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Abstract

This “white paper” is a concise perspective of the potential of machine learning in the process systems engineering (PSE)
domain, based on a session during FIPSE 5, held in Crete, Greece, June 27-29, 2022. The session included two invited
talks and three short contributed presentations followed by extensive discussions. This paper does not intend to provide
a comprehensive review on the subject or a detailed exposition of the discussions; instead its aim is to distill the main
points of the discussions and talks, and in doing so, highlight open problems and directions for future research. The
general conclusion from the session was that machine learning can have a transformational impact on the PSE domain
enabling new discoveries and innovations, but research is needed to develop domain-specific techniques for problems in
molecular/material design, data analytics, optimization, and control.
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1. Introduction

Machine learning (ML), artificial intelligence (AI) and
more generally data science are attracting tremendous at-
tention across science and technology fields. The increas-
ing availability of data and computing power, and signifi-
cant algorithmic advances have resulted in several break-
throughs in image and video processing, natural language
processing, voice recognition, and game playing. Deep
learning, reinforcement learning, and other ML algorithms
have been central to these breakthroughs. ML techniques
are also being rapidly adopted by the process industries
due to the realization that they can be key enablers of
innovation and efficiency in the discovery and engineer-
ing of new products, automation, as well as the manage-
ment of supply chains and company operations. Chem-
ical engineering as a discipline is similarly impacted by
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these developments (Venkatasubramanian, 2019; Schwei-
dtmann et al., 2021; Pistikopoulos et al., 2021) in areas
such as cheminformatics, bioinformatics, materials design,
and process systems engineering (PSE). In PSE specif-
ically, ML techniques can find potential applications in
multiple areas (Lee et al., 2018; Chiang et al., 2017; Zavala,
2023), such as in:

• Flowsheet analysis

• Surrogate modeling for simulation and optimization

• Integrated planning and scheduling

• Supply chain design and operation

• Process monitoring and fault diagnosis

• Real time optimization and control

At the same time, data generated in chemical engineer-
ing applications tend to be heterogeneous (discrete or con-
tinuous, time-series or static), high-dimensional, noisy, bi-
ased, and are typically constrained by physical laws (The-
belt et al., 2022). This hinders the direct adoption of
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existing data-driven inference and prediction methods for
learning models. From a process operations point-of-view,
whereas “observational” data may be abundant, truly “in-
formational” data are limited and hard to obtain since
process plants are typically run at the same conditions for
long times. For optimization and control, exploratory data
are needed but the exploration space is typically limited
by safety or operational constraints and on-line learning
must be carried out safely with minimal impact to on-going
production. Off-line learning is also challenged as avail-
able data tend to be confined to specific operation condi-
tions and realistic simulators are seldom available. These
challenges in turn raise non-trivial questions regarding the
most effective utilization of data in process optimization
and control. Finally, the materials design and PSE com-
munities do not interact as closely, despite the fact that
PSE offers an abundance of methods and tools that could
be invaluable to materials discovery and design tasks.

The goal of this FIPSE session was to shed light on
the afore-mentioned challenges which also represent op-
portunities for further research in PSE. The following two
keynote talks anchored the session:

• Machine Learning Challenges and Opportuni-
ties for Catalysis and Materials Design, Srini-
vas Rangarajan, Lehigh University

• Industrial Perspective of Machine Learning
and AI Challenges in PSE, Leo Chiang, Dow
Chemical

These talks were complementary, offering both an aca-
demic and an industrial perspective, and covering both
materials design and process operations. In addition to
these, the following contributed talks were presented:

• Big Data are Not Necessarily Good Data: What
are Good Data Anyways?, Bhushan Gopaluni
and Richard D. Braatz, University of British Columbia
and Massachusetts Institute of Technology

• Using ML and AI to Speed-Up Large-Scale
Optimization Problems, Iiro Harjunkoski, Hitachi
Energy and Aalto University

• What is the Future of Systems Modeling?,
Mehmet Mercangöz, Imperial College London

These talks raised critical questions on the role of data-
driven models across PSE applications and the degree to
which the Big Data revolution can have a major impact in
the process industries like it has in other sectors. Follow-
ing these talks, there were extensive discussions organized
along the following themes:

1. How can data science and PSE contribute to the de-
sign and discovery of new chemicals and materials?
Discussion leader: Antonio del Rio Chanona

2. What additional advantages can modern ML tech-
niques offer over the existing approaches to process
monitoring? How can we create the educated work-
force and culture to incorporate these techniques into
industrial operation? Discussion leader: Leo Chiang

3. How can ML and AI aid in the solution of large-scale
optimization problems? Discussion leader: Artur
Schweidtmann

4. Which models among first-principles, data-driven, or
hybrid ones are best suited for control? Discussion
leader: Fernando V. Lima

The goal of this paper is to distill and summarize the
views expressed in these presentations and discussions.
The next section focuses on catalysis and materials em-
phasizing the PSE challenges and opportunities, and the
subsequent one on industrial data analytics, control, and
optimization.

2. Machine learning and PSE in catalysis and ma-
terials design

Data science and ML have become a mainstay in catal-
ysis and materials design. While sophisticated data-driven
techniques are increasingly being employed in these fields,
several methodological challenges remain. In what fol-
lows, we identify several topics with substantial oppor-
tunities for PSE and foundational ML experts to make
significant contributions in terms of methodological devel-
opments that, in turn, lead to deployable frameworks and
software for use by catalysis and materials modelers. For
each topic a brief description of the problem/challenges is
provided followed by opportunities for PSE experts.

2.1. Learning kinetic models from data

A classic application of the ubiquitous PSE tool, i.e.,
optimization, is the parameter estimation problem of learn-
ing the kinetic/thermodynamic parameters of a physics-
based model, e.g., a microkinetic model, from experimen-
tal data. Such problems are typically non-convex opti-
mization problems, often subjected to stiff ordinary differ-
ential equations as constraints (representing the reaction
model) and addressed using sequential approaches (Ran-
garajan et al., 2017; Matera et al., 2019). However, oppor-
tunities emerge for PSE experts to enable the mainstream
use of physics-informed ML to solve differential equations
(Karniadakis et al., 2021; Gusmão et al., 2022) and auto-
matic differentiation to compute analytical derivatives to
train physics-based models with data (Andersson et al.,
2019).

Data-driven models can also serve as surrogates for
physics-based models (Döppel and Votsmeier, 2022) when
the latter models are too time-consuming to execute in
a larger simulation effort (e.g., reactor or process simu-
lation). One may also derive purely data-driven models
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from experimental kinetics data when ab initio inputs are
limited or the reaction system is too complex to readily
model at the atomic scale (Lejarza et al., 2023). In both
of these cases, data-driven models may be grounded in do-
main knowledge (set either in the formulation of the model
or enforced through constraints) so that fundamental laws
(e.g., mass balance) are always satisfied.

2.2. Optimization of computationally expensive functions

The design of catalysts and materials usually involves
large-scale screening (Zhong et al., 2020; Gómez-Bombarelli
et al., 2016) of the plausible material space, often aided
by machine learned models. However, catalyst/material
design can be formulated as a nonlinear constrained op-
timization problem. The objectives and constraints may,
among others, include energy functions to estimate the sta-
bility of one phase over competing ones, quantum chemical
calculations to compute the kinetics of a rate-determining
step, molecular simulations to compute equilibrium prop-
erties, etc. Evaluation of such functions is often compu-
tationally expensive. Further, decision variables can be
discrete, e.g., whether or not a specific atom should be
present at a location or if a bond between a pair of atom
exists. Finally, the material space tends to be very large,
defying any kind of exhaustive search for a global solu-
tion. Standard gradient-based optimization formulations
can naturally not be applied in such cases; methods that
identify the optimal value of the function while minimiz-
ing the functional evaluations are particularly valuable.
In this context, while many examples exist (e.g., (Hansel-
man et al., 2019; Isenberg et al., 2020; Yoon et al., 2021;
Lan and An, 2021; Sun et al., 2021)) there remains a
large scope for developing and applying techniques such
as mixed-integer linear/nonlinear programming, Bayesian
optimization, derivative-free optimization, reinforcement
learning, and evolutionary algorithms to tackle highly non-
linear and expensive to evaluate functions. Key here is to
be able to accommodate large-scale nonlinear constraints
that are motivated from physics. For instance, a worthy
problem in this context is designing alloy nanoparticles
(the shape, size, and the composition) for maximizing the
reaction rate for a catalytic reaction (Jinnouchi and Asahi,
2017) wherein the energetic stability of the nanoparticle is
a metric that needs to be computed using density func-
tional theory (DFT). Such methods may also be able to
accommodate the fact that a constraint function could be
computed via two different methods of differing accuracy
and cost (e.g., a cheap but less accurate model vs. expen-
sive but accurate model or experiment) and an optimal
solution needs to be obtained within an overall computing
budget.

Related to the previous two subsections, such opti-
mization methods may also be employed to learn the pa-
rameters of costly first principles models from experimen-
tal data. For instance, kinetic Monte Carlo simulations
that solve the stochastic chemical master equation per-
taining to reactions on surfaces are high fidelity solutions

of reaction kinetics, however, they are also expensive (of-
ten a factor 1000 or more compared to deterministic or-
dinary differential equations) and computing sensitivities
requires numerical differentiation. Bayesian optimization
or other derivative-free approaches that can accommodate
constraints would be a numerically efficient way to esti-
mate the parameters of such kinetic models (Gao et al.,
2018).

2.3. Better training methods for deep learning

Neural networks, especially graph neural networks (GNNs),
are among the most popular surrogate functions in cataly-
sis and materials science because they directly relate struc-
ture (atom identity, connections, and positions) to energy
or bulk material property. The graph convolutional layers
learn the underlying embedding of these materials thereby
obviating the need for the user to handcraft data repre-
sentations (Xie and Grossman, 2018). While these models
have been shown to be highly flexible in training poten-
tial energy functions for molecular and material properties,
computing a universal GNN for computing the binding
energies of small adsorbates on alloy surfaces has proven
to be particularly challenging. One unexplored area in
GNNs in general and in the context of catalysis, in par-
ticular, is the adoption of better training algorithms for
such models. Specifically, stochastic gradient descent tech-
niques such as Adam are commonly employed to train
these models; however, these methods do not include the
second-order derivative (Hessian) information. Hessian-
augmented techniques (Yao et al., 2020; Jahani et al.,
2021) techniques have recently been shown to be promis-
ing for neural networks, however, their performance on
GNNs for molecular and material applications remains to
be systematically analyzed.

Physically motivated constraints can be incorporated
into machine learned potentials trained on first principles
data, either in the design of the network itself (such as
translational/rotational invariance, equivariance, or physi-
cally motivated fingerprints) or as constraints (e.g., force is
equal to the negative of the derivative of the energy). PSE
techniques can play a major role in innovations in the lat-
ter scenario, where constraints are explicitly incorporated
(Berahas et al., 2021) or approximated via rigorous math-
ematical programming techniques (Fioretto et al., 2021),
rather than weakly embedded via hyperparameter tuning
of regularization terms in the objective.

2.4. Uncertainty quantification

Data driven models and physics-based models often
provide a point estimate of a property, e.g., the binding
energy of a species on a surface without quantifying the
uncertainty of that estimate. As a result, the reliability
of the prediction is not clear in advance. In this context,
there still remains tremendous scope for PSE experts to de-
velop efficient methods to: (i) carry out Bayesian inference
of first principles models to learn posterior distributions
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of parameters from data (Savara and Walker, 2020) and
(ii) quantify the uncertainty of machine learned models,
e.g., neural networks (Hirschfeld et al., 2020). A challenge
in Bayesian inference is the ability to incorporate domain
constraints during Monte Carlo sampling moves. For in-
stance, Bayesian inference of kinetic models needs to pre-
serve thermodynamic consistencies, which often result in
linear inequalities that must be satisfied. Further, compu-
tationally efficient schemes to enable the identification of
the multiple modes of the posterior of the kinetic parame-
ters (i.e., multiple peaks, each corresponding to a distinct
local optimum) are also needed (Galagali and Marzouk,
2015).

2.5. Learning interpretable governing equations from data

The ability to acquire high-resolution temporally and
spatially varying data such as concentration profiles, tem-
poral analysis of products (TAP), operando spectroscopy
data under reaction conditions, and in situ or in operando
microscopy data of the evolution of a material system en-
hances the possibility of learning the governing equations
directly from experiments rather than invoking approxi-
mate physical models (Chen et al., 2022b). Such govern-
ing equations have to be explainable, i.e., the individual
terms must be easy to ascribe to some expected phenom-
ena (e.g., linking a term to a plausible reaction) and do-
main informed (satisfy mass balance, laws of thermody-
namics, etc.). Several methods such as SINDy (Brunton
et al., 2016), Eureka (Schmidt and Lipson, 2009), SISSO
(Ouyang et al., 2018), AI-DARWIN (Chakraborty et al.,
2021), ALAMO (Cozad et al., 2014) etc. have been pro-
posed, but there remains tremendous scope for developing
methods and software for learning domain-informed data-
driven models from high-dimensional, noisy data from dis-
parate sources (of differing fidelity).

2.6. Handling data imperfections

Neural networks can serve as excellent data-driven sur-
rogate models when data are plentifully available from
a single source. However, often catalysis and materials
problems suffer from imperfect data, i.e., data that are
sparse, have differing fidelity, and originate from disparate
sources; typical approaches of training a neural network or
any other flexible ML model would lead to overfitting in
such cases. For instance, computing accurate binding en-
ergies of adsorbates on the catalyst surface or calculating
electronic properties of materials such as band gaps cor-
rectly requires methods beyond the common functionals of
density functional theory. Building accurate data-driven
models of such properties is challenging because the un-
derlying datasets themselves are either sparse or large, but
inaccurate. In such cases, concepts such as transfer learn-
ing and multitask learning can be employed on (i) fused
datasets of the same property measured/computed with
differing resolution or accuracy or (ii) datasets of related
properties so that essential features can be learned and

transferred between models. However, several challenges
remain that PSE experts are well-positioned to address: (i)
What is the best strategy for transfer learning, e.g., model
control or parameter control? (ii) How related should the
datasets be so that transfer learning does not result in
negative learning or overfitting? (iii) How to balance the
training of different tasks in multitask learning? (iv) How
to acquire data at different levels to minimize training data
requirements?

2.7. Generative modeling

As mentioned above, the search space for most material
discovery/design problems is huge. This can be true even
for small molecules, depending on how many atoms are
involved, how many different elements are considered, and
what kinds of bonds are allowed. Naturally, the problem
is much worse for large molecules. In addition, the de-
sign of crystalline materials, e.g., zeolites, MOFs, is more
complicated as such materials have more parameters (e.g.,
angles) and large choices of atoms as well as branching
structures. It is further complicated because of period-
icity in crystals and the non-uniqueness of the unit cell
selections. No matter how many samples are provided, it
is likely that they represent only a miniscule fraction of the
possible choices. For ML to lead to the discovery of truly
innovative materials, it needs to suggest samples that are
outside of the given data domain and yet are plausible.
Such ML falls in the category of generative modeling.

Generative modeling Anstine and Isayev (2023) is a
kind of unsupervised learning that learns the regularities
or patterns (the probability distribution) in the input data
such that the model can be used to generate new samples
that plausibly could have been drawn from the original
dataset. This is in contrast to ML-based predictive mod-
eling where the goal is to discover the probability distribu-
tions of given samples and relationships among variables.
Among generative modeling methods, Generative Adver-
sarial Networks (GANs) use deep learning methods, such
as convolutional neural networks and frame the unsuper-
vised learning task as a supervised learning problem with
two sub-models: the generator model that generates new
examples and the discriminator model that classifies a gen-
erated sample as either real or fake. As the two models are
trained, the generator model becomes increasingly clever
and is able to “fool” the discriminator, i.e., it generates
data that are indistinguishable from the real data by the
discriminator. The training continues until the generator
is able to generate samples that are indistinguishable by
the discriminator from the real samples - in other words,
the probability of the discriminator determining that a
true sample is true is 0.5. GANs have been used across a
range of problem domains, most notably in image-to-image
translation and photos of fake objects and people. They
have also seen applications in material design, for exam-
ple in the design of crystalline materials such as zeolites
(Kim et al., 2020). While they provide some exciting new
tools to discover materials that have not been conceived by
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humans, further learning through more applications and
follow-up research is needed. For example, many materi-
als generated by such methods may not be synthesized in
labs and therefore cannot be tested beyond simulation. In-
corporating the consideration of physical synthesizability
into the generator or discriminator model is an interesting
open problem. Recently, large language models that utilize
revolutionary encoder-decoder-based transformer models
have disrupted the machine learning field. This trans-
former technology has also shown promising results in the
context of reaction/synthesis prediction (Schwaller et al.,
2019; Mann and Venkatasubramanian, 2021). Such tools
have also been used in material property prediction (Kang
et al., 2023), protein structure prediction (Jumper et al.,
2021), data extraction from scientific publications (Polak
et al., 2023), etc.

2.8. Automated/high throughput experimentation

As high throughput experiments and automated syn-
thesis set ups are becoming more common in catalysis and
materials design, data-driven algorithms are required to (i)
decide what experiments to perform, (ii) learn models from
the experiments, and (iii) make decisions in a closed-loop
fashion to maximize a desired property. PSE ideas from
the design of experiments and active learning along with
concepts such as Bayesian optimization (Shields et al.,
2021; Gonzlez and Zavala, 2023) and reinforcement learn-
ing (Bennett and Abolhasani, 2022) will play an important
role here. In such a context, opportunities remain to de-
sign sampling strategies that balance exploration of the
experimental space vs. exploiting the currently available
data while deciding the next set of experiments. In partic-
ular, opportunities arise in automating multiple types of
experimentation (and computation) to generate and lever-
age multimodal data (of differing accuracy and cost) to
minimize the overall cost of search campaigns. One could
extend such an idea to search for materials/reaction condi-
tions to optimize process-level metrics (e.g., overall cost or
carbon footprint) rather than a specific material property
(e.g., product selectivity).

3. Machine learning in PSE

Data Science, including ML and AI, are becoming widely
adopted in all areas of PSE research and industrial ap-
plications, including data analytics, process control, pro-
cess design, multiscale modeling, and optimization. Many
of the topics discussed in the previous section are indeed
subjects of research in the PSE community. The following
subsections summarize the prevalent themes that emerged
from the discussion of ML and AI Challenges in PSE from
an industrial data analytics and process control and opti-
mization perspective.

3.1. Industrial data analytics
Several successful industrial case studies were presented

at the conference, within the broad theme of Chemomet-
rics, i.e. the combination of analytical chemistry and chem-
ical engineering with data science methods rooted in AI
and statistics (Qin and Chiang, 2019). These case studies
include the use of deep neural networks for image classifica-
tion, reinforcement learning, natural language processing,
hybrid modeling, predictive formulation, and sensor fusion
for monitoring. It was noted that the application of linear
methods such as PCA/PLS for real-time process monitor-
ing has pockets of successes for certain unit operations,
yet less so for plantwide monitoring. Neural networks of-
fer an alternative but they require more data and involve
more parameters. Very recently, transformer-based models
have been used for the autocompletion of Process Flow Di-
agrams (PFDs) (Vogel et al., 2023) and the translation of
PFDs to Process and Instrumentation Diagrams (P&IDs)
(Hirtreiter et al., 2023). In addition, historical operating
data can play an important role in bridging and connecting
the different time scales in multiscale, integrated decision
making (e.g., the integration of scheduling/control and
planning/scheduling) (Tsay and Baldea, 2019). Multiscale
modeling in general involves the integration of information
and processes across different spatial and temporal scales.
ML can play a useful role in bridging scales in multiscale
modeling by providing efficient and accurate representa-
tions of complex systems. For example, ML models, such
as neural networks or Gaussian processes, can be trained
to approximate complex and computationally expensive
simulations. These surrogate models can be used to re-
place detailed simulations at certain scales, making the
overall multiscale model more computationally efficient.
ML methods can also be employed to develop algorithms
that upscale or downscale information from one scale to
another. For instance, if detailed information is available
at a fine scale, ML models can be trained with the data to
predict the behavior or properties at a coarser scale. For a
comprehensive overview of this topic see (Ingolfsson et al.,
2023).

Common misconceptions on the benefits of big data
were also discussed. These include: (i) higher dimensional
data are always better (truth: they may exhibit counter-
intuitive phenomena); (ii) with more data we should be
able to get better models (truth: not necessarily, since
data can be noisy, with missing values, outliers, etc. and
highly localized to one or few operating points); (iii) ML
algorithms with big data will outperform algorithms with
small data (truth: not necessarily so, especially when there
are no high quality big data available). The bases of these
misconceptions can be traced to the following facts: (i)
historical data in industry have outliers and other anoma-
lies, (ii) they lack persistent excitation, a pre-requisite for
estimating reliable models, (iii) data collected over several
months or years are not necessarily representative of the
same process conditions, and (iv) often, the data corre-
sponding to events of interest are an extremely small per-
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centage of the total data. For example, fault detection and
diagnosis and predictive analytics problems are typically
classification problems; for best results, the relevant clas-
sification algorithms need a similar number of data sam-
ples for each class. However, industrial data are usually
highly imbalanced, with faults appearing in an extremely
small portion (<< 1%) of the data. It is either too ex-
pensive or impossible to generate faulty data in real time.
If such data are not adequately pre-processed, ML models
could provide high accuracy during training and fail dur-
ing testing, rendering the models impractical. From these
considerations, several challenges and opportunities were
pointed out:

• Obtain “informative” or persistently excited data in
a plant environment. For a specific target applica-
tion, what additional experiments and sensors are
needed to this end? How can we characterize and
quantify data quality and then translate this infor-
mation to model uncertainty?

• Develop hybrid models (combining first principles
and data) for a broad range of domains/scales (R&D,
Manufacturing, Supply Chain, etc.).

• Explore new methods for system identification and
process monitoring at a plantwide scale.

• Safety and reliability concerns for end users and con-
cerns related to liability and reputation loss for tech-
nology providers remain a challenge for the adop-
tion of deep learning solutions in plant environments,
particularly for closed-loop solutions. Currently, the
acceptance of the models depends on how well the
model predictions are aligned with domain knowl-
edge and their criticality to operations and profit.

• Countering the previous point, gaining trust to val-
idate, implement, and sustain deep and reinforce-
ment learning models in plant environments as well
as interpreting deep learning results, for example by
leveraging the concept of explainable AI and the as-
sociated methods and tools, are potential opportu-
nities.

In addition to these technical challenges and opportu-
nities, “cultural” ones were also emphasized.

• Data science education in chemical engineering at
current time is limited at best. There is an ur-
gent need to incorporate data science into the chemi-
cal engineering curriculum, exposing the students to
foundational statistics, ML, and programming con-
cepts, as well as their domain applications (Proctor
and Chiang, 2023).

• There is also a need to develop the corporate AI
workforce and culture. There is a scarcity of data
science literate engineers in the industrial workforce.
It is also difficult for upper level managers to fully

appreciate the scope and potential of the applica-
tion of data science in their companies. Plant lead-
ership needs to communicate this potential clearly
to process engineers. Data scientists need to moti-
vate plant personnel to implement and adopt new
ML tools. There needs to be “continuing education”
opportunities for both company executives and data
scientists in industry. PSE faculty can play an im-
portant role in developing the appropriate platforms
and mechanisms and also transferring data science
tools and experiences to industry.

• The ML, AI and data science landscape of com-
mercial tools, vendors and applications is exploding.
Partnering with the appropriate partners is a major
challenge for companies and universities alike.

• Finally, it is important to mention the relevance of
large language models, such as ChatGPT, in rela-
tion to the use of ML in the industry. Although the
use of these generative AI tools promises to signif-
icantly increase productivity, allowing the ingestion
of sensitive data for further training of open-access
models creates risks related to the loss of intellectual
property and competitiveness for industrial players.
This is likely to drive either in-house custom devel-
opments on top of open-source models by industrial
players themselves or the offering of closed solutions
by the developers of the open-access models to in-
dividual industrial users. The success of the latter
option will depend on establishing the necessary lev-
els of trust between the parties.

3.2. Control

The conference generated many discussions on the role
of data and ML in control, a subject of rich research ac-
tivity in recent years (Tang and Daoutidis, 2022). Effi-
cient use of data in control can be a key enabler of a
transition from automation to autonomy in the process
industries. The most direct way of incorporating learn-
ing and data in control is in the dynamic modeling of
a process (Esche et al., 2022). Standard system identi-
fication methods are essentially data-driven methods but
their industrial use are usually limited to linear dynam-
ics. Neural networks (especially recurrent neural networks
and neural ODEs) as universal approximators offer the po-
tential to capture nonlinear functions and could in prin-
ciple be incorporated in model predictive control (MPC)
algorithms (Ren et al., 2022; Chen et al., 2022a; Lanzetti
et al., 2019). Moreover, new transformer architectures
have shown promising results for learning dynamic systems
(Sitapure and Kwon, 2023). The central challenge however
is that there is no theoretical basis to guide the amount
of data needed to learn the behavior of a nonlinear dy-
namic system (Van Waarde et al., 2020), and indeed such
data, i.e., data that sufficiently cover the dynamic operat-
ing range of the nonlinear system which neural networks
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represent, may be difficult or even impossible to obtain in
practice. It is also challenging to obtain stability and per-
formance guarantees or establish physical interpretability
in the models and the control actions. Physics informed
neural networks and regularization approaches to improve
interpretability are possible avenues to mitigate these chal-
lenges. Gaussian processes as nonparametric statistical
models, often combined with Bayesian optimization, are
an alternative approach that can address the intricate bal-
ance between exploration and exploitation towards stabil-
ity guarantees and closed-loop performance improvement
(Makrygiorgos et al., 2022; del Rio Chanona et al., 2021;
Bradford et al., 2020).

Another emerging application of learning in control, es-
pecially for optimization-based control methods that typ-
ically yield an implicitly-defined control law, e.g., nonlin-
ear model predictive control, is approximating controllers
that are computationally expensive to evaluate in real-time
Mesbah et al. (2022). The key notion of these approaches
is to learn an explicit and cheap-to-evaluate control law
using open- or closed-loop simulation data generated by
solving the original control law. As such, approximate
controllers can be useful for control of large-scale systems
Kumar et al. (2021), or embedded control applications for
fast-sampling systems Karg and Lucia (2020). An impor-
tant open challenge in this direction is how to achieve ef-
ficient approximate controllers that can readily adapt to
changing situations.

A very different, less investigated approach involves not
learning the dynamic model itself, but rather some control
relevant information that is simpler than the entire pro-
cess model. Examples include learning the optimal value
function, policy in a reinforcement learning (RL) frame-
work (Shin et al., 2019; Nian et al., 2020; Spielberg et al.,
2019), transfer learning and batch process optimization
(Petsagkourakis et al., 2020; Yoo et al., 2021), or learn-
ing dissipativity functions from input/output data (Tang
and Daoutidis, 2021). For RL, in particular, policy search
or actor-critic methods look to directly optimize parame-
ters of an explicitly parametrized control policy such as a
(deep) neural network. Yet, such approaches also rely on
exciting the plant in an active manner, and the amount of
data needed to guarantee sufficiently dense sampling and
accurate learning again needs to be characterized. In this
sense, high-fidelity first principles models may be critical
to ensure sufficient off-line learning spanning the operating
space before taking it to on-line for further adjustment. In
addition, by embedding physics into the parametrization
of a control policy to be learned, the size of the policy
search space can be greatly reduced, while devising easier
to implement and more interpretable control policies in a
data efficient manner (Paulson et al., 2023).

3.3. Data representations

Data representations are fundamental as they serve as
a bridge between raw data and ML models to inject do-
main knowledge into otherwise black-box frameworks. The

PSE community is uniquely positioned to address suit-
able data representations due to specific-domain knowl-
edge and knowledge in mathematical modeling (Schweidt-
mann et al., 2021). The choice of representation encap-
sulates crucial information about the inherent character-
istics of the objects under consideration. Some notable
examples are SMILES strings, molecular graphs, or three-
dimensional coordinates, for example, molecular represen-
tations (Wigh et al., 2022; David et al., 2020), string/graph-
representations of flowsheets (Gao and Schweidtmann, 2023),
representations for infinite-dimensional optimization (Pul-
sipher et al., 2022), prior and kernel functions on Bayesian
optimization (del Rio Chanona et al., 2021; Deshwal et al.,
2020), and (convolutional) neural networks for feature ex-
traction in manufacturing (Jiang et al., 2022).

For applications, where human interpretability is im-
portant, the data objects should be readable to both the
human and machine. For example, let us say we want to
predict solubility between two substances if we get a high
solubility but we encode the object as a hashed fingerprint
or as information bits, the human will not understand why
the model made the prediction. If however, we encoded the
molecule as a group of functional groups, interpretability
methods could be used to see if the model identifies the
functional group as a major contribution (Schwaller et al.,
2021). Thanks to the data representation, the human can
understand the prediction and trust the model. As ML
is more and more intertwined with chemical and process
systems engineering, data representations will become not
only more important but an engineering necessity.

Moreover, when dealing with time series data, the man-
ner in which data is organized for training becomes pivotal,
impacting not just performance but also the interpretabil-
ity of the model. Take, for instance, time series data de-
rived from cyclic operations used in monitoring and pre-
diction. In such cases, structuring the data as an array
with distinct dimensions for time and cycle number, akin
to the approach in multi-way PCA, proves beneficial. Re-
cent advancements in time-series data representation, ex-
emplified in the context of predicting the remaining useful
life of lithium-ion batteries, showcase the advantages of
arranging voltage, current, and temperature profiles from
early charge/discharge cycles in this manner. This con-
figuration enables the training of a 2-D CNN or a hy-
brid model combining CNN with recurrent neural network
(RNN), demonstrating marked improvements and benefits
in model interpretability and data requirement (Lee and
Lee, 2023).

3.4. Optimization

It is generally recognized that there are many decision-
making problems that cannot be solved reliably with cur-
rent optimization methods within reasonable time con-
straints. The underlying causes can include the shear size
of the problems, the number and type (integer, continuous)
of decision variables, the need to consider decision vari-
ables and constraints occurring at multiple timescales, and

7



the presence of nonlinear/non-convex terms. Examples
of such problems include plantwide optimization, plan-
ning, scheduling and their integration, and more generally
enterprise-wide optimization.

For such problems, ML can be used to train surrogate
models and embed them in the optimization algorithms
(Sansana et al., 2021; Bradley et al., 2022; Schweidtmann
and Mitsos, 2019; Bhosekar and Ierapetritou, 2018). Chal-
lenges to this end include: (i) the interoperability of dif-
ferent models, (ii) the ability to generate these models au-
tomatically, (iii) quantifying the extrapolation capabilities
of these models, (iv) determining what parts of a model
should be replaced with a surrogate, (v) addressing the
need to adapt/update model when we change the process,
(vi) developing stochastic surrogate models for optimiza-
tion under uncertainty, (vii) developing surrogate mod-
els for global and bilevel optimization, (viii) ensuring con-
straint satisfaction during training, and (ix) choosing the
most suitable surrogate model. Computational tools to ac-
celerate embedding of trained ML models within optimiza-
tion formulations, such as the OMLT framework (Ceccon
et al., 2022), can expedite solutions and enable compar-
ative studies to answer many of the identified open chal-
lenges.

A different avenue for using ML in optimization is to
use it to accelerate or improve the computational per-
formance of existing solution algorithms (e.g., optimiz-
ing heuristics to accelerate genetic algorithms, tuning the
parameters of optimization solvers using Bayesian opti-
mization, finding optimal decompositions, generating high
quality cuts, initializing in an optimal way, pre-fixing or
eliminating binary variables, finding global solutions, etc.)
and to determine which algorithm among several is the
most suitable one for a given optimization problem (see
e.g., (Bengio et al., 2021; Chen et al., 2021; Cappart et al.,
2023) as well as (Harjunkoski et al., 2020; Mitrai and
Daoutidis, 2023b,c,a)). Important problems to be addressed
to this end include: (i) representations of the optimiza-
tion problems and their features that enable using them
as inputs to ML models, (ii) automation of the solution
and learning methods to allow for efficient screening and
learning, (iii) availability of large numbers of benchmark
problems to be used for training and testing, and (iv) in-
terpretability of the realized improvements.

ML can also be used with classical PSE tools (e.g.
mathematical programming) to tackle problems that are
previously beyond reach. One of the outstanding problems
in PSE is integrating decisions occurring at different layers
of the vertical decision hierarchy. For example, planning
and scheduling occur over different time scales and time
horizon of very different lengths, but are inherently linked.
The usual practice of coarse-graining the fast time-scale
layer and incorporating the coarsened model into the op-
timization of the upper layer can result in mismatched
production plans that cannot be executed. Uncertain-
ties and unexpected disturbances aggravate this further.
To address such problem, reinforcement learning can be

combined with traditional optimization (e.g. mathemat-
ical programming). An illustrative approach was shown
in (Shin et al., 2017; Shin and Lee, 2019) where the up-
per layer capacity decisions are made through reinforce-
ment learning with data obtained by simulating the lower
layer at its time scale (e.g., hourly) over the time horizon
set by the capacity planning layer (e.g., years or decades).
The lower layer decisions are made by linear programming,
which becomes a part of the simulation to generate the
data needed for reinforcement learning in the upper layer.
The upper layer adopts a Markov Decision Process descrip-
tion of the overall system and therefore has the flexibility
of accommodating various stochastic uncertainty descrip-
tions (e.g., Markov processes). Uncertainties occurring in
the lower layer at the faster time-scale can be handled by
scenarios or Monte-Carlo simulation to allow recourse ac-
tions.

Finally, optimization itself lies at the heart of ML meth-
ods. This brings up an opportunity for the PSE commu-
nity to contribute to better learning methods based on op-
timization rather than heuristics, especially for small data
problems that arise in chemical engineering. Additional
opportunities include using optimization formulations to
enforce constraints (such as physics-based) and training
models that have features that facilitate their subsequent
use in optimization.

4. Conclusions

The main conclusion from the FIPSE session, as sum-
marized in this paper, was that ML in the context of PSE
can have a transformational impact on catalysis and ma-
terials design, as well as on process operations and au-
tomation. Numerous domain-specific challenges need to
be overcome to this end. Whereas domain knowledge is
essential to guide method and software development, data
science expertise is also necessary to deal with the ever
increasing complexity of data structures and algorithms.
These considerations suggest an exciting opportunity for
the PSE community - both in academia and in industry
- to lead in meeting these outstanding challenges. For in-
dustrial practitioners there are scaling and end-to-end de-
ployment challenges, which are mostly practical in nature
and outside the scope of the academic community, whereas
the academic community is focusing mostly on new meth-
ods and algorithms and their properties, which is beyond
the interest of industrial practitioners. Since ML relies on
data, focusing on industrial data could bring industry and
academia together and foster closer collaborations.
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Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T. D., Du-
venaud, D., Maclaurin, D., Blood-Forsythe, M. A., Chae, H. S.,
Einzinger, M., Ha, D.-G., Wu, T., et al. (2016). Design of efficient
molecular organic light-emitting diodes by a high-throughput vir-
tual screening and experimental approach. Nature materials,
15(10):1120–1127.

Gonzlez, L. D. and Zavala, V. M. (2023). New paradigms for exploit-
ing parallel experiments in bayesian optimization. Computers &
Chemical Engineering, 170:108110.

Gusmão, G. S., Retnanto, A. P., Da Cunha, S. C., and Medford, A. J.

9



(2022). Kinetics-informed neural networks. Catalysis Today.
Hanselman, C. L., Zhong, W., Tran, K., Ulissi, Z. W., and Gounaris,

C. E. (2019). Optimization-based design of active and stable
nanostructured surfaces. The Journal of Physical Chemistry C,
123(48):29209–29218.

Harjunkoski, I., Ikonen, T., Mostafaei, H., Deneke, T., and Heljanko,
K. (2020). Synergistic and intelligent process optimization: First
results and open challenges. Industrial and Engineering Chem-
istry Research, 59(38):16684–16694.

Hirschfeld, L., Swanson, K., Yang, K., Barzilay, R., and Coley,
C. W. (2020). Uncertainty quantification using neural networks
for molecular property prediction. Journal of Chemical Informa-
tion and Modeling, 60(8):3770–3780.

Hirtreiter, E., Schulze Balhorn, L., and Schweidtmann, A. M. (2023).
Toward automatic generation of control structures for process
flow diagrams with large language models. AIChE Journal, page
e18259.

Ingolfsson, H. I., Bhatia, H., Aydin, F., Oppelstrup, T., Lopez,
C. A., Stanton, L. G., Carpenter, T. S., Wong, S., Di Natale, F.,
Zhang, X., Moon, J. Y., Stanley, C. B., Chavez, J. R., Nguyen, K.,
Dharuman, G., Burns, V., Shrestha, R., Goswami, D., Gulten, G.,
Van, Q. N., Ramanathan, A., Van Essen, B., Hengartner, N. W.,
Stephen, A. G., Turbyville, T., Bremer, P.-T., Gnanakaran, S.,
Glosli, J. N., Lightstone, F. C., Nissley, D. V., and Streitz, F. H.
(2023). Machine learning-driven multiscale modeling: Bridg-
ing the scales with a next-generation simulation infrastructure.
Journal of Chemical Theory and Computation, 19(9):2658–2675.
PMID: 37075065.

Isenberg, N. M., Taylor, M. G., Yan, Z., Hanselman, C. L., Mpourm-
pakis, G., and Gounaris, C. E. (2020). Identification of optimally
stable nanocluster geometries via mathematical optimization and
density-functional theory. Molecular Systems Design & Engineer-
ing, 5(1):232–244.

Jahani, M., Rusakov, S., Shi, Z., Richtárik, P., Mahoney, M. W.,
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