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ABSTRACT 
 
The study is aimed at particle sorting at the Copper Mountain Mine using XRF.  Possible applications 
include the rejection of barren material from mill feed, the rejection of pebbles in the SABC circuit or the 
recovery of valuable material from low grade stockpiles. It is recognized that XRF is a surface measurement 
that can detect copper but depending on several operational conditions, such as the orientation of the particle 
or mineral texture, the sensor spot may not see the copper. However, XRF also provides information about 
the concentrations of a range of elements in minerals that are associated with copper mineralization which 
can improve sorting. The study described herein is aimed at improving XRF sensor-based sorting by the 
introduction of logistics regression (LR)- and support vector machine (SVM)-based machine learning 
approaches.  To solve the collinearity and dimensionality issues in the input variables, the authors propose 
a combined approach of principal component analysis (PCA) and stepwise regression to extract the 
significant features. The combined PCA and stepwise regression approach is novel and has shown to be very 
effective for dimensionality reduction of the XRF spectrum data. By applying the ROC and AUC), the LR 
and SVM models are compared. Results showed that the LR model with the AUC of 0.847 outperforms the 
SVM with kernel functions with respect to classification accuracy; especially for data sets with a small 
number of features. The improved classification accuracy should benefit the economic performance of the 
particle sorting system. 
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1. Introduction 

1.1 Sensor Based Particle Sorting 

During the past 20 years, significant research and development programs have studied the application of 
sensor based sorting for improving productivity in the mining industry [1]. Bamber demonstrated 20% energy 
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reduction and cost savings through pre-concentration using particle sorting across Ni/Cu mines in the 
Sudbury basin. The benefits were mainly attributed to reduced transport and comminution requirements with 
additional benefits of increased and more consistent grades to the process plant resulting in higher metal 
recoveries [2][3]. Other studies have demonstrated the sorting of pebbles in the semi-autogenous-ball mill-
crusher (SABC) circuit to reject barren rock in the circulating load thereby reducing energy requirements and 
improving throughputs [4][5]. Another application involves the sorting of low grade stockpiles and waste 
dumps to recover additional metal [6][7].  

The various types of sensors currently available for SBS have been reviewed elsewhere [8]. The present 
paper is specifically focused on the use of X-ray fluorescence (XRF) for particle sorting. This technique is 
based on the spectral analysis of secondary X-rays emitted from the surface of the sample due to irradiation 
by primary X-rays. The physical principle of XRF is based on the excitation of electrons in the atoms on the 
particle surface. When these electrons subsequently fall from the higher energy shell into the vacancies that 
they left behind, they emit X-rays that are characteristic of the specific element and its abundance, thereby 
enabling the quantification of the metal content for scanned particles [9][10].  

An example of an XRF spectrum is presented in Figure 1, where the distribution of each detected element 
is shown according to its XRF energy, and the proportion of each element corresponds to its number of counts.  

 
Figure 1: A typical XRF spectrum of an ore sample 

Although studies have shown that SBS can significantly improve the productivity of mining operations, 
it is still regarded as a novel technology and, hence, there is insufficient confidence to secure financial support 
for greenfield projects that rely on SBS [11]. One challenge with the technology is that of accurately 
translating the sensor signals for classification, such as into classes of ore and waste.  

Currently, sorting companies have been using simple linear regression algorithms that convert a single 
sensor response to a metal grade. However, there are cases when a spectrum of responses can be used to 
improve the linear correlation (multivariable linear regression). This is particularly important to XRF particle 
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sorting which measures a surface response. However, the surface XRF readings may not accurately represent 
the metal content in the whole rock.  Also depending on the mineralization texture or orientation of the 
particle, the sensor may not see the metal. However, the sensor will detect elements that are found in the 
minerals associated with metal e.g., Cu and therefore serve as proxies to indicate Cu content. 

At present, testing to assess particle sorting involves the collection of a range of particles (typically 100 
to 300), to demonstrate the ability of a sensor to classify as ore or waste according to a threshold metal content.  
This stage of testing is followed by extensive and expensive pilot-scale testing requiring large samples.  
There is therefore a need to develop improved sorting algorithms that can be obtained using small sample 
sets; the outcome is particularly important for early-stage assessments such as scoping studies or for mineral 
exploration projects. 

1.2 Review of Machine Learning Approaches  

There have been some attempts to apply machine learning (ML) techniques to develop sorting algorithms 
[12][13]. The main difference between statistical methods and ML is their application purposes. Statistical 
modelling is focused on seeking the relationships between independent variables and dependent variables. 
By contrast, ML concentrates on prediction by using specified learning algorithms to find underlying patterns 
in large amounts of complex data. The machine learning methods can be effective even when the data are 
gathered without a carefully controlled experimental design and in the presence of complicated nonlinear 
interactions [14].  

To take an example, XRF measures a surface response, which may not accurately represent the metal 
content of the whole rock. This issue cannot be resolved by conventional statistical methods (such as simple 
linear or multivariable linear regression), but potentially can be handled by the application of advanced 
machine learning techniques. There is also an opportunity to obtain more accurate correlations and improved 
decision-making with the machine learning approach [15].  

In general, more than one model can be trained for a given machine learning application scenario. The 
model selection depends on the amount and quality of training data, the form of the relationship between the 
input and output variables, and computational constraints (iteration time and memory). For a specific 
application, it is important to review and compare the strengths and weaknesses of each approach to select 
the best approach.  

Table 1 summarizes the advantages and limitations of different supervised machine learning algorithms.  
The LR, SVM, DT, RF and ANN are all commonly used as supervised learning models for classification 
problems. Gomez-Flores [16] presented four machine learning models including MLR, KNN, DT and RF to 
predict grade and recovery in flotation. The predicted performance of these four models were compared by 
use of mean absolute error and R2. The results showed that RF performed the best of the four models. 
However, RF is intrinsically suited for multiclass problems, while LR and SVM are more suitable for binary 
classification [17]. Also, RF performs well on large data sets because it is based on the theory of decision 
trees, however, it is highly prone to overfitting for data sets [18].  

Table 1: Summary of the advantages and limitations of different supervised machine learning 
algorithms[19] 
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Algorithms Applications Advantages Limitations 

Decision Tree investment decision 

visual analysis; can be used 
in both classification and 
regression problems; 
fast calculation speed 

overfitting; difficult to 
handle missing values 
and outliers 

Random Forest multi-classification 
large size dataset; high 
accuracy 

overfitting; unsuitable for 
small size dataset 

KNN (k-nearest 
neighbour) 

pattern recognition; 
multi-classification 

online training; insensitive 
to outliers 

not suitable for large-size 
databases; K value 
should be carefully set 

SVM (Support 
vector machine) 

text classification; 
imagine recognition; 
binary classification 

small size dataset; high 
dimensional; strong 
generalization ability 

sensitive to kernel 
function and outliers 

Logistic 
Regression 

binary classification 
easy to understand and 
achieve; less calculation cost 

underfitting; low 
Accuracy 

ANN (Artificial 
neural networks) 

voice recognition; 
computer vision 

high accuracy; 
strong robustness 

a large number of 
parameters; black box; 
long training time 

DT models can be constructed relatively fast compared to other methods of classification. However, DT 
can only illustrate which predictors are essential for building the trees and does not provide information about 
the association path. Also, it is much more suited for large data sets, is more sensitive to missing values and 
outliers and is prone to overfitting [20][21].  

ANN cannot indicate either the size or the direction of the relationship between input and output. This is 
due to the intrinsically multi-layered process and, in particular, the hidden layer between the input and output, 
where the function applies weights to the inputs before directing them to the output via an activation function 
[22].  

LR is one of the most important nonlinear machine learning modelling methods which is used for the 
analysis and classification of categorical variables and has been widely used in many fields such as medicine, 
geology, biology, health care, and finance [23][24][25][26]. As the core of LR is a sigmoid function to 
transform linear regression into the logit function, it is more suitable for handling binary classification 
problems [27]. Specifically, LR gives a measure of both predictor relevance and the direction of the 
association, such that it generally provides a more informative output. However, the drawbacks are that it 
can underfit and have low accuracy.  

KNN classification is a well-known decision rule that is widely used in pattern classification and 
recognition [28]. KNN is a typical nonparametric method which predicts the class of an object according to 
the class of its k nearest neighbour. The disadvantages of KNN are the computation of accurate distances as 
well as how to set K value [29].  

The SVM algorithm is a comparatively effective machine learning method developed by Vapnik and 
Cortes [30] with the ability to analyze data and recognize patterns. Due to the advantages of the ability for 



 5 

global optimization and a superior capacity to solve the overfitting problem, SVM has become the primary 
choice for binary and multi-class classification. Certain types of SVMs have been developed and applied 
successfully to text categorization, handwriting recognition, gene-function prediction, remote sensing 
classification and other applications [31][32]. It commonly uses small datasets but is sensitive to kernel 
functions as well as outliers. In addition, the performance of SVM largely depends on the selection of the 
kernel functions. 

To summarize, different supervised machine learning algorithms were compared (Table 1). Considering 
that ore sorting is a typical binary classification scenario (where the feed to the sorter is classified as ore or 
waste), LR and SVM were considered more applicable for ore sorting applications. LR is capable of 
describing the relationship between the probability of a binary response variable and a set of corresponding 
explanatory variables. SVM has advantages because of its global optimized ability and a superior capacity to 
solve overfitting. Therefore, in this study, logistic regression and support vector machine were selected to 
develop the classification model for ore pre-concentration scenario.  

2. Materials and Methodology 

2.1 XRF Testing 

Samples were collected from the Copper Mountain open pit mine in British Columbia, Canada. Copper 
Mountain mines an alkalic copper-gold porphyry ore with typical reserve grades of 0.25% Cu and 0.11 g/t 
Au. Mineralization occurs in veins, fracture fillings and dissemination within the volcanic rock and intrusive 
rocks. Copper minerals occur as chalcopyrite, bornite and chalcocite and the main gangue minerals associated 
with this mineralization are pyrite, magnetite and calcite.   

The Copper Mountain mine processing plant was designed for a throughput of about 35,000 t/d to produce 
copper concentrate using SABC comminution and flotation. The present study supports the assessment of 
particle sorting for either pebble rejection in the SABC circuit or to recover value from low grade stockpiles.  

A 400 kg sample of cone crusher product (plant feed material) was collected and screened into the size 
fractions as shown in Figure 2. 

 

Figure 2: Screened size fractions of Copper Mountain mine plant feed. A is +37.5 mm, B is -37.5+25 mm, 
C is -25+19 mm, D is -19+16 mm, E is -16+12.5 mm, F is -12.5+9.5mm, G is -9.5+4.5 mm, H is -4.5 mm 
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The test procedure used is shown schematically in Figure 3. The three hundred particles in the -53+19mm 
size fraction were scanned using a handheld XRF unit (Olympus Alpha 6000) equipped with the Innov-X 
system to generate a spectrum for the scanned area. Each rock was scanned on four sides using an exposure 
time of 30s for each shot. After XRF scanning, the result was exported to a computer, and the grade of each 
element was obtained by averaging the grades from the four shots (sides). All rocks were then pulverized to 
-0.074mm and analyzed by XRF to determine the chemical compositions. The accuracy of the XRF on 
pulverized samples was validated on selected rocks using ICP, which was in good agreement. The main 
elements' ranges of concentration are presented in Table 2.  

Table 2: Main elements' ranges of concentration based on chemical analysis 

Element 
Co 

(ppm) 

Cr 

(ppm) 

Cu 

(ppm) 

Fe 

(%) 

Mn 

(ppm) 

P 

(ppm) 

Pb 

(ppm) 

Sr 

(ppm) 

Ti 

(%) 

Lowest 1 1 1 0.01 5 10 2 1 0.01 

Highest 92 124 4540 6.17 420 2033 13 182 0.46 

 

 
Figure 3: Test Procedure of samples collected from Copper Mountain 

2.2 XRF Data Screening 

The XRF sensor generates peaks for detectable elements. In some cases, peaks for more than one element 
may overlap. Therefore, the identity of elements from the XRF spectrum needs to be confirmed. For the 
present case study, the XRF responses were compared to periodic charts to identify the elements associated 
with each peak. The results were then compared to multi-element ICP to confirm the presence and significant 
concentrations of the identified elements. The following elements were found to be detectable by the XRF 
scan: iron (Fe), copper (Cu), zinc (Zn), arsenic (As), barium (Ba), cobalt (Co), lead (Pb), chromium (Cr), 
manganese (Mn), tantalum (Ta), titanium (Ti), and zirconium (Zr).  

300 rocks 
(+19mm-53mm) 

XRF surface test 

Pulverization 

XRF (Pulverized) 
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2.3 Data Processing and Modelling 

In particle sorting systems, sensor data is used to predict the quality/grade of each particle. The classification 
is advised by a calibrated model (algorithm) that, based on a specific threshold, triggers and actuators divert 
rocks as either product or waste [33]. In the case of copper, the XRF spectrum can be used to identify proxy 
elements for copper and for training the classification model. The following steps summarize the procedures 
used for XRF spectral data processing and modelling. 
1. The XRF data were screened using the ICP data to identify detectable elements. The screened data is a 

300×13 matrix, containing 300 rock samples and 13 elements for each rock, which is considered typical 
of the small size of the dataset. 

2. The input variables (XRF measurements of the 13 elements) were normalized to scale from -1 to 1 by 
applying a z-score calculation.  

3. The training dataset was then subjected to stepwise regression combined with PCA to reduce the size 
of the input variables and extract the latent features to generate a new set of input variables.  

4. The LR and SVM models were then trained with the data collected, and 10-fold cross-validation was 
performed by using RStudio Workbench which is an integrated development environment for R and 
Python, with a console and tools for plotting, history, debugging and workspace management. When 
finished, the cross-validation error can be computed based on the averaged estimate of out-of-sample 
accuracy from the 10 iterations. Based on cross-validation scores, the best model can be identified. 

5. The LR and SVM models were then tested with the validation dataset, and the predictive performance 
of each model was evaluated using a confusion matrix, ROC, and AUC.  

2.3.1 Multicollinearity Detection 

In regression analysis, multicollinearity refers to the case where several independent variables are correlated. 
It is essential to implement a multicollinearity test before modelling. The VIF is an index that determines the 
variance of a regression coefficient is inflated resulting from the multicollinearity. In general, input variables 
with a VIF greater than 5 are considered subject to multicollinearity and should be removed [34].  

2.3.2 Stepwise Regression Integrated with Principal Component Analysis 

The principal component analysis is a statistical dimensionality reduction method that transforms a large 
dataset of interrelated variables into a smaller dataset of uncorrelated variables, namely the principal 
components (PCs). The PCs can be expressed as linear combinations of the original variables and retains the 
maximum information from the original data [35]. The selection of the number of PCs is an important step. 
In the present study, a PCA approach integrated with stepwise regression was selected for data pre-handling. 
Stepwise regression (or sequential replacement) is a combination of forward and backward selections starting 
with no predictors, then sequentially adding the most contributive predictors.  

2.3.3 Logistic Regression Modelling  
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The LR is a particular case of a generalized linear regression model and is expressed as Equation (1), where 
P represents the probability of ore detection occurrence and x1, x2, …refer to the influential elemental 
variables; β0, β1, … βm are the parameters or coefficients which could be established by the maximum 
likelihood estimation method. m is the number of selected variables; Logit(P) means a logit transformation 
of P (x) by the natural log of the odds (being defined as the ratio of occurrence probability to non-occurrence 
probability) [36]. In the present context of ore or waste prediction, x represents the XRF sensor measurements 
of detected elements and for each rock, an ‘ore’ or ‘waste’ label is assigned based on the predicted occurrence 
(P). 

Logit(P)	=	Ln( #
$%#

)	=		𝛽' + 𝛽$𝑥$ + 𝛽*𝑥* +⋯+ 𝛽,𝑥,       (1) 

2.3.4 Support Vector Machine Modelling  

The basic SVM is a linear classifier that takes a set of input data and makes a prediction. As it is a binary 
classifier, there are two possible classes of output. These can be regarded as two clusters of samples in feature 
space, where the SVM searches for a hyperplane that stays as far as possible from marginal samples of each 
category. The basic idea is to map a low-dimensional input space (x) onto a higher-dimensional feature 
domain (X) via a nonlinear mapping function. With the assistance of SVM, the classification problem can be 
reformulated as a linear problem, thereby enabling the ordinary SVM to perform linear classification in the 
new feature space.  

A critical step in SVM classification is the selection of an appropriate kernel for a particular application. 
Different kernel functions generate different SVMs and may result in different performances, and different 
applications need different kernels to achieve reliable results. Moreover, it is crucial to select the appropriate 
kernel before modelling because the incorrect transformation will lead to a poor result. Hence, the method 
for choosing a suitable kernel function is very important. At present, the most common selection method is 
to depend on prior knowledge. However, the best choice of an appropriate kernel for a given problem remains 
an open research issue [37]. Currently, the following three kernel functions are typically used in the SVM 
model: the linear kernel, the polynomial kernel, and the radial basis function (RBF). 

Three kernel functions, namely linear, polynomial and RBF, are typically used in an SVM model. In this 
paper, RBF was used due to its localized and finite responses along the entire x-axis. The RBF expression is 
shown as equation (2), where||𝑥. − 𝑥0||* is recognized as the squared Euclidean distance between the two 

feature vectors γ (gamma) defines how far the influence of each training sample reaches. The higher the 
gamma value, the more precisely the model tries to fit the training data set.  

k2𝑥.,𝑥04	= exp (−γ||𝑥. − 𝑥0||*)        (2) 

 Cost (C), also called a regularization parameter, is the other significant parameter that is to determine an 
RBF-kernel function. It is the penalty parameter of the error term. If C is higher, the optimization will choose 
a hyperplane with a smaller margin, and the rate of misclassification will be lower. Commonly, the selection 

range of C and γ are from 0.001 to 100. In this paper, parameters C and γ are selected using a grid search 
algorithm via the ‘tune’ function in the ‘e1071’ package in R studios software. 
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3. Results and Discussion 

3.1 Data Pre-processing and Modelling 

 

Figure 4: Standard deviations of grade measurements for each rock 
The standard deviations of grade measurements for each rock were presented in Figure 4. This 

demonstrates that the average readings cannot be used to estimate the grade due to occasionally significant 
deviations. The main reason for this is attributed to the ‘heterogeneity error’ associated with the XRF surface 
testing process [38]. To explain, heterogeneous rocks are usually of sedimentary origin and consist of 
relatively stronger and weaker rocks alternately with varying thicknesses. Complex geological formations 
such as turbidites, flysch and molasses are typical examples of such rocks [39]. Thus, the content of minerals 
composition which is distributed on the surfaces of each rock may be dramatically different.  

Figure 5 shows the Cu grade correlation between XRF readings on both surfaces and pulverized samples 
to ICP readings. The pulverized XRF readings show a perfect correlation with the ICP Cu grades with 
R2=0.99, however, there is an apparent discrepancy between Cu grades determined by XRF on particle 
surfaces versus that on pulverized samples with R2=0.43. An appropriate model, by correlating the XRF 
surface measurement to ideal classification, is therefore necessary for guaranteeing an accurate classification 
result. 
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Figure 5: Comparison of Cu grades by XRF to ICP grades   

3.1.1 Multicollinearity Detection 

In this research, the VIF test was applied to all independent variables via the RStudio software. The VIF test 
scores of the samples are presented in Table 3. For the degree of correlation, L represents the low and H 
represents the high correlation.  Here, the VIF scores for the elements Co and Fe are seen to exceed 5; In 
general, to eliminate the multicollinearity, there are two types of approaches generally applied. To create a 
set of new features or removed the features with higher VIF. It does not recommend removing the features 
because this inevitably causes information loss, which in turn may affect the prediction accuracy of the model. 
Hence, an approach for training the classification models without multicollinearity needs to be developed 
using feature extraction methods, for example, PCA.  

Table 3: VIF indices of various elements in the Copper Mountain samples 

 

3.1.2 Stepwise Regression Integrated with Principal Component Analysis 

PCA is a linear method and allows sufficiently fast iteration to meet the needs of particle sorting. Four PCs, 
shown as Equations (3) ~(6), were selected by using the approaches that are based on the PCs selection 

Element Cu Co Pb Zn Fe As Ba Cr Mn Ta Ti Zr 

VIF 1.5 5.0 1.5 1.9 5.2 1.4 1.3 1.4 2.5 1.1 1.7 1.7 

Correlation (L/H) L H L L H L L L L L L L 
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criteria mentioned in the section of materials and methodologies. The PC1~PC4 will be treated as new input 
variables for ore classification modelling. 
PC1 = 0.46368Co + 0.32533Zn + 0.45884Fe + 0.34593Mn + 0.32135Ti       (3) 
PC2 = 0.50382Cu + 0.32882Zn + 0.35184As – 0.52971Cr – 0.37473Ti        (4) 
PC3 = 0.58884Pb – 0.39522Mn + 0.45899Zr                                  (5) 
PC4 = 0.43668Zn + 0.42948Ta + 0.49227Zr                                   (6) 

 However, there is no guarantee that PCA integrated with stepwise regression will perform well for all 
types of data structures. Other approaches include KPCA, T-SNE, or AE, which are non-linear dimensional 
reduction approaches that should be considered in future work. 

3.1.3 Logistic Regression Modelling for Ore Classification 

The LR results trained by the input PCs are presented in Table 4. The coefficients of each independent 
variable are indicated, and variables with a P-value of < 0.05 are considered statistically significant. Here, 
PC4 has the lowest p-value and is significant for classifying a rock as ore. Finally, the LR results obtained 
with the stepwise regression on the input PCs are presented in Table 5. 

Table 4: Logistic regression summary with PCA inputs  

Input 

Variables 

Estimated 

Intercept 

P-value 

(Significance) 

PC1 −3.79 × 10%< 0.15 
PC2 1.08 × 10%> 0.09 

PC3 −5.99 × 10%@ 0.33 

PC4 −8.18 × 10%> 3.49 × 10%B 

 
Table 5: The results of combined PCA and logistic regression optimized by stepwise selection  

Input 

Variables  

Estimated 

Intercept 

P-value 

(Significance) 

PC2 1.44 × 10%> 0.01  

PC4 −6.65 × 10%> 9.17 × 10%D 

3.1.4 Support Vector Machine Modelling for Ore Classification 

Figure 6 shows the tuning results of cost and gamma parameters for the Copper Mountain samples. C =2 and 
γ = 1 were finally selected to ensure the balanced predicted performance and robustness of the SVM model  

The results of the RBF approach were compared to that of the linear and polynomial functions, as shown 
in Figure 7 and Table 6. Here, it can be seen that the RBF kernel function gives the best classification, with 
an accuracy of 83%. However, the difference in classification performance between the polynomial and RBF 
kernels is small. The results in Figure 7 indicate that the data structure is linearly impartible, and this explains 
why the linear kernel does not perform well here, even though the linear kernel is a particular form of RBF. 



 12 

Meanwhile, the number of parameters in the polynomial kernel is much larger than in the RBF, thus resulting 
in a more complicated model.  

 

 
Figure 6: Tuning result of the SVM parameters for the Copper Mountain samples 
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Figure 7: SVM classifier with various kernels on the PCA input dataset 

Table 6: The SVM classification performance with various kernel functions 

Kernel Function  Number of Support Vectors Accuracy Rate 

Linear        85,85 0.73 

Polynomial        66,65 0.82 

RBF        67,66 0.83 

3.2 Performance Evaluation of Ore Classification Models 

The ROC and AUC are used to assess the model classification performance at various threshold settings. The 
AUC-ROC performance of all the models are shown in Figure 8. Results showed that the PCA-LR approach 
obtains the highest AUC of 0.847, indicating logistic regression performs better in ore/waste classification 
for the Copper Mountain ore sample. 
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Figure 8: The ROC-AUC performance of models. (a) PCA-LR with AUC= 0.847 (b) PCA-SVM-
polynomial kernel with AUC= 0.553 (c) PCA-SVM-linear kernel with AUC= 0.686 (d) PCA-SVM-RBF 

kernel with AUC=0.712 
The ROC curves for these four models are displayed in Figure 9 where the blue curve represents the LR 

model; the black represents the linear SVM model; the red represents the RBF SVM model and the green 
represents the polynomial SVM model. In the context of sensor-based ore sorting, the most significant feature 
of a classification model is its sensitivity or TPR. This is because it might be accepted that a proportion of 
the waste samples is misclassified as ore class, but it must be ensured that as many valid samples as possible 
are classified into the ore group. In other words, a model with high sensitivity (or high TPR) is selected 
preferentially. For intuitive presentation, Table 7 below summarized the index parameters of ROC of each 
model. The LR and linear SVM showed the same accuracy as 0.8, however, the LR model with a TPR of 
0.95 should be preferentially selected for ore sorting in this research. 

a b 

c d 
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Figure 9: Comparison of the ROC curves between different models on the test dataset 

Table 7: The parameters of ROC of each model  

Model Sensitivity Specificity Accuracy 

LR 0.95 0.47 0.80 

Linear SVM 0.79 0.82 0.80 

RBF SVM 0.78 0.80 0.78 

Poly SVM 0.71 0.95 0.72 

 
To discuss, generally, SVM with linear kernel function has a similar algorithm structure to the LR and 

therefore their classification performance could also be similar. However, when the dataset is small, SVM 
would usually perform worse compared to LR, especially when the input variables are relatively less than 
the training dataset size. This is because the data points near the decision boundary may not be true 
representations of the actual decision boundary, so that will lead to a false maximum margin classifier 
boundary. For this study, only two input variables were identified after applying feature extraction by PCA 
and stepwise regression, while the number of training samples is 300 and is much larger compared to the 
number of the input features. Therefore, logistic regression was found to have a better classification 
performance compared to the support vector machine approach. 

LR 
Linear SVM 
RBF SVM 
Polynomial SVM 
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In addition, fewer parameters are used in LR modelling than in the SVM model which would likely allow 
faster iteration. From a mathematical perspective, LR is strictly convex with a smoother loss function, 
whereas SVMs are only convex, therefore LR is faster to process the sensor data and is considered more 
applicable for particle sorting. Besides, as the SVM is based on kernel functions, most implementations 

explicitly store this as an N×N matrix of distances between the training points to avoid computing entries 
over and over again. Therefore, in general, the LR performs faster with respect to computational time than 
the SVM with RBF and Polynomial kernel functions. However, the difference in computational time between 
LR and SVM is not very evident due to the bench-scale dataset with only three hundred samples. 

4. Conclusions 

The present study evaluated logistic regression and support vector machine approaches for XRF SBS. Copper 
ore samples from Copper Mountain in British Columbia, Canada, were scanned using XRF to obtain the 
spectral data for model development. PCA integrated with stepwise regression was selected for the data pre-
processing and feature selection. By applying feature selection, information redundancy and noise in high 
dimension features are avoided and therefore better classification accuracy could be provided.  

The classification performances of the LR and SVM algorithms are compared. The results indicated that 
the LR outperforms the SVM with different kernel functions, especially on small-sized data. In addition, 
polynomial, linear, and RBF kernels were compared to identify the most appropriate kernel tricks for the 
SVM classifier. The RBF kernel was shown to perform better than the other kernel tricks. Commonly, 
imagine having a 𝑚 × 𝑛 dataset, in which m represents the number of input features and n represents the 
number of samples, if m>n, then a linear kernel would be considered to use because, after mapping to a 
higher dimension with RBF kernel tricks, the data would be more complicated to separate and susceptible to 
overfitting. Instead, if m<n, RBF would be the priority choice. 

To conclude, by applying machine learning techniques such as LR, SVM and PCA, there is an opportunity 
to improve the XRF based ore sorting performance. However, more ore samples with different mineralogy 
and size fractions should be tested to validate the robustness and generality of the sorting model. 

Nomenclature 

Nomenclature Abbreviation 

Sensor-Based Sorting SBS 

X-ray Fluorescence XRF 

Semi-Autogenous Grinding SAG 

Principal Component Analysis PCA 

Logistic Regression LR 

Support Vector Machine SVM 
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Radial Basis Function RBF 

T-distributed Stochastic Neighbor Embedding T-SNE 

Kernel Principal Component Analysis 

Autoencoder Networks 

KPCA 

AE 

Receiver Operating Characteristic Curve ROC 

True Positive Rate TPR 

False Positive Rate FPR 

Area Under the ROC Curve  AUC 

Variance Inflation Factors VIF 

Constitutional Heterogeneity CH 

Decision Tree DT 

Random Forest RF 

Artificial Neural Networks ANN 

K-nearest Neighbor KNN 

Multivariable Linear Regression MLR 
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