify the input MTS signals into their corresponding operating121

conditions.122

2.2 Time-series classifiers123

Broadly speaking, time-series classifiers can be grouped based on the algorithmic technique used into three124

categories: distance-based, feature-based, and deep learning approaches.125

Distance-based approaches rely on distance measures to evaluate the similarity/ dissimilarity between126

pairs of time-series [26]. A significant research effort has been dedicated to the development of “elastic”127

distance measures that compensate for small misalignments between time-series [27]. These measures seek128

to account for variations in the alignment of time points, allowing for more robust and accurate similarity129

comparisons. Among these elastic measures, dynamic time warping (DTW) has emerged as one of the most130

widely used measures [28]. In fact, DTW, in combination with 1-nearest neighbor (DTW+1NN), has gained131

significant recognition in the field of TSC and has long been considered a benchmark method, often referred132

to as the gold standard [29].133

Next, the feature-based category refers to a group of TSC algorithms that rely on extracting relevant134

features from the time-series data [30]. It can be further divided into two main families: interval-based and135

dictionary-based approaches. Interval-based approaches use subsequences from the time-series, extracting136

discriminatory features using statistical measurements. One popular algorithm within the interval-based137

family is the time-series forest (TSF) [31]. TSF constructs an ensemble of decision trees using randomly138

selected intervals from the time-series and their corresponding statistical feature values (e.g., mean, slope,139

and standard deviation).140

Furthermore, dictionary-based approaches involve discretizing time-series into symbolic sequences, ex-141

tracting words from these sequences using a sliding window, and quantifying the frequency of each word in142

a predefined dictionary [32]. The bag of symbolic Fourier approximation symbols (BOSS) algorithm is a143

prominent example in the dictionary-based family [33]. BOSS represents time-series as bags of words, where144

each word corresponds to a symbolic Fourier approximation (SFA) coefficient. SFA is a technique that145

converts time-series data into a compact symbolic representation by approximating their Fourier transforms146

[34]. BOSS constructs a dictionary of SFA words using a training dataset and maps each time-series into147

a histogram representation based on the frequency of the SFA words occurring within it. Class labels can148

then be assigned using similarity or distance measures between the histograms.149

DL approaches for TSC involve using neural networks that learn hierarchical representations from the150

input time-series data [35]. A neural network is considered deep when it consists of more than one layer151

between the input and output layers. Specifically, a deep neural network (DNN) is composed of K layers (i.e.,152

parametric functions), where each layer serves as a representation of the input domain [36]. The simplest153

architecture within DL models is MLP, also known as a fully connected network (FCN) [11]. In an MLP,154

each neuron in layer ki is connected to every neuron in layers ki+1 and ki−1, with i ∈ [2,K − 1]. These155

connections are modeled by the weights within the neural network, enabling the network to capture complex156

relationships within the data. One impediment to adopting MLPs for TSC is that they do not exhibit157

any spatial invariance. In other words, each time stamp has its own weight, and the temporal information158

is lost. To address the unique characteristics of time-series data, recurrent neural networks (RNNs) were159
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introduced [37, 38]. RNNs maintain a hidden state that can capture information from previous time steps,160

allowing them to detect patterns in sequential data (e.g., time-series data). However, vanilla RNNs suffer161

from vanishing and exploding gradients, limiting their ability to capture long-term dependencies [39]. LSTM162

is a variant of RNNs that overcomes the limitations of vanilla RNNs [40]. Its architecture includes a cell163

state, input gate, forget gate, and output gate, allowing it to selectively remember or forget information164

over long sequences while avoiding the vanishing gradient problem [41, 42]. This makes LSTM networks165

particularly effective for tasks involving sequential data, including TSC and FDD [43, 44].166

In this work, we compare and validate our proposed visual analytics framework by benchmarking it167

against state-of-the-art models in each of the three categories of time-series classifiers: i) distance-based168

category: DTW+1NN; ii) feature-based category: TSF and BOSS; iii) DL category: LSTM. A conceptual169

comparison between the aforementioned time-series classifiers is presented in Figure 1, showing the distinct170

approaches used by each classifier.171
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Figure 1: A conceptual illustration of state-of-the-art time-series classifiers: a) DTW+1NN: mea-
sures the similarity between time-series using DTW; b) TSF: uses random forest on features extracted
from raw time-series data; c) BOSS: constructs a histogram-based representation of time-series using
SFA; and d) LSTM: captures temporal dependencies in time-series data through its memory state.

2.3 Convolution operations172

Convolution operations are the key functional operations that CNNs use to extract features from the input173

data [45]. In essence, a convolution operation involves an input signal and a kernel (an operator function).174

One can think of convolution as a mathematical operation that seeks to transform the input data to uncover175

and extract relevant features [46]. Convolution can be applied to signals of varying dimensions, such as 1D,176

2D, or 3D. Notably, the dimensions of the kernel must align with those of the input. In practical applications,177

1D convolution finds common use in processing audio signals [47, 48], while 2D convolution is widely used178

for image analysis tasks [49, 50]. Similarly, 3D convolution plays a role in video processing applications [51].179

For the purpose of this paper, the discussion is narrowed to 1D and 2D convolutions, as our work does not180

involve video data.181

Convolution operations involve sliding a kernel over input data and performing a dot product to extract182
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features, which are referred to as feature maps [52]. The kernel, also known as a filter or a convolutional183

filter, is a set of weights that defines the transformation applied to the input. The specific design of the184

kernel determines the nature of the extracted features. These features encode various hidden aspects of the185

data, such as trends and variations. The kernel is typically smaller in size than the input data, reducing186

computational complexity. In 1D convolutions, the kernel is a weight vector, and the resulting feature map187

is obtained by adding a bias term to the sliding dot product between the 1D input data and kernel weights188

[53]. Figure 2 demonstrates a 1D convolution operation with a gradient kernel on a time-series signal. On189

the other hand, 2D convolutions are applied to 2D data (e.g., images), and the kernel takes the form of a190

matrix of weights. The feature maps produced by convolutions indicate the degree of similarity between191

the input and the kernel pattern. Convolution operations share similarities with feature-based methods, as192

both approaches rely on the identification and frequency of occurrence of specific patterns or motifs in the193

input data. In convolution operations, multiple kernels with different weights are used to capture a wide194

range of patterns and variations within the data. This combination of kernels allows for the detection of195

complex and discriminative features. The success of CNNs for TSC and image classification demonstrates196

the effectiveness of convolutional kernels as the foundation for extracting informative features from input197

data.198
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Figure 2: An illustration of a 1D convolution operation. The gradient kernel, [-1, -1, 0, 1, 1], is
applied to the 1D signal to extract changes in amplitude or slope. The resulting convolved signal
highlights regions where the input signal exhibits positive and negative gradients. The convolved
signal can provide insights into the overall trend and direction of changes in the original time-series
data.

2.4 Encoding time-series into images199

Understanding and analyzing complex systems in the time domain poses a significant challenge in many200

scientific and engineering domains. Traditional time-series analysis methods often extract features that201

fail to capture the temporal evolution and dynamics of such systems. Consequently, researchers in signal202

processing and computer science have been exploring methods to represent temporal characteristics of time-203

series signals visually, using 2D images. Such methods provide a visual framework to capture, interpret, and204

extract meaningful temporal information from dynamic processes. Additionally, imaging tools transform raw205

time-series data into visual representations, facilitating the use of a wide range of image analysis algorithms206

(e.g., CNNs). Two prominent imaging techniques are the Gramian Angular Field (GAF) and the Recurrence207

Plot (RP).208
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A GAF is a 2D visual representation of a univariate time-series, originally introduced by Wang and209

Oates, which captures information about the static behavior of the time-series [54]. Figure 3 illustrates the210

step-by-step instructions for encoding a univariate time-series as a GAF image. First, the scaled time-series211

Ŝ = {ŝ1, ŝ2, . . . , ŝL} is transformed from the space coordinate system to polar coordinates. The time step212

ti is encoded as the radius ri and the scaled value ŝi of the time-series is encoded as the angular cosine θi,213

given by:214

ri =
ti
L
; i ∈ L

θi = cos−1(ŝi); ŝi ∈ [0, 1]
(1)

where L represents the time-series length. Once Ŝ is transformed into polar coordinates, the square GAF215

matrix is constructed. In the GAF matrix, each entry represents the pairwise cosine distance between two216

angles, i.e.:217

GAF [i, j] = cos(θi + θj); i, j = 1, 2, ..., L (2)

GAF offers several key advantages, making it a valuable tool for capturing temporal dynamics. Firstly,218

GAF preserves the temporal order of the original time-series, ensuring that the sequential nature of the219

data is maintained in the resulting image representation. In addition, GAF is invariant to monotonic220

transformations, meaning that it can capture the same underlying patterns regardless of scaling or shifting221

of the time-series values.222
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Figure 3: An illustration of the transformation from a sinusoidal time-series signal into a 2D GAF
representation. Left: a scaled 1D time-series Ŝ = {ŝ1, ŝ2, . . . , ŝ20} with L = 20 time steps. Middle:
the first step is to represent Ŝ in polar coordinates using Equation 1. Right: the GAF image, a
square matrix of size 20×20, is obtained using Equation 2.

Furthermore, dynamic nonlinear systems often exhibit recurrent behavior (e.g., periodicities and oscil-223

lations) that can be challenging to observe in the time domain. To tackle this challenge, Eckmann et al.224

introduced RP, a 2D visual representation of higher dimensional phase space trajectories [55]. RP is a square225

matrix that reveals at which points the m-dimensional phase space trajectory revisits a previously visited226

state. In this work, we consider the non-binarized version of RP, as proposed by [56], to avoid informa-227

tion loss when the matrix is binarized. In practice, one performs two steps to obtain an RP image from a228

univariate time-series. First, an embedding dimension m is chosen. The m-dimensional phase space
−→
S is229

constructed from the scaled time-series Ŝ = {ŝ1, ŝ2, . . . , ŝL} using the time-delay embedding method (i.e.,230

−→si = (ŝi, ŝi+1, ..., ŝi+m−1). Next, the RP matrix is calculated as follows:231

RP [i, j] = ∥−→si −−→sj∥ ; i, j = 1, 2, ..., R (3)

where R is the total number of considered states −→s (i.e., R = L − m + 1) and ∥.∥ is the Euclidean norm.232

7



Each pixel in RP denotes the Euclidean distance of two states in the m-dimensional phase space. The full233

procedure for encoding a univariate time-series as an RP image is shown in Figure 4. The colors in the RP234

image indicate the closeness of the states in the 2D phase space according to the corresponding color bar.235

As shown in Figure 5, GAF and RP, both display texture and typology, which provide hints about the static236

and recurrent behaviors of the 1D time-series, respectively.237
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Figure 4: An illustration of the encoding map from a raw 1D time-series signal to a 2D RP im-
age. Left: a scaled 1D time-series Ŝ = {ŝ1, ŝ2, . . . , ŝ20} with L = 20 time steps. Middle: the
m-dimensional phase space trajectory is constructed from X using the time-delay embedding. In
this examples, m = 3; hence, the states, represented in dots, −→si = (ŝi, ŝi+1, ŝi+2). Right: the RP
image, an 18 × 18 matrix, is obtained using Equation 3.
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Figure 5: An illustration of the qualitative interpretations of GAF and RP representations for three
distinct time-series signals.

3 Proposed Approach238

In this section, we present a new end-to-end visual analytics framework for industrial fault detection using239

1D and 2D convolution operations. The proposed approach obtains visual data representations from input240

MTS signals in a supervised manner, i.e., the proposed model takes an annotated MTS dataset to learn241
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visual representations. The main objective of the proposed network is to maximize the visual distinction242

between the visual representation of samples across different classes. The overall architecture of the proposed243

visual analytics framework is shown in Figure 6.244
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Figure 6: The proposed network architecture. The residual block configuration is presented in Figure
7. Abbreviations: F - kernel size, C - number of kernels, L - the size of the input signal (i,e, the
number of time steps), p - number of variables, ŷ - predicted class.

The proposed network is inspired based on two influential architectures: AlexNet [57] and ResNet [50].245

Like AlexNet, the proposed network uses MLP for making predictions. Also, we implement dropout as a246

regularization technique to prevent overfitting. By randomly dropping out units during training, we enhance247

the network’s ability to generalize and avoid relying too heavily on specific neurons [58]. Furthermore, the248

proposed network adopts the concept of residual blocks from ResNet. Using residual connections, we address249

the vanishing gradient problem and facilitate the training of deeper networks. The residual blocks enable the250

network to capture residual information, making it easier to propagate gradients through the network and251

effectively learn both shallow and deep features. This improves network performance, allowing for better252

representation learning and enhanced prediction performance.253

Stage 1 of the network focuses on the initial processing and feature extraction from the input data254

X. This stage comprises a 1D convolutional layer followed by a series of residual blocks. The primary255

purpose of the initial 1D convolutional layer is to transform the input data X into a suitable format for256

subsequent layers while extracting low-level features from the data. Next, we use a series of “bottleneck” 1D257

residual blocks, consisting of three convolutional layers: a 1×1 convolution, a 1×3 convolution, and another258

1 × 1 convolution (refer to Figure 7). This design effectively reduces the number of trainable parameters,259

resulting in a computationally efficient network. In addition, we increment the number of 1D kernels after260

each residual block to enable the network to capture increasingly higher-level features as the information261

propagates through the layers. The number of residual blocks, as well as the number of kernels within each262

residual block, are hyperparameters that need to be prespecified based on the complexity of the problem and263

data requirements. We show three blocks in Figure 6 for illustration purposes. Note that we omit pooling264

layers in the network to preserve valuable spatial information. We also apply “same” padding and a stride265

size set to 1. Overall, stage 1 of the network seeks to learn discriminative visual representations via 1D266

convolution operations.267

The output of stage 1 is a combination of C3 feature maps, corresponding to the number of 1D kernels268
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Figure 7: The residual block configuration. Abbreviations: F - kernel size, C - number of kernels.

in the last residual block of size L. Each feature map captures the activation level of its corresponding269

kernel, indicating the response of that specific kernel pattern across the features of the input X. To visualize270

these features and gain a deeper understanding of the network’s representations, we perform a reshaping271

step (stage 2). This step involves vertically stacking the 1D feature maps to form a 2D-like matrix with272

dimensions C3 ×L× 1 (height × width × channels). This reshaping enables the visualization of the learned273

features using color mapping techniques. Each pixel in the resulting image represents the activation level of274

a particular feature map at a specific spatial location. Figure 12 presents six samples of the images obtained275

in Stage 2.276

Next, the one-channel image obtained from stage 2 is “visually” recognized, and visual features and277

patterns are learned via 2D convolution operations. Stage 3 consists of stacked 2D convolutional blocks.278

Each 2D convolution block contains a 2D convolutional layer followed by a batch normalization layer and279

a non-linear activation layer. The number of 2D convolution blocks used may vary depending on the280

application. For demonstration purposes, we use a single 2D convolution block. The visual features are281

extracted using a stride size set to 1, and we use “valid” padding to reduce the dimension of the feature282

maps, thus reducing the computational cost. The 2D convolutional blocks enable the network to effectively283

capture spatial information and extract discriminative visual features from the input data.284

In the last stage of the network, the feature maps obtained from the last 2D convolutional layer are285

flattened before being fed into an MLP network. Flattening is the process of converting the multidimensional286

feature maps into a one-dimensional vector. The MLP network consists of multiple dense layers that map287

the extracted visual features into a scalar, representing a class label. The output layer of the MLP network288

uses the softmax activation function, which produces a probability distribution over the classes. The number289

of neurons in the output layer corresponds to the number of classes. For binary classification problems, the290

number of output neurons is two. The class label associated with the highest probability is considered the291

predicted class for a given input. During training, the network is trained to minimize the loss function.292

Specifically, we use the binary cross-entropy loss for our case (i.e., binary classification problems). Next, the293

proposed network is trained by minimizing the loss function using an optimization algorithm. Therefore,294

the model learns to assign high probabilities to the correct class and lower probabilities to the other classes.295

The optimization algorithm and its arguments are hyperparameters to be specified before training.296
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4 Applications of the Proposed Approach297

In this section, we use two benchmarks to assess the effectiveness of our proposed visual analytics approach.298

We start with the simulated continuous stirred tank heater (CSTH) benchmark to better demonstrate the299

applicability and benefits of our approach in a controlled setting. By analyzing the simulated data, we300

show the interpretability and insights provided by our visual analytics approach. Next, we move on to the301

industrial arc loss benchmark, which serves as a large-scale scenario to test the scalability and robustness of302

our proposed approach. The proposed approach will be compared with DTW+1NN, TSF, BOSS, LSTM,303

GAF followed by CNN, and RP followed by CNN models.304

4.1 A simulation case study: the CSTH system305

The CSTH system is a dynamic nonlinear system reported in [59]. Figure 8 shows the feedback control system306

used for the CSTH system. In this system, hot water (HW) and cold water (CW) are mixed, heated by steam307

flowing through a heating coil, and eventually drained from the tank. To ensure system stability, a closed-308

loop control system is implemented to regulate the tank’s temperature, level, and CW flow. The input signals309

for the system consist of steam, HW, and CW valve openings, while the controlled variables are the CW310

flow, tank level, and temperature. The CSTH model can be classified as a semi-empirical model, combining311

first principles equations and algebraic equations derived from experimental data. The left-hand column of312

Figure 9 illustrates measurements of the tank’s level, temperature, and CW flows acquired under normal313

operating conditions. To formulate a binary fault classification problem, we are considering three scenarios314

resulting from instrumentation faults and errors. These scenarios are as follows: i) an abrupt pulse change315

introduced into the level transmitter signals (Figure 9II), ii) a malfunction in the temperature controller316

characterized by a random change in the controller parameters (Figure 9III), and iii) a random sinusoidal317

noise introduced into the CW flow controller output signals (Figure 9IV). Table 1 provides a comprehensive318

overview of the simulated dataset. It is worth noting that this case study specifically addresses a binary319

classification problem, where discrete outputs are used: normal data inputs are represented by Y = 0 and320

faulty data inputs by Y = 1.321

Table 1: CSTH data summary

Number of total samples (N) 8000
Training: validation: testing ratio 70:10:20

Number of variables (p) 3
Sampling frequency 1 sec
Signal length (L) 200
Number of classes 2

Class ratio 50:50 (balanced)

4.1.1 Simulation study setup322

For model evaluation, we use a hold-out strategy. The entire CSTH dataset is split randomly into three323

balanced subsets: i) a training set for training the models, ii) a validation set for optimizing the models’324

hyperparameters, and iii) a testing set for testing the models on unseen data. We systematically explore dif-325

ferent hyperparameter combinations using a random search to identify well-performing model configurations.326

This involves searching over a manually predefined search space, where various hyperparameter combina-327
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tions are sampled. For each sampled set of hyperparameters, we train the models on the training set and328

estimate their performance using the validation set. After conducting multiple trials, which are manually329

set with consideration for the size of the hyperparameter search space and computational limitations, we330

select the models with the hyperparameter configurations that yield the best results on the validation set.331

These selected models are then retrained using the entire training set. To ensure effective model training,332

we implement an early stopping criterion that prevents overfitting of the data. Specifically, if the validation333

loss does not exhibit improvement for a consecutive number of epochs, the training process is halted. A334

patience value of 10 epochs is selected for the early stopping criterion. Subsequently, the retrained models335

are evaluated on the unseen testing set to provide reliable and unbiased performance metrics.336

To assess the classification performance of our proposed visual analytics approach, we use carefully tuned337

implementations of the following models:338

• DTW + 1NN: {implementation = fast DTW, max warping window = 400}339

• TSF: {number of classifiers = 3, ensemble method = voting, number of trees = 200, minimum interval340

length = 3, number of attributes = 3 (mean, slope, and standard deviation)}341

• BOSS: {number of classifiers = 3, ensemble method = voting, word size= 7, number of bins= 20,342

window size= 10, window step= 2}343

• LSTM: {LSTM layers = 2, LSTM units = 32, recurrent activation function = hard sigmoid, hidden344

layers = 1, hidden neurons = 128, hidden activation function = ELU, batch normalization = True,345

dropout coefficient = 0.3, L2 regularization penalty = 0.01, optimizer = RMSprop, learning rate =346

0.001, batch size = 64}347

• GAF + CNN: {GAF method = summation, convolution layers = 1, convolution kernels = 16, size348

of kernels = (3, 3), padding = “same”, pooling = max, pool size = (2, 2), convolution activation349

function = SELU, hidden layers = 1, hidden neurons = 64, hidden activation function = ELU, batch350

normalization = True, L2 regularization penalty = 0.01, optimizer = AdaGrad, learning rate = 0.001,351

batch size = 16}352

• RP + CNN: {phase space dimensions m = 2, convolution layers = 2, convolution kernels = {8, 16},353

size of kernels = (5, 5), padding = “same”, pooling = max, pool size = (2, 2), convolution activation354

function = tanh, hidden layers = 1, hidden neurons = 16, hidden activation function = ReLU, batch355

normalization = True, L2 regularization penalty = 0.01, optimizer = AdaGrad, learning rate = 0.001,356

batch size = 32}357

• Proposed: {1D residual blocks = 1, 1D convolution kernels = 32, size of 1D kernels = 3, 2D con-358

volution layers = 2, 2D convolution kernels = 16, size of 2D kernels = (3, 3), convolution activation359

function = SELU, hidden layers = 3, hidden neurons = 32, hidden activation function = ReLU, batch360

normalization = True, dropout coefficient = 0.2, L2 regularization penalty = 0.0001, optimizer =361

SGD, learning rate = 0.001, batch size = 16}362

4.1.2 Classification performance363

The experimental results, summarized in Table 2, provide insights into the performance of each model on364

the final testing set. Six evaluation metrics are used to comprehensively evaluate the performance. Accuracy365

is calculated as the ratio of correctly predicted samples to the total number of testing samples. Precision366

measures the percentage of accurately predicted faulty samples out of all faulty predictions, while recall367

(i.e., true positive rate (TPR)) quantifies the proportion of correctly predicted faulty samples compared368
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to the total number of faulty samples. The false positive rate (FPR) represents the ratio of false positive369

predictions to the total number of normal samples. Next, the F1 score captures the harmonic mean of370

precision and recall, providing a balanced assessment of model performance. Finally, training time (TT)371

is used to compare models’ computational complexities. The TT denotes the time required to train the372

model on the training set. Note that the reported TTs for deep learning models correspond to the time373

taken to complete 100 training epochs. To ensure a fair comparison, all models considered in this study are374

trained on an NVIDIA A100 GPU with 51GB of virtual RAM (VRAM). The proposed approach achieved375

the highest score in five out of the six key metrics, demonstrating its competitive classification performance376

and computational efficiency.377

Table 2: Simulation results summary

Accuracy Precision Recall 1-FPR F1 TT (min)
DTW+1NN 0.9569 0.9816 0.9315 0.9824 0.9559 112.15*

TSF 0.9775 0.9773 0.9773 0.9777 0.9773 2.80
BOSS 0.9413 0.9917 0.8904 0.9925 0.9383 0.56
LSTM 0.9338 0.9861 0.8804 0.9875 0.9303 370.11

GAF+CNN 0.9825 0.9936 0.9714 0.9937 0.9824 5.65**
RP+CNN 0.9788 0.9949 0.96264 0.9950 0.9785 9.12**
Proposed 0.9881 0.9987 0.9776 0.9987 0.9880 7.06

* TT corresponds to the time required to compute the DTW similarity matrix.
** TT includes the time required to encode time-series data into images.

4.1.3 Visual representations comparative analysis378

In this subsection, we illustrate how our visual analytics approach reconciles performance and visual inter-379

pretability. We demonstrate how our approach enables process operators to visually validate and analyze380

the correlation between the model’s predictions and the underlying process. While visual interpretability381

cannot be quantified by a metric, we use a qualitative approach to analyze the visual representations derived382

from GAF encoding, RP encoding, and our proposed approach.383

Figure 10 displays two negative MTS samples extracted from the CSTH dataset and their corresponding384

GAF and RP representations. The GAF and RP encodings are visualized as RGB images, with red, green,385

and blue channels denoting temperature, level, and CW flow measurements, respectively. Analyzing the386

GAF representations, we identify distinct “L-shaped” patterns, which serve as indicators of changes in the387

system’s set points. Moreover, we observe homogeneous patterns, represented by uniform boxes, in the388

upper-right section of the GAF images. These consistent patterns symbolize steady-state behavior, where389

the system maintains a stable operational regime over a certain period. The extent of this uniformity390

directly corresponds to the duration of stationarity. The presence of “L-shaped” transitions followed by391

homogeneous patterns in the GAF images reveals a distinct sequence in the underlying process: a change in392

set point followed by a period of stationarity. This sequence is a hallmark of normal operating regimes within393

the CSTH system. Contrastingly, the RP images appear mostly blank, indicating the absence of recurrent394

behaviors. In other words, the system lacks repeating patterns or periodic behaviors that RP is designed395

to highlight. Next, Figure 11 provides a different perspective as it showcases two positive MTS samples396

alongside their corresponding GAF and RP images. The presence of cyclicities within the system is reflected397

in the RP and GAF images, which exhibit distinctive periodic patterns. These patterns offer insights into398

the cyclic behavior of the underlying process, with the time distance between the patterns representing the399
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Figure 10: Two normal CSTH samples (Y = 0) alongside their corresponding GAF and RP encod-
ings, revealing meaningful insights: i) A greenish-yellow (green + red) “L-shaped” pattern emerged
around the 52-second mark in the upper GAF implies shifts in both level and temperature set points.
Given the greater shift in the level set point (green) compared to the temperature set point (red),
the resulting color leans more towards green. ii) The appearance of a reddish-white (red + green +
blue) homogeneous box in the top GAF image represents stationarity in temperature, level, and CW
flow measurement. Because temperature measurements exhibit greater stationarity, the red color
is more dominant. iii) The bottom GAF image reveals a reddish-purple (red + blue) homogeneous
box, indicating stable temperature and CW flow measurements. iv) Blank RP images denote the
absence of recurrent patterns in the underlying system.

period of this recurring behavior. It is important to note that the construction of the simulated CSTH400

dataset emphasizes that periodic patterns are a strong indication of faulty operations. Thus, the periodicity401

observed in the RP and GAF images serves as a valuable indicator for identifying faulty operating regimes.402

Figure 12 offers a visual comparison of the visual representations of three normal and three faulty403

MTS signals obtained using the proposed visual analytics framework. Unlike RP and GAF encodings, our404

proposed approach generates a single-channel matrix that can be visualized via color mapping. The color405

mapping assigns colors to matrix values, following a selected color map, which facilitates enhanced visual406

interpretation. The visual representations of normal MTS samples are visually distinct from those of faulty407

samples. Specifically, the visual representations for normal samples exhibit an even texture, whereas the408

visual representations for faulty samples display an irregular texture. This clear visual distinction is achieved409

through the application of 1D convolution operations. By applying 1D convolutional kernels, our approach410

effectively captures discriminative patterns present in the raw time-series data. As a result, normal and faulty411

MTS signals respond differently when convolved with these kernels. This differential response contributes412

to the observed visual distinctions between normal and faulty MTS samples in the visual representations413

produced by our framework.414

4.1.4 Fault magnitude sensitivity analysis415

While previous subsections have empirically demonstrated the effectiveness of the proposed approach in416

distinguishing normal and faulty MTS signals using distinctive image representations, a pivotal question417
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Figure 11: Two faulty CSTH signals (Y = 1) and their corresponding GAF and RP representations.
Several observations and their qualitative interpretations can be made: i) The presence of cyclic
behavior in the system results in distinct periodic patterns within the GAF and RP images. The
temporal interval between these patterns corresponds directly to the oscillation period of the system.
ii) Bright corners in the GAF images (e.g., the bright red upper corner in the lower GAF image)
indicate shifts in trends—either decreasing or increasing.
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Figure 12: A visual comparison of the representations of three normal (top) and three faulty MTS
signals (bottom) obtained using our proposed visual analytics framework. Homogenous texture
indicates normal operating conditions, whereas uneven texture represents faulty operations. Normal
and faulty signals respond to the learned 1D convolutional kernels differently. This dissimilarity in
response leads to visually distinct representations between normal and faulty signals.
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arises: Does the proposed approach have the requisite sensitivity to detect variations in fault magnitudes,418

specifically those of small ones? In this subsection, we explore the detection capabilities of the proposed419

approach across various fault sizes. The objective is to demonstrate that the proposed approach is not only420

able to detect substantial deviations (i.e., faults with a great magnitude) but also to capture minor faults421

within its image representations. Similar to subsection 4.1.3, we compare the proposed approach against the422

GAF and RP tools.423

In pursuit of our objective, we introduce faults of varying magnitudes (small and large) into a normal424

CSTH sample and then assess how the proposed approach, GAF, and RP representations respond. Figure 13425

displays the progression of GAF and RP encodings for different fault magnitudes alongside the underlying426

MTS in the time domain. The encodings are presented for a normal MTS, a faulty MTS with a small427

fault magnitude (equivalent to 5% of steady-state value), and a faulty MTS with a large fault magnitude428

(equivalent to 30% of steady-state value). Moreover, Figure 14 shows the visual representations of the same429

aforementioned MTS obtained using the proposed approach. The visual encodings generated for the normal430

MTS and the faulty MTS of large magnitude (30%) using GAF, RP, and the proposed approach exhibit431

perceptible disparities. However, the proposed approach better distinguishes between the normal MTS and432

the faulty MTS of a small magnitude (5%). Notably, for the proposed approach, the extent of textural433

irregularity in the visual representations directly corresponds to the magnitude of the fault.434
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Figure 13: Responses of GAF and RP encodings across different fault magnitudes. Left: Original
time-series plots. Middle: GAF encodings. Right: RP encodings. The visual encodings are shown
for three scenarios: the top row shows a baseline normal CSTH sample, the middle row shows a
faulty sample with a minor fault magnitude (5% deviation from steady-state value), and the bottom
row represents a faulty sample with a large fault magnitude (30% deviation from steady-state value).
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Figure 14: A visual comparison of the representations of a normal CSTH sample (top), a faulty
CSTH sample of size 5% (middle), and a faulty CSTH sample of size 30% (bottom) obtained using
our proposed visual analytics framework.

4.2 An industrial case study: the arc loss benchmark435

The arc loss benchmark [60] was proposed as a real-world data benchmark for developing and validating436

data-driven process monitoring workflows. It provides a large-scale dataset obtained from an industrial437

pyrometallurgical smelting process. In this process, high-grade oxidized ore deposits are converted into438

refined base metals. Figure 15 illustrates the high-level pyrometallurgical processing. First, ore deposits439

extracted from open pits undergo grinding and drying operations using hammer mill flash dryers, resulting440

in fine ores with low moisture content. The dried ores are then dehydrated and deoxidized through a series441

of flash calciners and fluidized bed reducers. Subsequently, the processed ores are fed into a direct current442

electric arc furnace (DC EAF) unit to obtain base metals. The base metals are later processed by shotting443

and packaging units before being shipped to customers. An in-depth description of the process and its444

schematics can be found in Yousef et al. [60].445

hammer mills rotary dryers flash calciners electric arc furnacefluidized bed reducers

Grinding and drying Calcining and reducing Smelting 
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Figure 15: The broader pyrometallurgical processes.

The DC EAF unit, shown in Figure 16, is a high-temperature furnace that converts the electrical energy446

attained from the DC power supply into thermal energy by means of two plasma arcs. The two plasma arcs447

serve as the main heating component in the DC EAF unit, facilitating the separation of the base metals448

from other components of the ore (i.e., slag). Ensuring stable DC EAF operation is crucial for maximizing449

production efficiency and stability. However, the DC EAF unit faces a persistent fault known as the arc loss450

fault. The arc loss fault refers to the intermittent or sudden disruptions of the plasma arcs within the furnace.451
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These disruptions cause undesirable fluctuations in temperature and hinder the smelting efficiency, leading452

to potential production loss and variations in product quality. In this case study, the arc loss benchmark453

dataset is used to validate the proposed visual analytics framework in predicting the onset of arc loss in the454

DC EAF unit.455
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Figure 16: An illustration of the DC EAF unit.

The arc loss benchmark dataset comprises one year of high-frequency operating data collected from456

various pyrometallurgical process units. However, the raw data contains problematic artifacts, including457

outliers, irrelevant data, missing data, and class imbalance. To address the aforementioned issues, we458

processed the raw data, resulting in a balanced, clean dataset containing 3226 MTS samples. Each sample459

corresponds to 55 consecutive minutes of 96 different process measurements taken during either a smooth460

or faulty operating period (i.e., arc loss period). In the interest of brevity, we refrain from detailing the461

data preprocessing steps in this paper. Instead, we refer readers to [61] for comprehensive insights into462

the preprocessing techniques performed. Table 3 provides an overview of the processed arc loss data. The463

primary objective of this case study is to validate and compare the performance of our visual analytics464

workflow in accurately predicting whether a given MTS signal belongs to a smooth (Y = 0) or a faulty465

(Y = 1) operation.466

Table 3: The processed arc loss data summary

Number of total samples (N) 3226
Training: validation: testing ratio 70:10:20

Number of variables (p) 96
Sampling frequency 3 sec
Signal length (L) 1100
Number of classes 2

Class ratio 50:50 (balanced)

4.2.1 Classification performance467

We adopt a parallel approach to that used in the simulation case study, using consistent strategies for468

model evaluation and hyperparameter optimization. Notably, in the context of the industrial case study,469

we encounter a substantial difference in data scale compared to the simulated scenario. This difference470

requires a tailored preprocessing step to reduce data dimensionality, mitigating computational complexity.471

Specifically, the computational demands of imaging tools (i.e., GAF and RP) are directly proportional to472
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the length of the time-series data, following a power-law relationship. Given the limitations of our hardware473

in terms of memory and processing capacity, imaging a full-length MTS sample extracted from the arc474

loss data becomes challenging. To tackle this challenge, we incorporate techniques like piecewise aggregate475

approximation (PAA) [62] prior to encoding MTS data into GAF and RP images. PAA segments the time-476

series into non-overlapping windows and computes the mean value for each window, reducing the temporal477

complexity.478

We consider the following models, accompanied by their respective tuned implementations:479

• DTW + 1NN: {implementation = fast DTW, max warping window = 1000}480

• TSF: {number of classifiers = 96, ensemble method = voting, number of trees = 300, minimum481

interval length = 3, number of attributes = 3 (mean, slope, and standard deviation)}482

• BOSS: {number of classifiers = 96, ensemble method = voting, word size= 5, number of bins= 20,483

window size= 10, window step= 3}484

• LSTM: {LSTM layers = 3, LSTM units = 16, recurrent activation function = hard sigmoid, hidden485

layers = 2, hidden neurons = 16, hidden activation function = SELU, batch normalization = True,486

dropout coefficient = 0.1, L2 regularization penalty = 0.01, optimizer = Adam, learning rate = 0.001,487

batch size = 32}488

• GAF + CNN: {PAA window size = 10, GAF method = summation, convolution layers = 2, con-489

volution kernels = 32, size of kernels = (3, 3), padding = “same”, pooling = max, pool size = (2,490

2), convolution activation function = ELU, hidden layers = 2, hidden neurons = 16, hidden activa-491

tion function = ReLU, batch normalization = True, L2 regularization penalty = 0.001, optimizer =492

AdaMax, learning rate = 0.001, batch size = 32}493

• RP + CNN: {PAA window size = 10, RP phase space dimensions m = 2, convolution layers =494

3, convolution kernels = 64, size of kernels = (5, 5), padding = “same”, pooling = max, pool size495

= (2, 2), convolution activation function = tanh, hidden layers = 1, hidden neurons = 32, hidden496

activation function = ReLU, batch normalization = True, L2 regularization penalty = 0.1, optimizer497

= RMSprop, learning rate = 0.001, batch size = 32}498

• Proposed: {1D residual blocks = 3, 1D convolution kernels = {64, 128, 256}, size of 1D kernels499

= 3, 2D convolution layers = 2, 2D convolution kernels = {16, 32}, size of 2D kernels = (3, 3),500

convolution activation function = ReLU, hidden layers = 3, hidden neurons = 16, hidden activation501

function = SELU, batch normalization = True, dropout coefficient = 0.3, L2 regularization penalty502

= 0.1, optimizer = Adam, learning rate = 0.0001, batch size = 16}503

Table 4 summarizes the classification performance of each model on the held-out testing set. The504

proposed approach achieved the highest score in five out of six key performance metrics, whereas GAF +505

CNN was the best configuration with respect to recall. Notably, non-deep learning models, such as DTW +506

1NN, TSF, and BOSS, exhibit significantly longer training times. This prolonged training duration can be507

attributed to the high dimensionality of the data and the intricate computations required by these models.508

Additionally, LSTM, owing to its recurrent nature and the long signal length (i.e., 1100-time steps for each509

signal), also incurs a substantial training time. On the other hand, the performance of GAF + CNN and RP510

+ CNN models has been adversely impacted by the use of PAA for data preprocessing. PAA introduces a loss511

of temporal information, which is essential for these convolutional models to capture meaningful patterns.512

As a result, their classification performance, while still competitive, is somewhat compromised. In contrast,513

our proposed approach scales efficiently, with relatively short training times. This efficiency is attributed514
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to the use of 1D convolutions, which are computationally efficient and well-suited for processing large-scale515

industrial time-series data (e.g., the arc loss benchmark dataset). This scalability makes the proposed516

approach an appealing choice for real-world applications where computational resources are limited.517

Table 4: Industrial case study results summary

Accuracy Precision Recall 1-FPR F1 TT (min)
DTW+1NN 0.6388 0.6486 0.6227 0.6552 0.6354 1372.27*

TSF 0.6977 0.8499 0.6787 0.7389 0.7547 79.62
BOSS 0.6682 0.6474 0.7546 0.5799 0.6969 15.68
LSTM 0.7519 0.7280 0.8129 0.6897 0.7681 203.33

GAF+CNN 0.6915 0.6377 0.9018 0.4765 0.7471 8.05**
RP+CNN 0.7147 0.6830 0.8129 0.6144 0.7423 9.12**
Proposed 0.7721 0.8650 0.7325 0.8308 0.7932 3.33

* TT corresponds to the time required to compute the DTW similarity matrix.
** TT includes the time required to encode time-series data into images.

4.2.2 Visual representations comparative analysis518

Similar to the simulation case study, in this subsection, we analyze the visual patterns within the visual519

representations obtained using GAF, RP, and our proposed approach. However, this industrial case study520

offers a distinctive perspective as it focuses on how the visual interpretability of these representations is521

influenced by the substantial differences in data dimensionality compared to the simulation case.522

Firstly, both GAF and RP encodings operate on a single dimension, specifically designed for univariate523

time-series data. Consequently, when applied to a multivariate system like the arc loss benchmark, with 96524

process variables, these encoding techniques generate visual representations comprising 96 channels. The525

enormity of this dimensionality poses a significant challenge for visualization, as conventional computers526

struggle to render images with more than three channels effectively. To overcome this limitation, we care-527

fully select three pivotal variables for imaging: total power (TP), furnace feed (FF), and furnace off-gas528

temperature (FOGET). This selection is based on process knowledge, as these variables exhibit strong cor-529

relations that are important in predicting arc loss faults. Figure 17 shows the GAF and RP encodings as530

RGB images for FOGET, FF, and TP measurements recorded during two distinct normal operating peri-531

ods. As previously discussed, we use the PAA method to reduce the raw time-series size, mitigating the532

computational complexity associated with these imaging tools. Specifically, we use a PAA window size of533

10, reducing the length of the time-series by a factor of 10. Figure 18 further illustrates the application of534

GAF and RP encodings as RGB images, this time focusing on FOGET, FF, and TP measurements during535

two distinct faulty operating periods.536

While these encodings reveal valuable visual patterns, it is important to acknowledge their limitations,537

particularly when applied to large-scale industrial datasets. One major challenge arises from the process of538

selecting the optimal set of three variables for imaging. This task can be time-consuming and labor-intensive,539

particularly in high-dimensional systems where process knowledge is limited, such as in industrial settings.540

Additionally, the use of the PAA method, although essential for managing the computational demands of541

these imaging techniques, introduces its own set of limitations. PAA inherently smooths the original time-542

series data, which can have unintended consequences. For instance, singular abnormal outlier measurements543

may get averaged out in the reduced time-series. Consequently, the resulting RP or GAF images may not544

capture these anomalous data points, potentially affecting the accuracy of FDD. Furthermore, it is important545
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Figure 17: An illustration of two normal arc loss samples (Y = 0) and their step-by-step encoding
into GAF and RP images. Firstly, a set of three variables (FOGET, TP, and FF) was carefully
chosen for imaging. Subsequently, the PAA method is used to reduce the dimensionality of the
raw signals, using a window size of 10. Finally, the RP and GAF encodings are applied to the
reduced time-series. The resulting GAF and RP representations are displayed as RGB images,
where the red, green, and blue channels represent FOGET, FF, and TP measurements, respectively.
Qualitative interpretations are as follows: In the first sample, uniform patterns indicate stationary
measurements, while red vertical/horizontal lines mark the time length in which a disturbance in
FOGET measurements is introduced. In the second sample, vibrant green and red corners highlight
increasing and decreasing trends in FF and FOGET measurements, respectively.

to note that the time distance represented in the GAF and RP encodings corresponds to the reduced time-546

series length resulting from PAA. In other words, each pixel in the GAF and RP representations represents547

the average of two-time windows of size 10 in the underlying system. This temporal aggregation may mask548

certain transient dynamics that occur within shorter time frames, which can be critical for understanding549

the dynamics of industrial processes, especially during fault conditions.550

Next, Figure 19 compares two normal arc loss samples (Y = 0) along with their visual representations551

obtained using the proposed approach versus two faulty arc loss samples (Y = 1) and their visual representa-552

tions. The size of the visual representation is 256×1100×1. In other words, the width of the one-channeled553

image corresponds to the length of the input signals (i.e., 1100-time steps), while the height represents554

the number of representation dimensions, which equals the number of 1D kernels in the last 1D residual555

block. Although the global texture is differentiable between the normal and faulty visual representations,556

the low-level details are not as pronounced as in RP and GAF representations due to the high resolution557

of the images. As shown in Figure 19, the normal visual representations exhibit regular patterns, while the558

faulty visual representations display irregular textures.559

The proposed approach offers several distinctive advantages when compared to existing imaging tools like560

RP and GAF. Firstly, the proposed method operates directly on MTS signals and produces single-channel561

visual representations, simplifying the interpretation process. This simplicity in representation can enhance562

the ease of understanding and analysis. Furthermore, the proposed approach handles MTS signals of any563

size directly without the need for dimensionality reduction techniques such as PAA. This advantage stems564

from the computational efficiency of 1D convolution operations, which scale linearly with the input size. As a565

result, the proposed approach can efficiently handle large-scale industrial datasets without the preprocessing566

steps that might introduce data loss and compromise temporal resolution.567
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Figure 18: GAF and RP encodings presented as RGB images for FOGET, FF, and TP measure-
ments recorded during two different faulty operating periods (Y = 1). The presence of a periodic
checkerboard structure in both GAF and RP images suggests underlying fluctuations in FOGET,
TP, and FF measurements. Unexpected power drops, leading to pronounced variations in FF and
FOGET measurements, define an arc loss event.
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Figure 19: A visual comparison of two normal (Y = 0) and two faulty (Y = 1) arc loss samples
using our proposed visual analytics framework. Normal samples exhibit homogeneous textures, while
faulty samples display unsmooth textures. Zoomed-in patches highlight local patterns.
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Figure 20: time domain data comparison: normal (Y = 0) vs. faulty (Y = 1) operating conditions.
Readers are referred to Figure 21 for a more detailed view of some of the most important features,
as identified by process experts.

4.2.3 Why visual analytics for industrial process monitoring?568

In the realm of process monitoring, visual analytics involves transforming historical process data in the form569

of MTS into visually meaningful representations. The visual nature of the representations allows process570

experts to manually analyze patterns and textures within the images, facilitating easier interpretation and571

identification of significant insights. This is done by enabling process experts to develop intuition in relating572

different patterns in the visual representations to distinct process operating modes. In this work, we propose573

a visual analytics framework based on supervised learning, which converts MTS into pixelated images with574

patterns directly associated with various operating conditions.575

Once the proposed network is trained on the training set, the trained stages 1 and 2 of the network can576

be used to convert input MTS signals into two-dimensional images. Figure 20 shows a visual comparison577

of four normal (Y = 0) and four faulty (Y = 1) arc loss samples in the time domain, while Figure 22578

illustrates their corresponding visual representations obtained using the proposed network. In the time579

domain, the data from both normal and faulty operations may appear as intricate, overlapping patterns,580

making it difficult for process operators to discern meaningful insights. However, when using the visual581

analytics approach, the corresponding images reveal a stark contrast, revealing the underlying nature of the582

operating conditions. During normal operation, these images exhibit regular and smooth patterns, reflecting583

the consistent and expected behavior of the process. In contrast, under faulty conditions, the images display584

a distinctly unsmooth texture. This intuitive visual distinction allows process operators to quickly identify585

and understand the operating condition of the data without the need for extensive data analysis. The586

integration of human visual perception and computer vision algorithms in visual analytics offers a powerful587

tool for enhancing process monitoring and responding effectively to the challenges posed by the era of big588

data in process industries.589
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Figure 21: A visual demonstration of nine process variable measurements for normal (Y = 0) and
faulty (Y = 1) operating conditions. Discriminative patterns are non-evident in the time domain.
Latin numbers match Figure 20.
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Figure 22: Visual representations, obtained using the proposed approach, comparison: normal (Y =
0) vs. faulty (Y = 1) operating conditions. Latin numbers match Figure 20.

25



5 Conclusion590

This paper introduces a new paradigm for process monitoring called visual analytics. Visual analytics frame-591

work provides a powerful solution for industrial process monitoring by integrating the human visual system592

and computer vision algorithms. In this context, we propose a new end-to-end visual analytics pipeline for593

industrial fault detection, using both 1D and 2D convolution operations. Our approach begins with a series594

of 1D convolutions to capture relevant temporal information from the input MTS data. Subsequently, the595

extracted features are transformed into a 2D matrix, facilitating analysis and interpretation in the image596

domain, which proves to be more intuitive than the traditional time domain. By leveraging 2D convolution597

operations, our framework enables the network to visually recognize and classify these extracted features. To598

validate the effectiveness and interpretability of our approach, we conduct a simulated case study using the599

CSTH benchmark and an industrial case study using the arc loss benchmark. Experimental results demon-600

strate the superiority of our proposed visual analytics approach over state-of-the-art algorithms, providing601

not only improved performance but also meaningful and informative visual representations that enhance602

interpretability. Future works include examining the application of visual analytics in multiple fault sce-603

narios. Furthermore, we plan to investigate the potential of visual analytics to determine the time of fault604

occurrence, which is an important aspect of process monitoring and FDD.605
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