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Abstract

Process monitoring is essential for ensuring the safety of geological drilling processes, but most existing monitoring
systems suffer from false alarms. This study is motivated by the fact that many false alarms are generated from dynamic
changes in signals under normal conditions. A new process monitoring method is proposed by analyzing the relationship
between the input and output signals of a drilling normal behaviour model, enabling a fault detection decision by checking
their qualitative trends at the change point. The main novelties of this study are: i) a data-driven normal behaviour
model describing the fault-free operating condition is proposed to output expected healthy virtual samples; ii) a new
alarm generation strategy is designed for reducing false alarms in drilling processes based on change point detection and
qualitative trend analysis. Industrial case studies demonstrate the effectiveness and practicability of the method.
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1. Introduction

Geological drilling is a standard technology for explor-
ing deeply buried resources. As drilling depth increases,
the complex geological environment increases the forma-
tion uncertainty, making the drilling process more prone
to unexpected faults. However, the harsh downhole en-
vironments such as high temperature, high pressure, and
frequently changing operating states pose challenges to the
timely and accurate detection of fault-related symptom-
s. Failure to detect these symptoms timely may result in
serious accidents, such as blowouts and collapse. Thus,
an effective drilling process monitoring system is urgently
needed to prevent downhole accidents and reduce mainte-
nance costs.

Demand for reducing non-production times has driven
considerable attention toward developing advanced drilling
process monitoring methods. Mathematical models de-
scribing drilling mechanisms are extensively studied in
downhole fault diagnosis. A kick and loss incident de-
tection method was proposed based on a single-phase hy-
draulic model of drilling fluid system using adaptive ob-
servers (Willersrud et al., 2015). By considering the gas
characteristics in drilling fluid, a new integrated gas-liquid
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two-phase flow model was established for early kick detec-
tion (Yang et al., 2019). Towards detection of multiple
downhole faults, an unscented Kalman filter-based ensem-
ble classifier was utilized to classify faults based on the
drilling fluid flow model (Jiang et al., 2020). In addition
to drilling fluid-related faults, differential equation models
describing the stick-slip and bit bounce faults were estab-
lished in (Kamel and Yigit, 2014), and the corresponding
stick-slip vibration suppression method was proposed us-
ing an event-triggered scheme (Lu et al., 2021). The main
idea of the above mathematical model-based methods is
to monitor the model parameter deviates from expected
value or estimate the state of the system using state ob-
servers, thereby detecting downhole faults. An essential
prerequisite for applying the method is an available accu-
rate mechanism model. However, building such a model is
costly since additional downhole instruments are required.

With the help of statistical and machine learning tech-
nologies, data-driven methods for ensuring process safety
have been developed in recent years (Liu et al., 2022; Ji
et al., 2019; Feng et al., 2019). A notable advantage of
the machine learning technique is that only process data
is required to create a model that can describe underly-
ing relationships between various variables (Zhang et al.,
2022). This provides an effective way for fault diagnosis in
the era of big data. The data-driven methods are mainly
based on continuous-valued process data, time series, and
data distributions. An essential kick detection method is
proposed to observe the changes in measurement signal-
s, such as mass flow rate, pressure, and density (Nayeem
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et al., 2016). Further, binary and multi-classifiers with
drilling data as input were utilized to transform the fault
diagnosis into a classification problem. For example, a lost
circulation prediction model was developed based on a de-
cision tree and neural networks using a large data set from
61 wells (Sabah et al., 2019). Time series analysis is an
effective way to describe abnormal signal changes by ex-
tracting the change trend or direction caused by a fault.
An improved piecewise approximation method was used
for gas kick diagnosis via pattern recognition (Sun et al.,
2018). An early warning model for screenout scenarios was
developed by integrating the autoregressive moving aver-
age and locally weighted linear regression (Hu et al., 2020).
There were a few diagnosis methods that analyze drilling
time series using similarity measures, such as morpholog-
ical distance (Zhao et al., 2019), local similarity (Zhang
et al., 2021), and dynamic time warping (Li et al., 2021b).
Then, the condition is determined by comparing the dis-
tance between the sample and fault templates. Data distri-
bution organizes raw data into graphs, showing advantages
in incipient anomaly detection (Chen et al., 2019; Zhang
and Zhao, 2022). The dissimilarity of data distribution
was exploited to detect bit bounce faults based on gen-
eralized Gaussian distribution (Li et al., 2021c). By com-
bining divergence matrix and time series information, nor-
mal operation zones were established to detect drilling ab-
normalities (Li et al., 2021a). Although promising results
were achieved using the distribution feature, these meth-
ods need to model multiple operating modes respectively
and are prone to false alarms during the mode-shifting
process.

The above studies provide effective solutions for drilling
process monitoring and fault diagnosis. However, an easily
overlooked practical problem is that formation uncertain-
ties and operating state shifts often cause dynamic changes
in signals and lead to false alarms. Frequent false alarms
always impact the driller’s decision-making and even re-
duce their trust in the alarm system. It is desirable to re-
duce false alarms by investigating the normal operational
behaviour of the drilling process. For industrial processes
with limited training data, virtual sample generation al-
gorithms were proposed to generate samples similar to the
training set (Zhu et al., 2021). The strategy to enhance
drilling datasets using generative adversarial networks was
demonstrated in (Wang et al., 2022). Inspired by this idea,
it is possible to develop a reconstruction model that de-
scribes the expected behaviour of the process based on
healthy data. Then, potential faults are detected by mon-
itoring fault-sensitive signals for deviations from expected
normal values.

This study focuses on drilling process monitoring and
false alarm reduction. The critical point is to develop a
drilling normal behaviour model whose input is real-time
data, and the output is expected healthy data. Then, the
fault detection decision is made based on the dissimilarity
between the expected output and the input. Considering
that the prediction model’s performance is prone to down-

hole environments, the dissimilarity is calculated quantita-
tively rather than qualitatively. Specifically, the decision
is made by checking the change direction of the expect-
ed output and the real-time signal. The main novelties of
the proposed method are: 1) A drilling normal behaviour
model is proposed to generate expected healthy virtual
samples; 2) A new alarm generation strategy is designed
for reducing false alarms in drilling processes using change
point detection and qualitative trend analysis. The pro-
posed method is only based on healthy data and does not
require a faulty dataset.

This paper is organized as follows: Section 2 introduces
the process monitoring problem to be solved. Section 3
shows the technical details of the proposed method. Sec-
tion 4 presents case studies to illustrate the method’s ef-
fectiveness. Section 5 gives some concluding remarks.

2. Problem formulation

The primary elements of a vertical spindle drilling sys-
tem include the drilling rig, drill string, drill bit, hook,
drilling fluid, mud pit, and mud pump (Li et al., 2021c;
Zhou et al., 2022). The drill string is a hollow steel pipe
extending from the surface to the bottom of the well. The
drilling rig outputs a specific Torque (TRQ) to drive the
drill string to rotate, where the rotational speed is ex-
pressed as Rotate Per Minutes (RPM). Meanwhile, the
Weight On Bit (WOB), generated by part of the gravi-
ty of the drill string itself, is applied to the drill bit to
break the rock. Another essential part of the drilling sys-
tem is the drilling fluid, which is pumped through the drill
string to the downhole drill bit and returned to the surface
with broken cuttings. The drilling fluid improves drilling
efficiency and wellbore stability. The Stand Pipe Pres-
sure (SPP) measures the pressure consumed throughout
the drilling fluid circulation.

Auxiliary monitoring systems equipped with current
drilling systems ensure drilling safety by comparing pro-
cess signals with their corresponding thresholds. It is dif-
ficult for such systems to cope with all the tricky scenarios
in drilling processes. For example, Fig. 1 shows time series
plots of RPM and TRQ under a faulty condition, where
the three-sigma limits are used to monitor the process.
The blank area indicates the fault-free state, and the green
and red areas represent the periods corresponding to false
alarms and actual faults, respectively. The drilling system
faces the following two problems:

• The measured signal is subjective to stratigraphic un-
certainty, in-hole noise, and various healthy drilling states,
such as dynamic shifting between multiple operating s-
tates. These disturbances and dynamic processes are likely
to cause drastic changes in signals.

• The driller is often plagued by frequent false alarms,
which may cause unnecessary scrambling and prevent re-
al alarms from being detected, thus leading to downhole
incidents, such as lost circulation, kick, and stuck pipe.
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Figure 1: Time series plots of normalized RPM and TRQ signals
under a faulty condition, where the blank area indicates the fault-free
state, and the green and red ares represent the periods corresponding
to false alarms and faults, respectively.

This work proposes a novel method to reduce false
alarms in drilling processes to overcome the above practi-
cal problems. Given the drilling time series under normal
conditions, the first step is to build a drilling normal be-
haviour model M : x → y, which can output the corre-
sponding expected healthy sequence y with the real-time
input sequence x. The second step is to compare the dy-
namic trends of x and y to determine whether the drilling
system deviates from the healthy state. For every single
variable, the first-order trend information of x and y are
extracted as zx and zy using the linear regression model
with sliding windows. If either signal changes significant-
ly, the qualitative trends dx and dy are extracted, and the
fault detection decision is made by checking that dx and
dy are consistent.

3. The proposed method

This section presents two main steps of the proposed
drilling process monitoring method: establishment of the
drilling normal behaviour model and change point detec-
tion via density-ratio estimation.

3.1. Establishment of the drilling normal behavior model

A well-trained drilling normal behaviour model can re-
construct the expected healthy data based on the current
input. In the training process, the model should learn the
characteristics of the process data under normal condition-
s. However, it is difficult to build such models using linear
prediction methods due to nonlinear disturbances such as
alternating between soft and hard formations, multiple op-
erating states, and downhole measurement noise. Since the
drilling operation is a continuous process, its health status

is reflected by the temporal dependency of the drilling time
series. Recently, studies found that the Long Short-Term
Memory (LSTM) and gated recurrent units are useful in
time series modeling tasks, and LSTMs perform better on
larger datasets (Ni et al., 2022). Thus, the LSTM is used
to describe complex nonlinear and sequence dependencies.
Autoencoder (AE) is utilized to establish the drilling nor-
mal behaviour model.

AE is an unsupervised learning technique that learns a
representation of a training dataset (LeCun, 1987). An
AE is mainly composed of an encoder and a decoder, both
of which are neural networks. The encoder η maps the
drilling data into a hidden layer H, and the decoder δ
reconstructs the input data based on the information in
the hidden layer.

In this study, the AE is utilized to establish the model
that can reconstruct the drilling data under normal condi-
tions. It is framed as a supervised learning problem tasked
with outputting an expected healthy data Y corresponds
to the input real-time collected data X , such that:

η : X → H
δ : H → Y

. (1)

A simple feedforward neural network is a commonly used
network architecture for η and δ. However, the feedfor-
ward neural network can hardly find the complex depen-
dencies among drilling time series. Considering that the
LSTM is designed to handle sequence dependence, it is in-
corporated into the structure of the AE (Chen et al., 2021;
de Pater and Mitici, 2023). Here, the LSTM is utilized to
build both η and δ models. The structure of the proposed
drilling normal behaviour model based on LSTM-AE is
displayed in Fig. 2. The input of the LSTM-encoder mod-
el is the time series of drilling signals, which are processed
by three gates: an input gate i, a forget gate f , and an
output gate o. The output is determined by both the input
and the unit state related to previous samples.

Before feeding the raw drilling time series data into
the LSTM-encoder model, all data were normalized and
ranged between 0 and 1 to analyze different signals on e-
qual footing. For each raw time series xo, the normalized
value at time k is

x(k) =
xo(k)− xomin
xomax − xomin

, (2)

where xomin and xomax represent the minimum and maxi-
mum values of xo, respectively.

Then the normalized time series x(k) and hidden state
s(k − 1) are fed into the forget gate f , while the corre-
sponding output is

f(k) = ψ(Wf [x(k), s(k − 1)] + bf ), (3)

where ψ denotes the sigmoid activation function, Wf rep-
resents the weights, and bf indicates the biases. Similarly,
W and b with subscripts in the following formulas repre-
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Figure 2: Structure of the drilling normal behaviour model based on LSTM-AE.

sent the weights and biases of different layers, respectively.
Then, the forget gate abandons partially historical infor-
mation to update the current hidden state s(k).

The input gate i controls the information passed from
x(k) and s(k − 1) to the unit c(k) as

i(k) = ψ (Wi[x(k), s(k − 1)] + bi) . (4)

In addition, the memory cell value ċ(k) is calculated as

ċ(k) = tanh (Wc[x(k), s(k − 1)] + bc) . (5)

Further, the unit c(k− 1) is updated based on f(k) and
i(k) by the following formula:

c(k) = f(k) ? c(k − 1) + i(k) ? ċ(k), (6)

where ? represents the Hadamard product.

After updating the unit state, the value of the output
gate o(k) is updated as

o(k) = ψ(Wo(x(k), s(k − 1)) + bo). (7)

Based on o(k) and c(k), the output of the LSTM-encoder
δ is calculated, that is, the hidden layer sequence s(k):

s(k) = o(k) ? tanh(c(k)). (8)

Similarly, the output of the LSTM-decoder is the reference
sequence y(k).

Based on healthy historical data, the normal behaviour
model is trained by minimizing the distance between X
and Y. The distance is also known as the reconstruction

error and is calculated as

L( X || Y ) = arg min
η,δ
‖Y − X‖2. (9)

Consequently, the trained η and δ can reconstruct the ex-
pected output y(k) corresponding to each point x(k) in
the input sequence, enabling fault detection by comparing
the reference output and real-time input.

3.2. Change point detection via density-ratio estimation

Decision-making of the drilling fault detection is realized
by comparing the dynamic characteristics of the real-time
signal and that of the reconstructed signal. According
to Section 2, the dissimilarity is calculated qualitatively
rather than quantitatively due to the stratigraphic uncer-
tainty. Specifically, if either signal changes significantly,
the downhole fault is detected by checking whether the
qualitative trends of y and x are in the same direction.

Since the dynamic characteristics of the signal can be
described by a linear model, the change detection is per-
formed by detecting the change point of the first derivative
signal rather than the original signal. Let {v(k)|v = x, y}
be an element of the drilling time series at k. The first
derivative z(k) of the input signal v(t) over the period
[k − w + 1, k] is estimated as

v̂(t) = z(k)t+ e(k), t ∈ [k − w + 1, k], (10)

where w denotes the sliding window length, the first
derivative z and the intercept parameter e are calculat-
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ed by minimizing the approximation errors, i.e.,

min
∑

t∈[k−w,k]

[v(t)− v̂(t)]
2
. (11)

Now the problems to be solved are to detect the change
points and extract the qualitative trend.

Some pioneering studies demonstrated that change de-
tection in the time series could be realized by comparing
the distribution of the samples collected online and that
of a reference set (Brodsky and Darkhovsky, 1993). One
critical step is to define the dissimilarity measure; the oth-
er is to obtain the distribution of the object data set. For
instance, the Pearson (PE) divergence is a standard mea-
sure of the difference from distributions P (A) to P (B).
However, drilling data distributions may not be accurately
described using pre-defined parameters. Hence, this study
exploits another divergence estimation approach based on
density ratio. The main idea is to detect the change

point by calculating the density-ratio function P (A)
P (B) di-

rectly, without going through estimating the distributions
P (A) and P (B) separately.

Assume that the probability distribution of the online
first derivative z is denoted as P (z), and the reference
distribution under the normal condition is Pr(z). The PE
divergence from P (z) to Pr(z) is defined as:

PE(P‖Pr) =
1

2

∫
Pr(z)

(
P (z)

Pr(z)
− 1

)2

dz, (12)

where the PE distance is non-negative and equals 0 only
when P (z) = Pr(z).

Although the analytic form of P (z) and Pr(z) are un-
known, eq. (12) can be accurately solved by density-
ratio estimation. Here, the Relative unconstrained Least-
Squares Importance Fitting (RuLSIF) algorithm is utilized
to estimate the density ratio analytically (Yamada et al.,
2013). The RuLSIF defines the α-relative PE divergence
as:

PEα(P‖Pr) = PE(P‖gα)

=
1

2

∫
Pr(z)

(
P (z)

gα(z)
− 1

)2

gα(z)dz,
(13)

where α ∈ (0, 1), and gα(z) = αP (z) + (1− α)Pr(z). The
α-relative density ratio is defined as:

rα(z) =
P (z)

gα(z)
. (14)

It has been proved that rα(z) is bounded by α−1 even if
the density ratio is unbounded (Liu et al., 2013). The α-
relative density ratio is modelled using the sum of serval
kernel models as:

r̂α(z) = h(z) =

n∑
i=1

φiK(z, zi), (15)

where n is the number of samples in a sliding window,
φ = (φ1, ..., φn) are determined based on drilling samples,
and K denotes the Gaussian kernel function as:

K(z, zi) = exp

(
−‖z − zi‖

2

2σ2

)
, (16)

where σ represents the width of the kernel, which is de-
termined using an empirical formula as (Gonzalez et al.,
2015)

σ =

(
4s5z
3n

) 1
5

, (17)

where sz denotes the variance of z in the window.

With the kernel model h(z) in eq. (15), the α-relative PE
divergence between P (z) and Pr(z) is estimated only using
the online segment Z = [z(1), z(2), ..., z(m)] and reference
segment Zr = [zr(1), zr(2), ..., zr(ñ)] as (Yamada et al.,
2013)

P̂Eα(P‖Pr) =
1

2m

m∑
j=1

(
2ĥ(zj)− αĥ(zj)

2
)

−
ñ∑
i=1

(1− α)

2ñ
ĥ(zri )2 − 1

2
.

(18)

where m and ñ represent the number of samples in the
online and reference segments, respectively. Compared to
the asymmetric metric in eq. (18), a symmetric form shows
better performance in change point detection (Liu et al.,
2013). Here, the symmetrized form of the PE divergence

Sα = PEα(P‖Pr) + PEα(Pr‖P ) (19)

is utilized to describe the difference between P (z) and
Pr(z) to detect the change point.

Taking Sα as the change score, the change point de-
tection problem is transformed into measuring whether
the online Sα significantly deviates from a normal range.
Thus, the threshold Sth is designed based on plenty of Sα
samples under normal conditions.

Assuming Sα samples are Gaussian distributed, the Sth
is determined based on the cumulative distribution func-
tion under a confidence level β, i.e.,

P (u ≤ Sth) =

∫ Sth

0

Γ(u)du = β. (20)

where Γ(u) denotes the distribution of historical Sα sam-
ples under the normal condition.

In online monitoring, the change detection is formulated
as the following hypothesis testing problem, i.e.,{

Sα ≤ Sth : z(k) is not a change point,
Sα > Sth : z(k) is a change point.

(21)

However, even if a change point is detected, it may not
be caused by a downhole fault, so the trend of the change
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Figure 3: A framework of the drilling process monitoring method.

point needs to be extracted for further analysis.
Since the qualitative trend is more robust to downhole

disturbance than the quantitative trend, the qualitative
trend at the change point is extracted. If a change point
is detected at k, the qualitative trend is defined as (Hu
et al., 2022a)

dv(k) =

{
1 : µk < µn,
−1 : µk > µn,

(22)

where µk and µn denote the mean values of samples in the
current window and normal historical data, respectively,
and dv(k) = 0 indicates no change point is detected. If
the trend of the original signal dx(k) is consistent with
that of the reconstructed signal dy(k), it implies that the
system is in a normal condition; otherwise, there is a fault.

3.3. Process monitoring and false alarm reduction

The framework of the proposed method is shown in
Fig. 3. The healthy historical data is normalized in the
training phase to establish the drilling normal behaviour
model based on the LSTM-AE structure in eq. (1). The
alarm threshold Sth is determined using eq. (20) based on
healthy data. The online fault detection mainly includes
the following detailed steps:
• Step 1: The normalized real-time input sequence x(t)

is fed into the drilling normal behaviour model whose out-
put is the reconstructed sequence y(t);
• Step 2: Both x(t) and y(t) sequences are segmented

by the sliding window, and then the corresponding first
derivatives zx(t) and zy(t) are estimated respectively using
the linear regression model in eq. (10);
• Step 3: The α-density ratio rα(z) is calculated to de-

tect changes in z(t) based on PE divergence, and then
rα(z) is estimated using the kernel model in eq. (16);

• Step 4: The PE divergence Sα in eq. (19) is calcu-
lated as the change score; if the change score exceeds a
pre-defined threshold Sth, treat it as a change point and
further extract its qualitative trend d(k) using eq. (22);
• Step 5: For each variable, check whether the qualita-

tive trends dx(k) and dy(k) are consistent; if so, the system
is normal; otherwise, it is a fault.

To evaluate the performance of the proposed process
monitoring method, commonly used metrics, including
False Alarm Rate (FAR), Missed Alarm Rate (MAR), and
accuracy, are calculated as follows:

FA =
nfn

ntp + nfn
× 100%, (23)

MA =
nfp

ntn + nfp
× 100%, (24)

Acc =
ntp + ntn

nfn + ntn + nfp + ntp
× 100%, (25)

where nfn is the number of samples misclassified as fault-
s under healthy conditions, ntp denotes the number of
samples correctly classified under healthy conditions, nfp
represents the number of faulty samples misclassified into
normal, and ntn stands for the number of faulty samples
correctly classified under abnormal conditions.

4. Case studies

This section provides three industrial case studies
with data from a geological drilling project in Shandong
province, China, to illustrate the effectiveness of the pro-
posed method. In this project, a drill operation cycle lasts
about 1,000-3,000 seconds. The drilling normal behaviour
model is established using 30,000 historical samples of RP-
M, TRQ, WOB, and SPP in the following three cases. The
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training set consists of multiple non-adjacent segments col-
lected from extensive historical data under normal drilling
conditions. It is found through experiments that a short-
er window is more sensitive to abnormal signal changes,
while a longer window has a better noise suppression per-
formance but a longer detection delay. The detection de-
lay and sensitivity to abnormalities should be balanced in
the change point detection. In view of the engineering ex-
pertise of operators, both the online segment m and the
reference segment ñ are composed of 60 samples. Analo-
gously, the sliding window length for calculating the first
derivative is 30 samples.

4.1. Case 1

In Case 1, the time series plots of the four original
drilling process signals are shown in Fig. 4. The drilling
system was in a steady state before t = 500s. Then, the
drilling operator changed the set-point, and the system
shifted to another operating state, causing step changes
in the WOB, RPM, and TRQ signals. The system re-
verted to the previous steady state at t = 750s. Subse-
quently, the occurrence of downhole abnormalities caused
significant fluctuations in RPM, TRQ, and SPP signals in
t ∈ [900, 950]. As the drill bit encountered hard formation-
s, RPM and TRQ changed drastically from t = 1080s and
lasted about 420 seconds. A stuck pipe fault caused the
fluctuation of RPM and TRQ signals during this period.

With the input of the signals in Fig. 4, the proposed
normal behaviour model is applied to calculate the cor-
responding reconstructed drilling signals shown in Fig. 5.
Similar to the original signals, significant changes were de-
tected in reconstructed signals in t ∈ [550, 750], indicat-
ing that these changes were normal patterns learned from
healthy historical data. Subsequently, all reconstructed
signals returned to the steady-state at t = 1080s. This
implies that drastic changes should not appear in original
signals under normal conditions from t = 1080s.

Take the RPM signal as an example to illustrate the
effect of the proposed method. Figs. 6 and 7 show the
change detection results based on the original and the re-
constructed RPM signals, respectively. To capture the dy-
namic features, the change detection is conducted based
on the first derivative of the original signal. Figs. 6(a)-(c)
show time series plots of the original RPM signal x, the
PE divergence Sa of the first derivative zx, and the cor-
responding qualitative trend dx, respectively. The dashed
red line represents the alarm threshold in Fig. 6(b). The
PE divergence signal Sa was always above the threshold
during the time interval t ∈ [550, 850], which corresponded
to the operating state switching phase. Next, the signal
exceeded the threshold again at around t = 1100s; the
corresponding qualitative trend dx shown downward di-
rections during t ∈ [550, 1000] and t ∈ [1100, 1500].

According to the reconstructed signals y in Fig. 7, the
PE divergence signal Sa was only above the threshold dur-
ing t ∈ [550, 850]. Meanwhile, both dx and dy shown
downward directions during t ∈ [550, 850]. The trend
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Figure 4: Case 1: Time series plots of original drilling signals.
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Figure 5: Case 1: Time series plots of reconstructed drilling signals.

of x was equal to that of y, indicating that the drilling
system was in a normal condition, so the false alarm in
t ∈ [550, 850] was suppressed. However, the dx exhibited
downward directions in t ∈ [1100, 1500], while the recon-
structed dy was quite stable. Since the change direction
of dy was inconsistent with that of dx, the fault was de-
tected in t ∈ [1100, 1500]. By checking dx in Fig. 6 and dy
in Fig. 7, the alarm generation result is shown in Fig. 8,
where 1 and 0 represent alarm and normal, respectively,
and the red area indicates the faulty state.
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Figure 6: Case 1: Process monitoring results based on the original
signal. (a): Time series plot of the original RPM signal x; (b): time
series plot of the PE divergence Sa of the first derivative zx; (c):
time series plot of the corresponding qualitative trend dx.
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Figure 7: Case 1: Process monitoring results based on the recon-
structed RPM signal.

The comparison experiment was conducted based on the
1500 samples. By comparing the actual label and alarm
generation result, the FAR (FA), MAR (MA), and Accura-
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Figure 8: Process monitoring results in Case 1.

cy (Acc) were utilized to evaluate the performance of these
methods. The comparison results of different fault detec-
tion methods are shown in Table 1. The alarm threshold
of the PCA-based method was determined based on nor-
mal historical data under a confidence level of 95%. The
autoencoder model was trained based on normal histori-
cal data. The alarm threshold was determined based on
the difference between the reconstructed and original sig-
nals under normal conditions. Compared with the pro-
posed method, the fault detection strategy based on PE
distance directly analyzes the original drilling process sig-
nal without extracting the qualitative trend. Since the
drilling signals change significantly under both normal and
faulty conditions, the traditional indicators failed to dis-
tinguish false alarms. The FAR of the proposed method
was 8.48%, which was significantly lower than those of
the T 2 of Principle Component Analysis (PCA), Autoen-
coder, and PE divergence. A convincing explanation for
the method’s superior performance is that normal change
patterns are identified successfully using the reconstructed
signals, thereby avoiding many false alarms.

Table 1: Comparison results of different process monitoring methods
for Case 1 (Ding, 2014; Hu et al., 2022b).

Method FA (%) MA (%) Acc (%)
T 2 of PCA 32.41 8.81 75.80

Autoencoder 34.05 31.99 66.67
PE divergence 30.44 9.98 76.67

The proposed method 8.48 8.45 91.53

4.2. Case 2

In Case 2, time series plots of original drilling signals
are shown in Fig. 9. The drilling system was operating
normally until t = 475s. Then, the harsh geological en-
vironment led to a stuck pipe fault, causing fluctuations
in TRQ and RPM signals in t ∈ [475, 920]. Finally, the
drilling operator found the fault and adjusted the operat-
ing parameter at t = 920s, and the system returned to a
normal steady state.

Fig. 10 shows the time series plots of the reconstruct-
ed signals calculated using the normal drilling behaviour
model, whose inputs are original drilling signals in Fig. 9.

8



0 200 400 600 800 1000
Time (s)

0
0.5

1

W
O

B

0 200 400 600 800 1000
Time (s)

0
0.5

1

RP
M

0 200 400 600 800 1000
Time (s)

0
0.5

1

TR
Q

0 200 400 600 800 1000
Time (s)

0
0.5

1

SP
P

Figure 9: Case 2: Time series plots of original drilling signals.
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Figure 10: Case 2: Time series plots of reconstructed drilling signals.

It can be found that the original RPM and TRQ signals
changed drastically in t ∈ [480, 900], while the correspond-
ing reconstructed signals showed no significant changes.
Due to the adjustment of operating parameters, both
the original and reconstructed signals changed sharply at
t = 920s. Hence, the original and reconstructed signal-
s exhibited similar trends, except that the original RPM
and TRQ signals dropped significantly in t ∈ [480, 900].

This case takes the TRQ signal as an example to illus-
trate the effectiveness of the proposed method. As shown
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Figure 11: Case 2: Process monitoring results based on the normal-
ized original TRQ signal.
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Figure 12: Case 2: Process monitoring results based on the recon-
structed TRQ signal.

in Fig. 11, the original TRQ signal x climbed and fluc-
tuated significantly from t = 480s, and then dropped to
zero at t = 920s. This led to the PE divergence Sa of the
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first derivative zx exceeding the alarm threshold at around
t = 500s. Consequently, the corresponding qualitative
trend dx shown an upward direction during t ∈ [500, 920]
and a downward direction during t ∈ [920, 1000]. Fig. 12
shows the time series plots of the reconstructed TRQ sig-
nal y, the PE divergence Sa of the first derivative zy, and
the corresponding qualitative trend dy. The reconstruct-
ed signal was stable before t = 920s and then dropped
sharply. The PE divergence Sa was below the threshold
before t = 900s, and then it climbed above the thresh-
old until t = 1000s. As the PE divergence exceeded the
threshold, the qualitative trend dy changed from steady to
downward direction at t = 900s.

According to Fig. 12(c), the dy was in a steady state
in t ∈ [480, 920], which implies that dx should not change
significantly under normal conditions. However, a down-
hole fault led to abnormal changes in dx, so it showed an
upward direction in t ∈ [480, 920]. Hence, the fault was
successfully detected in t ∈ [480, 920]. Subsequently, both
dx and dy exhibited downward directions from t = 920s
due to changes in operating parameters. Although Sa sig-
nal was above the threshold in t ∈ [920, 1000], the direction
of dx was consistent with that of dy, so the false alarm was
suppressed in t ∈ [920, 1000]. By checking dx and dy, the
alarm generation result is concluded in Fig. 13.
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Figure 13: Process monitoring results in Case 2.

Table 2 gives the fault detection results using T 2 of
PCA, Autoencoder, PE divergence, and the proposed
method in terms of FAR, MAR, and accuracy. Since some
dynamic changes under the normal condition were mis-
classified as faults, the FARs based on T 2 of PCA, Au-
toencoder, and PE divergence were 14.44%, 12.27%, and
12.03%, respectively. By contrast, the FAR of the pro-
posed method was 1.35%, and the MAR was also lower
than those of other methods. Hence, the proposed method
exhibited an excellent fault detection ability and outper-
formed other methods.

4.3. Case 3

In this subsection, Case 3 is briefly described. The
time series plots of original drilling signals and recon-
structed signals are shown in Figs. 14 and 15, respective-
ly. Downhole faults were found in t ∈ [1400, 1500] and
t ∈ [1700, 2000]. The RPM and TRQ signals changed dras-
tically within the above intervals, while the corresponding
reconstructed signals showed no significant changes.

Table 2: Comparison results of different process monitoring methods
for Case 2 (Ding, 2014; Hu et al., 2022b).

Method FA (%) MA (%) Acc (%)
T 2 of PCA 14.44 9.42 87.80

Autoencoder 12.27 25.78 81.70
PE divergence 12.03 13.85 87.11

The proposed method 1.35 7.75 95.76
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Figure 14: Case 3: Time series plots of original drilling signals.
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Figure 15: Case 3: Time series plots of reconstructed drilling signals.
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Figs. 16 and 17 show the time series plots of the original
and reconstructed RPM signals, the PE divergence of the
first derivative, and the corresponding qualitative trend.
As shown in Figs. 16(a) and 17(a), both the original RP-
M signal x and the corresponding reconstructed signal y
exhibit downward step changes in t ∈ [100, 300] due to a
switching operation; then, the original signal x fluctuated
significantly in t ∈ [1400, 1500] and t ∈ [1700, 2000], while
the reconstructed signal was stable.
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Figure 16: Process monitoring results based on the normalized orig-
inal RPM signal in Case 3.

According to the extracted qualitative trends dx and dy
in Figs. 16(c) and 17(c), the final alarm generation result
is concluded in Fig. 18. It can be found that some false
alarms in t ∈ [100, 300] were suppressed, and the num-
ber of false alarms was reduced from 180 to 50. Subse-
quently, two faulty conditions were successfully detected
in t ∈ [1400, 1500] and t ∈ [1700, 2000].

Table 3 gives the fault detection results using T 2 of
PCA, Autoencoder, PE divergence, and the proposed
method. Since the switching operation was misclassified
as a fault, the FARs based on T 2 of PCA and Autoencoder
were 19.27% and 26.91%, respectively. Compared with the
proposed method, the PE distance method only used the
original signal, and its FAR was 14.52%, which was higher
than 8.57% of the proposed method. Meanwhile, the MAR
of the proposed method was also lower than those of oth-
er methods. Hence, the proposed method outperformed
other methods for drilling process monitoring.
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Figure 17: Process monitoring results based on the reconstructed
RPM signal in Case 3.
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Figure 18: Process monitoring results in Case 3.

Table 3: Comparison results of different process monitoring methods
for Case 3 (Ding, 2014; Hu et al., 2022b).

Method FA (%) MA (%) Acc (%)
T 2 of PCA 19.27 30.35 78.50

Autoencoder 26.91 19.65 74.55
PE divergence 14.52 18.66 84.65

The proposed method 8.57 8.73 91.40

5. Conclusion

This work proposes a drilling process monitoring
method using virtual sample generation and qualitative
trend extraction to reduce false alarms. First, a data-
driven reconstruction model describing the normal drilling
behaviour is built to generate the expected healthy signal
corresponding to the real-time collected signal. Next, a
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change score is defined to determine the change points in
real-time and expected healthy signals based on Pearson
divergence and density ratio. Finally, the fault detection
decision is made by checking the qualitative trend of the
expected signal and that of the real-time signal to reduce
the disturbance caused by stratigraphic uncertainty. Com-
parison results demonstrated that the proposed method
outperformed the T 2 of PCA, Autoencoder, and PE di-
vergence methods in most metrics. Especially in reduc-
ing false alarms under normal conditions, the proposed
method shows apparent advantages. To sum up, this s-
tudy contributes an effective way of reducing false alarms
in geological drilling processes, and the proposed approach
is promising for practical applications.

Besides the normal historical data, faulty data also con-
tains valuable information for designing a drilling moni-
toring system. A critical issue to be further analyzed is
improving the sensitivity of the algorithm to faulty data.
A possible solution would be to introduce transfer learn-
ing methods or time series classification models like gated
recurrent units to extract fault-related features from other
drilling projects. Another future work will be concentrat-
ed on distinguishing many rising edges and one alarm for
a long time. The above two alarm situations are quite dif-
ferent, and it is difficult to distinguish based on false alarm
rates and accuracy.
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