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Abstract

3D X-ray tomography is a powerful scanning technique used for generating im-

ages of complex fibre structures. A novel machine-learning algorithm to identify

and separate individual fibres using 3D images is proposed in this article. The de-

veloped four-step hybrid 3D fibre segmentation algorithm involves deep-learning

aided semantic segmentation that slices 3D images to create 2D images for fi-

bre extraction, elliptical contour estimation combined with the marker-controlled

watershed algorithm for separating fibres from the background area, identifying

individual fibres through 3D reconstruction, and, lastly, the 3D object refining ap-

proach based on outlier object detection and replacement. The proposed method-

ology is implemented on a real-time sample of nylon fibre bundle under com-

pression and its 3D X-ray image volume to validate the performance. The results

show its superior performance compared to off-the-shelf image processing algo-

rithms in terms of precision, that is, with a validation accuracy greater than 90%,

and efficiency, that is, preventing the need for a huge data set and reducing the
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complexity.

Keywords: 3D reconstruction, deep learning, fibre segmentation, X-ray

tomographic images

1. INTRODUCTION

The quality of paper handsheets manufactured in the pulp and paper industry

depends on the characteristic properties of the pulp fibre and the operating condi-

tions of the pulping process [1]. Understanding the effect of the pulping process

operating conditions on the fibrous structure of the final product would enable

the manufacture of paper with the desired properties. The images are used from

3D X-ray tomography in conjunction with advanced deep learning-based image

processing techniques to correlate the micro-structure of the fibres in paper hand-

sheets with the process operating conditions. An efficient 3D image segmentation

algorithm is proposed and implemented to solve this problem. The study focuses

on nylon-fibre bundles to initiate the primitive study. Nylon fibres are synthetic

fibres made of polymers that are close contrasts to the wood fibres in the images

allowing them to deal with similar levels of noise and artifacts to the paper hand-

sheets but on simpler shapes.

In recent years, there have been significant advances in image processing al-

gorithms and tools, particularly those that use advanced deep learning algorithms.

These algorithms often provide highly accurate models for image processing. Our

goal is to use these advanced algorithms for image segmentation to identify spe-

cific properties of fibres in paper handsheets. This information can eventually be

used to determine appropriate process operating conditions. For example, a soft

sensor can be developed to infer the correlations between process operating con-
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ditions and paper handsheet properties using handsheet images. This way, process

operating conditions can be optimized to obtain desired product qualities. Image

segmentation comprises semantic and instance segmentation, where the latter ex-

tends the former by further separating individual objects [2]. Many existing deep

learning segmentation algorithms are developed using basic convolutional neural

networks (CNN), such as the widely known AlexNet [3], ResNet [4], GoogLeNet

[5], and so on. Moreover, in order to incorporate specific practical considerations,

various extensions of the basic CNN structure have been implemented. Exam-

ples include the recurrent neural network (RNN) [6] and its improved version,

long short term memory network (LSTM) [7], generative adversarial networks

[8], fully convolutional networks [9], and so on. Most recently, motived by the

successful applications of transformers in the natural language processing field,

vision transformer [10] and its variants [11] have been applied on image recog-

nition tasks and demonstrated better performance than convolutional models on a

very large dataset. Many of these algorithms can be adapted to different environ-

ments and perform well in describing complicated real-world scenarios. However,

these algorithms generally result in extreme model complexity, and require huge

datasets and significant maintenance efforts after a model is built.

Some existing literature focuses on fibre segmentation and 3D micro-structure

reconstruction from tomographic image volumes. For example, Agyei et al. [12]

proposed a four-step sequential 2D segmentation approach, followed by a 3D vol-

ume rendering algorithm for object matching. Viguie et al. [13] designed an image

analysis method to identify the fibres with irregular cross sections and quantify the

fibre contacts. Emerson et al. [14] developed a centre point detection and tracking

approach to segment individual fibres from X-ray 3D tomography. To the best
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of the authors’ knowledge, deep learning-based segmentation algorithms have not

yet been used in the X-ray based nylon fibre segmentation problems, motivating

us to develop a hybrid 3D reconstruction algorithm.

Using efficiency and simplicity as criteria, the encoder–decoder structured

deep neural networks, called U-Nets [15], are chosen to perform semantic seg-

mentation. Other deep learning-based semantic segmentation algorithms, such as

Mask R-CNN [16] and Faster R-CNN [17], require heavier annotation, training,

and tuning workloads. However, for post-processing the segmentation results,

the traditional instance segmentation algorithms, such as connected component

analysis [18] and watershed segmentation [19], are considered. Therefore, the

proposed work aims to develop an efficient segmentation algorithm that addresses

these challenges.

A four-step hybrid 3D fibre segmentation algorithm that makes use of both

deep learning and conventional image processing algorithms for image segmen-

tation is proposed in this article. Each of these steps has challenges associated

with training data set creation, instance segmentation, 3D reconstruction, and re-

fining. To address these challenges, some improvements to the existing algorithms

are proposed that include augmentation of the U-Net training data set and devel-

opment of an improved version based on a conventional marker-controlled wa-

tershed algorithm. More importantly, motivated by the centroid object tracking

algorithm, a novel multivariate Gaussian modelling and Kullback–Leibler (KL)

divergence oriented fibre tracking algorithm is developed, followed by a novel 3D

object refining approach based on outlier detection and replacement.

The rest of this paper is organized as follows. Section 2 highlights the 3D

image data set and the challenges associated with fibre segmentation. Section 3
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illustrates the four steps in the proposed algorithm for segmentation, and Section

4 demonstrates the superior performance of the proposed algorithm on a com-

pressed nylon fibre bundle sample.

2. PROBLEM STATEMENT AND CHALLENGES

2.1. 3D individual nylon fibre segmentation

A typical nylon fibre bundle sample studied in this work is shown in Figure

1. It shows both the integrated 3D volume and the 2D slice representations of the

same bundle. These images are generated using a non-destructive X-ray tomog-

raphy technique to reveal the internal fibre microstructure [12]. A 3D image can

be decomposed into a series of 2D slices through any of the x, y, or z axes. For

instance, Figure 1B is sliced along z axis, where the ellipse-like structures denote

the fibre cross sections.

Figure 1: An illustration of 3D volume and a 2D slice of the same nylon fibre bundle sample.

In the X-ray tomography images, the nylon fibres are embedded in a grey

background, from which the nylon fibres need to be initially extracted and then
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separated from each other. Good quality images with high contrasts (distinct grey

values for the different phases, e.g., air and fibres) are challenging to obtain for

such light and porous structures. Moreover, the effect of beam hardening creates

black rings and shadows on fibres’ cross-sections, preventing the utilization of

an easy classical intensity-based segmentation. The nylon fibres are uniform in

concentration. The variation in grayscale across their diameter results from beam

hardening, an artifact of image acquisition. In order to accurately identify and

segment the nylon fibres, a 2D fibre segmentation is performed on all single 2D

slices, followed by a 3D reconstruction using the 2D segmentation results.

2.2. Challenges

As mentioned in the introduction section, deep learning algorithms can pro-

vide highly automatic and accurate instance segmentation on some real-world

problems. However, in this fibre segmentation problem, the efficiency of the

advanced deep learning algorithms is restricted by several factors listed below,

which result in degraded performance. Therefore, instead of solely relying on the

deep learning approaches, a hybrid algorithm combining both deep learning and

traditional machine learning algorithms is proposed. The developed methodology

addresses several challenges unique to the segmentation of fibres in tomographic

images:

• Lack of labelled samples: Each 3D image is sliced into hundreds of 2D to-

mograms, and therefore, manual annotations on any 3D sample will require

significant effort. This restricts the use of deep learning algorithms that need

a large, fully annotated training data set.

• Limited number of 3D tomographic samples: The lack of a sufficiently large
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data set to train a full-fledged deep learning model. This challenge can be

addressed through transfer learning algorithms such as VGGNet [20]. How-

ever, these algorithms must be initially trained by big open-source data sets

and then fine-tuned with relevant smaller data sets. There are no existing

labelled large data-sets of tomographic images that can be utilized to train

such a network.

• Low accuracy of deep learning-based instance segmentation: The dense fi-

bre occurrence, arbitrary orientations, and locations of fibres make the train-

ing of deep neural networks, such as Mask-RCNN [16], extremely difficult.

Deep neural networks will take several hours to train and provide lower

segmentation accuracy than traditional approaches, such as watershed seg-

mentation [21].

• 3D reconstruction errors: The errors in 2D tomogram instance segmenta-

tion will also impact the 3D reconstruction performance.

We address the above challenges through a hybrid 3D fibre instance segmen-

tation algorithm that integrates deep learning and traditional image segmentation

algorithms. The detailed workflow of this algorithm is explained and illustrated

in the next section.

3. THE PROPOSED METHODOLOGY

Our ultimate objective is to automatically segment and label the individual ny-

lon fibres in the 3D images. Starting with the 2D tomogram slices as inputs, four

sequential image processing blocks are developed as shown in Figure 2. These
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include: (1) deep learning aided semantic segmentation for fibre extraction; (2) el-

liptical contour estimation combined with marker-controlled watershed algorithm

for fibre separation; (3) Gaussian modelling and distribution similarity based 3D

reconstruction; and (4) outlier detection and replacement to accommodate for the

2D segmentation errors. Among these steps, supervised learning occurs only in

the first step, and the remaining steps do not require labelled data sets. The fol-

lowing section explains the four sequential function blocks in detail.

Figure 2: The workflow of the proposed methodology, where the shaded block is based on super-

vised learning and others are unsupervised learning.

3.1. U-Net aided semantic segmentation

U-Net is a simpler version of convolutional neural networks (CNNs) and has

been widely used to segment biomedical images that share similar texture with 2D

nylon fibre tomograms. The U-Net model is composed of two major components,

namely the encoder and decoder. The encoder half of the model is utilized to

identify image features that carry out a down-sampling process, creating a lower

dimensional feature embedding space using the input image. The decoder half
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performs an up-sampling operation to recover the spatial information of the input

image before building the model output using the features as input. Due to its

features such as simple structure and ability to train efficiently and provide good

accuracy, U-Net is selected as the front-end semantic segmentation algorithm for

2D fibre extraction. In this problem, the compressed nylon fibre bundle is the tar-

get sample to be segmented. To segment the compressed sample, a U-Net model

needs to be trained on fully annotated compressed sample images. However, in

our case, only fully labelled uncompressed nylon fibre samples are available. To

address this challenge, in addition to the uncompressed samples, partially anno-

tated images from the compressed Nylon fibre bundle are added to the training

dataset, in which labels are added manually. The remaining uncompressed ny-

lon fibre images are sent to the test dataset. Labelled samples in the data are

denoted by D l
s = fX1:Ns;Y1:Nsg and the rest are denoted by Dt = fX1:Ntg. Here,

Xn 2 Rm1�m2 denotes the nth 2D tomogram, which consists of image slices and

Yn 2 Rm1�m2 is the corresponding pixel-wise label map, with 1 indicating nylon

and 0 indicating the background.

The characteristic features of X-ray tomographic images depend on exper-

imental conditions and the sampling procedure used. As such, 2D tomogram

images of only certain nylon fibre specimens can be easily segmented by naive

thresholding approaches. The carefully selected data set Ds belongs to this cat-

egory, and the labels Y1:Ns are generated using a simple thresholding method. In

contrast, the target data set Dt is difficult to segment by applying any thresholding

algorithms. The following two steps are used to create an effective data set for the

U-Net model for training:

• Step 1: Scale the images in Ds based on the mean and standard deviation of
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the image grayscale intensity in Dt as shown in Equation (1), thus creating

new scaled data set DS = fZ1:Ns;Y1:Nsg.

Zns =
Xns�E(X1:Ns)

std(X1:Ns)
� std(X1:Nt )+ E(X1:Nt ) (1)

where Xns 2 Ds and Zns 2 DS, ns = 1; � � � ;Ns, represent the original and

converted image grayscale intensities, respectively; Xnt 2Dt , nt = 1; � � � ;Nt ,

denotes the image grayscale intensity in the target data set; and E(�) and

std(�) denote the mean and standard deviation operations, respectively. The

advantage of scaling the Ds is to guarantee the training and test data sets

follow the same distribution.

• Step 2: Manually annotate nt images, nt � Nt , in the target data set, and

perform image augmentation on these labelled images, forming a new data

set DT = fX1:Na;Y1:Nag.

Then, we create an integrated new data set for U-Net training by combining DS

and DT , after which the trained U-Net model is employed to label the entire target

data set Dt .

3.2. Elliptical contour estimation with watershed algorithm for instance segmen-

tation

The U-Net model uses the grayscale 2D image slices and generates a categor-

ical output that separates fibres from their background areas. Once the binarized

images are created, the next step is to separate the fibres from each other through

a process called instance segmentation. The elliptical fused objects are rather dif-

ficult to separate compared to circular fused objects using conventional marker-

controlled watershed algorithms [22]. This observation is illustrated in the first

two sub-figures of Figure 3.
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Figure 3: An illustrative comparison of the conventional and proposed marker-controlled water-

shed instance segmentation.

As an alternative, the concave points supported elliptical contour estimation

algorithm [23] that provides better separation between two closely connected el-

liptical fibres is used in this methodology. However, the estimated elliptical con-

tours sometimes share small overlapped areas between each other. In order to

obtain smoother instance segmentation, a simple but effective combination of the

following three steps is proposed: (1) apply the elliptical contour estimation algo-

rithm on the original figure to generate multiple elliptical contours; (2) reduce the

size of the elliptical contours until they appear as separate objects; and (3) use the

obtained markers in step 2 and apply the marker-controlled watershed segmenta-

tion. As demonstrated in the lower three sub-figures of Figure 3, in most cases,

the estimated elliptical contours can provide reliable marker locations, resulting

in higher accuracy of the watershed segmentation algorithm compared to the ex-

isting non-elliptical contour-based segmentation algorithms [14]. Although the
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elliptical contour estimation recognizes shapes such as circles and ovals, it cannot

differentiate when the cross-sections are close to each other. Therefore, steps 3

and 4 are proposed to address these concerns.

3.3. Gaussian modelling based 3D reconstruction

In the 3D reconstruction functional block of Figure 2, the 2D slices with sep-

arated nylon fibres are integrated into 3D space by matching and linking the la-

belled cross sections belonging to the same nylon fibre. The segmented 2D im-

age slices are stitched together to generate a 3D image while accounting for the

3D spatial and geometric layout of the nylon fibre bundle. The 3D reconstruc-

tion involves tracking the location of every fibre that appears in two adjacent

2D slices and identifying new fibres in those slices. There are several existing

object-tracking algorithms that can be used to track the location of the same fibres

between adjacent 2D slices. Among them, the centre point matching algorithm

has been successfully applied to glass and carbon fibre tracking due to its sim-

plicity, high processing speed, and satisfactory accuracy [14]. However, without

considering the shape and size of individual nylon fibres and focusing only on the

centre, it tends to lose its accuracy when the nylon fibres on each slice are densely

distributed or when there exist instance segmentation biases from the previous

watershed segmentation block.

In order to compensate for the weakness of the centroid matching algorithm, a

novel fibre tracking approach that uses a Gaussian probability distribution model

is proposed. Samples from a two-dimensional multivariate Gaussian distribution

automatically fall in an elliptical shape. The centre of the ellipse is the mean value

of the Gaussian distribution, and the corresponding covariance matrix defines the

shape and orientation of the ellipse. Therefore, each separated fibre object is
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modelled with a Gaussian distribution, as follows:

fx(l)
i ;y(l)

i g
m
i=1 � N(m(l);S(l)) (2)

where l represents the lth detected nylon fibre object on the current slice, and

fx(l)
i ;y(l)

i gm
i=1 indicates the total m pixel coordinates of this fibre object. m(l) and

S(l) are the Gaussian parameters that are estimated by maximizing the following

log-likelihood function.

m
(l);S(l) =argmax

m;S
logP(x(l)

1:m;y(l)
1:m; m;S)

=argmax
m;S

m

å
i=1
f� log2p

p
jSj� 1

2
�

([x(l)
i ;y(l)

i ]T �m)T
S
�1([x(l)

i ;y(l)
i ]T �m)g

(3)

As a result, every individual fibre object is compressed into a Gaussian dis-

tribution on each 2D slice. When performing object tracking in a subsequent

slice, instead of using Euclidean distance to trace the centroid movement of a fi-

bre, we use KL divergence as a matching criterion by measuring the similarity

between two Gaussian distributions. Given two fibre objects with distributions

q1(xxx(1);yyy(1))�N(m(1);S(1)) and q2(xxx(2);yyy(2))�N(m(2);S(2)), the KL divergence

is computed as follows:

DKL(q2jjq1) =
1
2

[log
jS(2)j
jS(1)j

�2 + tr(fS(2)g�1
S

(1))+

(m(2)�m
(1))T � fS(2)g�1(m(2)�m

(1))]

(4)

While traversing the fibre objects in the current 2D slice, the KL divergence cri-

terion between the current object distribution and the distributions of suspected

objects in the previous slices are computed. When the target object with minimal
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KL divergence is identified, and the calculated DKL is less than a predefined small

threshold t , this identified fibre object is connected to the one on the current slice.

Therefore, q1 and q2 fibre objects are coming from the same fibre, as shown in

step 3 of Figure 2.

3.4. 3D object refining based on probability density function

The Gaussian distribution and KL divergence contain a lot of information of

the segmented nylon fibres. As explained in Section 3.3, once the 3D reconstruc-

tion is completed, the individual fibres in the 3D images can be identified. How-

ever, because of the inaccuracies in the instance segmentation, some extracted 3D

fibres may include attached parts of adjacent fibres. To fix this problem, an outlier

detection and replacement approach is developed in the final step of the workflow

in Figure 2.

Once the fibres are extracted from a 3D image, an indicator of the fibre cross-

section area in every slice is computed and stored as AAA(l) = [A(l)
k1

;A(l)
k2

; � � � ;A(l)
kV

] 2

Rkv , where l denotes the lth nylon fibre and fk1; � � � ;kVg are the 2D slice identities

containing this object. The individual element A(l)
kv

in array AAA(l) is computed as

follows:

A(l)
kv

= tr(S(l)
kv

); v = 1;2; � � � ;V (5)

where S
(l)
kv

is the estimated covariance matrix of the fibre cross section on the kth
v

2D slice.

Normally, considering the continuous extension of nylon fibre, the variation of

fibre cross-section area is expected to be smooth. Any abrupt increment in the area

implies a potential occurrence of additional fibre pieces introduced by erroneous

instance segmentation. Compared with the actual area of the fibre cross-section,
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the above indicator can better highlight the abnormal increase in the fibre cross-

section areas. Therefore, it is selected for outlier detection. Based on the indicator

AAA(l), the upper quartile, denoted by tu, is used to formulate the detection threshold.

Because AAA(l) sometimes exhibits a non-stationary characteristic, the outliers in

AAA(l) are finally detected by satisfying the following two conditions: We can detect

the fibre cross-section changing rapidly, which contains redundant components

of adjacent fibres. The detection threshold is chosen to be 1.5 times the upper

quartile based on the empirical analysis.

A(l)
kv

> 1:5tu; DA(l)
kv

> std(Aq); v = 1;2; � � � ;V (6)

where DA(l)
kv

denotes the increment of the detected outlier compared with the near-

est normal point, and Aq includes all the AAA(l) elements within the upper and lower

quartile range.

When outliers are detected, the relevant slices are labelled as erroneous in-

stance segmentation and need further corrections. In order to trim the redundant

fibre pieces, linear interpolation is performed on the mean values of normal fi-

bre objects. According to the correlation between kv and m
(l)
kv

= [m
(l)
kv;x;m

(l)
kv;y]

T , for

v = 1; � � � ;V , a linear model can be formulated as in Equation (7).24m
(l)
kv;x

m
(l)
kv;y

35 =

24ax bx

ay by

35 �
24kv

1

35 ; f or v = 1; � � � ;V (7)

where the model parameters ax, bx, ay, and by are estimated from the normal data

set fkvn;m
(l)
kvn
gvn2VVV normal .

Based on the above linear model, the centroids of the wrongly segmented

fibre pieces can be estimated using their slice identities fkvmgvm2VVV abnormal , and the

corresponding covariance matrix S
(l)
kvm

value is computed by averaging the S values
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of the previous several normal slices. After obtaining the pseudo Gaussian model

N(m
(l)
kvm

;S
(l)
kvm

), the probability density function values of the object coordinates are

computed and the ones with extremely low probability density are removed and

labelled as background.

The proposed methodology for segmenting and labelling the individual nylon

fibres from the 3D X-ray tomographic images is as follows. First, U-Net aided

semantic segmentation is used for 2D fibre extraction that labels the target data

set. Second, instance segmentation is performed through elliptical contour-based

estimation with a watershed algorithm for accurately separating the fibres from

each other. Third, the same nylon fibres are integrated into 3D space through a

novel 3D reconstruction by Gaussian modelling and distribution. Last, the 3D

object refining method is implemented on fibres to eliminate the attached parts of

adjacent fibres. In summary, each step in the developed hybrid workflow com-

bining deep-learning and image-processing algorithms enhances the precision of

fibre segmentation from 3D X-ray tomographic images.

4. PERFORMANCE VALIDATION ON A CASE STUDY

In this section, a nylon fibre bundle under compression is selected as our sam-

ple, and its corresponding 3D X-ray image volume is processed according to the

proposed methodology for performance validation. The generated 3D image vol-

ume has the dimension of 1013�964�500 voxels. The resolution is 1 micron, so

its physical volume is about 1� 1� 0:5 mm3. After slicing along the z axis, 500

2D tomogram slices with dimension 1013� 964 pixels are produced. Initially, a

randomly selected slice in Figure 4A is analyzed, and the grayscale intensity his-

tograms of the nylon fibres and background, excluding the black area, are depicted
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in Figure 4B. It can be observed from this comparison that the grayscale intensity

distribution of the nylon fibres significantly overlaps with the background inten-

sity distribution and thus makes it difficult to find an appropriate threshold for

segmentation.

Figure 4: A comparison of grayscale intensity histograms between nylon fibres and the back-

ground.

As a result, a U-Net model is initialized with input size 512�512, four down-

blocks, and four upblocks, where the kernel size is 3�3, and activation functions

are chosen as ReLU. According to the complexity of the tomography image in this

work, the number of convolutional filters of four downblocks, bottleneck block,

and four upblocks were chosen to be [16, 32, 64, 128], 256, and [128, 64, 32,

16], respectively. The total trainable number of parameters is 1;962;625. Follow-

ing the training procedures explained in Section 3.1, the selected U-Net model is

well-trained after 20 epoch iterations. The training and validation split rate is 85%

and 15% respectively [24; 25]. Finally, the training and validation performances

are summarized in Table 1.
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Table 1: U-Net training and validation performance.

Training Validation

Accuracy Loss Accuracy Loss

97.22% 0.0262 97.50% 0.0313

The U-Net provides semantic segmentation results on all the 500 2D tomo-

grams, with processing times as low as less than 1 s per slice. While completing

the fibre extraction, the elliptical contour estimation algorithm is applied on all

the binarized 2D images to generate markers for watershed segmentation. In or-

der to demonstrate the performance, the number of fibres on all 500 slices are

counted manually and compared with the instance number given by watershed

segmentation. The segmentation accuracy of the proposed elliptical contour esti-

mation based watershed is compared with the conventional watershed algorithm.

As shown in Figure 5, the proposed watershed algorithm is able to provide higher

and more stable segmentation accuracy than the conventional one [26]. Moreover,

after investigating the segmentation accuracy of all the 500 slices, the proposed

watershed algorithm offers more than 90% accuracy for 77.6% of the 2D slices,

and only 6.2% of the slices have segmentation accuracy less than 85%. Given the

inevitable manual annotation error, the proposed watershed approach could give

satisfactory accuracy at this step. The error of instance segmentation can also be

compensated in the 3D reconstruction and refining procedures.

In the 3D reconstruction step, because of the fibre orientation, fibre tracking

from the X direction can be more efficient than from the Z direction. Therefore, in

this special case, the binarized 3D image volume is re-sliced from the X direction,

generating 1013 slices with dimension 964�500 pixels. The proposed watershed

18



Figure 5: The segmentation accuracy comparison between the proposed and conventional water-

shed approach.

algorithm is re-applied on each slice to perform instance segmentation. On each

slice, every individual object is first represented by a multivariate Gaussian distri-

bution, and then the KL divergence between the current object is compared with

all the adjacent objects in the previous six slices. The object in the previous slices

with the minimal KL divergence is selected as a potential candidate to connect if

the minimal KL divergence is less than 1. Otherwise, the current object will be

assigned a new label and treated as a recently emerged one that never appeared

before.

After conducting the 3D reconstruction, several extracted fibres can have extra

attached pieces due to erroneous watershed instance segmentation. Figure 6A is a

typical example. After detecting the abrupt area change and performing trimming

based on the probability density function value, the redundant piece has been re-

moved, as shown in Figure 6B.
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Figure 6: The same fibre before and after 3D object refining.

Finally, after running through the four sequential functional blocks in Figure

2, we have the 3D nylon fibre separation result shown in Figure 7, where one

can clearly observe the separated nylon fibres without redundant pieces attached.

Integrating deep-learning methods with image processing techniques provided an

accurate fibre segmentation even with a lesser training data set.

In summary, since only a limited number of samples exist, none of the 3D

instance segmentation approaches can be employed directly. Therefore, the pro-

posed model has its own novelty and efficacy. For the model improvement, the

conventional marker-based watershed segmentation is modified by utilizing an el-

liptical contour estimation. The performance has been compared with the conven-

tional algorithms, and Figure 5 illustrates the efficacy of the proposed approach.

Even though there are some similar works on glass fibre segmentation, many of

those models started from a thresholding approach to obtain the region of inter-

est, which is not achievable in our case because the nylon fibre and background

cannot be separated using this approach. Moreover, the glass fibre orientation
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