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Abstract

Rapid development in data-driven process monitoring has provided a rich selection of
models and data preprocessing strategies for applications such as fault detection and diag-
nosis. However, the development, comparison, and selection of process monitoring algo-
rithms can become complicated and unnecessarily onerous. As a result, numerous publicly
available benchmark datasets have emerged in the literature. Unfortunately, benchmark lit-
erature often suffers from problems such as low fidelity, inconsistent usage, and lack of
transparency. This paper presents a benchmark challenge based on a large-scale indus-
trial dataset that aims to enhance the evaluation and comparison of learning algorithms
and overall data preprocessing workflows. We introduce the arc loss challenge, a machine
learning benchmark with data from a large-scale mining and pyrometallurgy operation.
By providing a supervised learning challenge based on large quantities of raw industrial
process data with transparent and consistent evaluation procedures, the arc loss challenge
is a unique contribution to fault detection benchmarking.
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1. Introduction1

Benchmarking has allowed the process systems engineering (PSE) community to make2

valuable contributions toward addressing problems related to process monitoring, includ-3

ing fault detection and diagnosis (FDD). Benchmark datasets are of great value to the4

community as they form the basis for developing, testing, and comparing different algo-5

rithms for process monitoring. In addition, benchmark datasets have played a critical role6

in advancing the field by enabling direct progress tracking of proposed methods [1].7

The literature on data-driven methods for FDD often relies on idealistic simulated datasets8

to evaluate monitoring algorithms. Unfortunately, this approach makes it difficult to com-9

pare the practical utility of different algorithms [2, 3, 4]. In addition, recent advances10

in computational hardware and algorithmic efficiency have made traditional FDD bench-11

mark datasets, released decades ago, seem "simple and easy to solve." For example, the12

widely used Tennessee Eastman process (TEP) dataset [2] has been solved with increas-13

ingly accurate results (96% to 100%) using advanced machine learning (ML) algorithms14

[5]. Therefore, a turn toward modern benchmarks incorporating raw industrial data is15

essential to provide a realistic platform for data-driven process monitoring.16

This paper aims to improve process monitoring benchmark research by introducing the arc17

loss challenge, an ML benchmark with operating data from a pyrometallurgy plant. It con-18

sists of one year of daily exports from multiple sources, including process measurements,19

valve positions, and laboratory measurements. The dataset captures many of the non-20

trivial challenges faced by industrial practitioners, such as multimodality, class imbalance,21

and irregular sampling rate. The arc loss challenge also provides the PSE community with22

an open-source competition for fault detection with standardized evaluation procedures to23

facilitate the comparison of different fault detection workflows.24

The arc loss benchmark dataset can be downloaded from the arc loss challenge website.25

The website contains the raw data stored in Apache Parquet (.parquet) files and standard-26

ized testing software. The testing software is designed to establish consistency, encourage27

transparency, and prevent over-fitting by providing a rigorous evaluation procedure to com-28

pare different monitoring workflows. The main contributions of the arc loss challenge are29

as follows: i) to provide a publicly available dataset from an industrial process historian,30

ii) to present a formal procedure for consistently evaluating submissions to track progress31

in FDD, iii) and to facilitate more impactful research in FDD.32

This paper is organized as follows: in Section 2, background information is provided33

to differentiate the arc loss challenge from existing FDD benchmarks; in Section 3, we34

present the metallurgical process in question, Section 4 introduces the arc loss challenge,35
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Section 5 describes the dataset, Section 6 provides insights and observations from the36

industrial data, Section 7 reviews the submission and evaluation procedures and why these37

procedures were chosen, and Section 8 presents a demonstration of how the benchmark38

dataset can be used for the development of FDD workflows. Finally, the paper ends with39

concluding remarks in Section 9.40

2. Benchmarking in Process Monitoring41

Since its release in 2010, the ImageNet dataset [6] has provided the computer vision com-42

munity with a benchmark dataset to develop and test proposed models. In turn, the accu-43

racy of the state-of-art model has catapulted from 50.90% to 90.88% in just 11 years [7].44

This rapid growth in computer vision was partly enabled by the community-wide adoption45

of an open-source standardized dataset (i.e., ImageNet dataset). Over the same period, the46

data available for FDD has grown substantially due to the increased digital transformation47

of the process industries. This section briefly reviews existing FDD benchmark datasets48

and places the arc loss benchmark dataset relative to other works.49

In general, FDD benchmark datasets fall into two categories depending on the method50

used for data acquisition. The first category is simulated data or data that is artificially51

generated to replicate the real-world but with known underlying patterns [8]. Simulated52

data exists on a spectrum ranging from low fidelity to high fidelity, depending on the53

degree of precision and realism portrayed in the simulation models [9]. For example, sim-54

ulation models based solely on first-principles (e.g., TEP [2, 10] and PenSim [11, 12])55

exhibit a low level of fidelity. This is because such models tend to omit real-world char-56

acteristics and model them as Gaussian random variables or linear piece-wise functions.57

Next, simulation models for process equipment and instrumentations are derived from58

the analytical description of the physical behaviour of the equipment, such as thermo-59

dynamics and mechanics. For instance, the DAMADICS (Development and Application60

of Methods for Actuator Diagnosis in Industrial Control Systems) benchmark provides a61

simulation model of electro-pneumatic actuators in a sugar production process [13]. To62

more accurately represent the real-world effects, hybrid models integrate measurements63

from a real process with the simulation models. Hybrid models (e.g., CSTH [14]) provide64

a platform for FDD applications under realistic conditions of measurement noise, process65

disturbances and constraints [15].66

Real-world data constitute the second category and are obtained from an actual process.67

Real-world data can be acquired from one or more sources. Possible data sources include68

readings from physical sensors, alarm events, laboratory results, valve positions, images,69
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and video records. For instance, the PRONTO benchmark [16] includes heterogeneous70

data from disparate sources in an industrial-scale multi-phase flow facility. In contrast, the71

3W benchmark [17] only includes eight process measurements related to the operation of72

offshore oil wells. The heterogeneity of real-world data presents a number of opportunities73

and challenges for robust and reliable FDD applications. Figure 1 shows a conceptual74

comparison of some of the most prominent FDD benchmarks. For a more comprehensive75

analysis and comparison of accessible benchmarks for process monitoring, readers can76

refer to the review paper by Melo et al. [18].77
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Figure 1: A conceptual comparison of several FDD benchmarks available in the literature. The following
criteria are used to compare the benchmarks: 1) the origin of the data (simulations or actual physical sensors),
2) the number of features, 3) the number of classes, 4) the type of simulation models in the case of simulated
data, and 5) the heterogeneity of the data in the case of real-world data. The size of blobs is proportional to
the number of classes; a legend is displayed in the top left corner, spanning from 2 to 20 classes. Both plots
share the same y-axis.

In the PSE community, the first form has become more prevalent than the second. This78

is due to the difficulty of acquiring high-quality data with recurring and identifiable faults79

in industrial settings [19]. For instance, i) industrial processes often have an inherently80

long mean time between failures (MTBF) [20], ii) faults often prevent operation entirely,81

and iii) most data owners refuse to publish open-source data due to confidentiality and82

intellectual property concerns [18]. As a result, most faults in existing FDD benchmark83

datasets are artificially induced by abnormally deviating a characteristic property of the84

underlying simulation models. In this work, we present a novel benchmark challenge that85

we believe will have a significant impact on FDD research, similar to the positive impact86
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that the ImageNet challenge had on computer vision. The arc loss benchmark dataset,87

obtained from three different data sources - process measurements, valve positions, and88

lab results - falls under the category of real-world data.89

3. Pyrometallurgical Smelting Process90

The arc loss benchmark dataset was acquired from a large-scale open pit mine and py-91

rometallurgical plant. The high-level mining and pyrometallurgical operations are de-92

picted in Figure 2. In such processes, high-grade oxidized ore deposits are converted into93

refined base metals to be processed by shotting and packaging units before being shipped94

to customers [21]. In this section, the relevant mining and pyrometallurgical operations95

are described.

Figure 2: An illustration of the broader mining and metallurgical processes [22].
96

Saprolite ore is mined from multiple open pits in the massif using hydraulic shovels. The97

extracted ore is then loaded onto dumper trucks and transported to the ore preparation98

plant. Due to the friable nature of the run-of-mine ore, waste rocks and undersized particles99

are removed via crushing and screening operations in the ore preparation plant [23]. The100

crushed ore is conveyed on an overland belt conveyor to the metallurgical plant, where it101

is further processed.102

Figure 3 shows a simplified schematic of the metallurgical plant in question. Processing103

operations such as milling, drying, calcining, reduction, and smelting are used in the met-104

allurgical plant. Ore from the preparation plant is wet (i.e., it has a moisture content of up105

to 40%); therefore, the ore is dried as the first step in the metallurgical plant [24]. Ham-106

mer mill flash dryers are used to produce fine ore with less than 1% free moisture content.107

Next, the dried ore is fed into a series of calciner cyclones operating at 1000 ◦C where it108

is dehydrated [25]. The calcined ore is then pre-reduced in fluidized bed reducers using109

pulverized coal and hot gases at 1000 ◦C to remove oxides [26]. This step is critical to110
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ensure the operational stability of the subsequent smelting operation in the direct current111

electric arc furnace (DC EAF) unit. The focus of this challenge is on the operation of the112

DC EAF utilized as a smelter to refine ores into base metals.
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Figure 3: A simplified schematic process flow diagram
113

A schematic diagram of the DC EAF is illustrated in Figure 4. The smelter unit consists114

of a refractory-lined cylindrical vessel with water-cooled sidewalls, a conical roof, and a115

twin hollow graphite electrode located vertically in the center of the roof [27]. The steel116

vessel contains a molten mixture with a dense metal phase below a lighter slag phase.117

Refined ore is fed to the furnace through multiple feed ports positioned on the roof using118

weight bin feeders (c.f., Figure 5). The slag and metal are tapped intermittently from the119

furnace through launders. Two plasma arcs span from the bottom tip of the electrodes120

to the top surface of the molten bath, serving as cathode and anode, respectively. The121

graphite electrodes are connected to a large DC power supply, providing the electrical122

power required for the DC EAF unit operation [28].123

The high-temperature plasma arcs are developed by means of the direct electrical current124
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Figure 4: A typical view of the DC EAF unit.

transfer from the cathodes to the anode. The arcs serve as the main heating component in125

the DC EAF unit [27]. The plasma arcs convert the electrical energy attained from the DC126

power supply (up to 80 MW) into thermal energy (above 1500 ◦C) required to maintain the127

metal-to-slag ratio at desirable operating levels [29]. Since the operation of the DC EAF is128

directly related to the thermal energy transferred into the molten bath, the presence of the129

plasma arcs is critical to ensure operational stability and maximum production efficiency.130

However, the loss of the plasma arc is an unforeseen process fault that adversely impacts131

the efficiency and stability of the DC EAF unit.132

4. Problem Definition for the Arc Loss Challenge133

This section defines the process fault and its impact on the operation. In addition, an134

overview of the principal challenge is provided.135
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4.1. The process fault: loss of furnace plasma arc136

The arc in the DC EAF is a plasma-based jet with a high temperature and velocity that137

conducts electricity efficiently [30]. It serves as the primary heating element in the DC138

EAF, transforming electrical energy from the DC power supply into thermal energy and139

transmitting it into the molten bath. The DC electric circuit running through the furnace140

connects the arc and slag bath in series, splitting the total operating voltage between them141

depending on the electrical properties of the slag (i.e., electrical resistivity) [27].142

The slag is often of high electrical resistivity, resulting in a significant voltage drop across143

the slag layer of the circuit [31]. As a result, the available voltage could be less than the144

required voltage for the arc to develop, leading to an arc loss event. Other suspected causes145

of arc loss include upstream process disturbances, electrical disturbances, and extra-long146

arcs.147

Due to the harsh process conditions and safety-critical nature of the operation, obtaining148

a visual recording of the plasma arc is infeasible in this scenario. Therefore, the daily149

raw exports have no arc loss labels. Fortunately, unexpected power fluctuations can help150

define arc loss events. Specifically, a loss of arc in an electrode at time t occurs if and only151

if the following three conditions related to its power are satisfied: i) a power drop of 10152

MW or more relative to the one recorded at t − 0.6 min, ii) the power must be steady for153

approximately 11.25 minutes within a standard variation of 2 MW before the power drop154
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(i.e., from t− 11.85 min to t− 0.6 min), and iii) the power must return to within ± 5 MW155

of the initial stable range in approximately 9.85 minutes after the power drop (t + 9.25156

min) [32]. Figure 6 illustrates the three conditions that constitute an arc loss event. For157

each sample, these conditions are used to produce output labels that are binary indicators158

of an arc loss (i.e., 0 → no arc loss and 1 → arc loss) in the corresponding electrode.159

The unexpected occurrence of arc loss severely impacts the DC EAF. In addition to having160

an effect on electrical efficiency, recovering from an arc loss often requires a temporary161

feed reduction and a power increase. Figure 7 illustrates the severity of the arc loss event on162

the process. It displays a side-by-side comparison of the process measurements recorded163

during stable and faulty operating regimes. Since the DC EAF operation is directly related164

to the presence of an open arc, having a reliable predictive alarm that alerts operators of165

the onset of arc loss would be of great economic and environmental value.166

4.2. Arc loss prediction: a supervised learning challenge167

The proposed benchmark fuses data preprocessing, feature engineering, supervised learn-168

ing, and fault detection into a single challenge. Most of the existing FDD benchmarks169

investigate the use of conventional and advanced ML on clean simulated data. The pro-170

posed challenge offers a different form of contribution as it focuses on comparing and171

validating end-to-end data analytics workflows on raw historical data taken from a large-172

scale industrial process. Figure 8 illustrates the typical layout of an FDD process analytics173
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Figure 7: Visual demonstration of the arc loss on the process operation. The left-hand plot represents a
relatively stable operation, while the right-hand plot represents a faulty operation. The time t marks the time
at which an arc loss event occurred. Both plots share the same y-axis. Readers are referred to Table A1 for
variables’ descriptions.

workflow. Note that there may also be hidden feedback connections between the modules174

as such frameworks often progress iteratively.175

The objective of this challenge is to utilize information from a full year of high-frequency176

operating data to correctly predict the onset of an arc loss event (i.e., the target variable Y ).177

For the purpose of this challenge, the target variable Y is defined as an event where either178

one of the following conditions is satisfied: i) a loss of the arc in electrode A only, ii) a loss179

of the arc in electrode B only, or iii) arc losses in both electrodes A and B. Mathematically180

speaking, Y can be described as follows:181

Y =

{
0, ALoss +BLoss = 0

1, ALoss +BLoss > 0
(1)
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where ALoss and BLoss ∈ [0, 1] are binary indicators of an arc loss in electrodes A and182

B respectively. The target variable Y has been pre-computed as part of the minimal pre-183

processing performed on the dataset.184

5. Industrial Data for the Arc Loss Challenge185

The raw data consists of one year of high-frequency operating data collected from various186

metallurgical process units (e.g., calcining, smelting, reduction, etc.). This section sum-187

marizes the process parameters and pre-processing methods carried out to make the data188

easier to use.189

5.1. Data structure190

Each raw daily export captures a day of operation in 2022 and is stored with over 200191

columns and roughly 30,000 rows. The columns in the daily exports correspond to pro-192

cess variables (PVs) and their associated timestamps. As shown on the left-hand side of193

Figure 9, the PV sampling rates vary. The number of samples collected from a particular194

PV throughout the day is represented by the number of rows (i.e., the height of blue and195

red bars). Some PVs have high-frequency measurements (e.g., a sample every three sec-196

onds), while laboratory measurements can have sampling periods greater than three hours.197

Overall, the total daily exports have an uncompressed size of 17.4 gigabytes (GB), making198

the data unwieldy for practitioners to load, analyze, and process.199

In addition to the varying sampling rates, the raw data is riddled with other problem-200

atic artifacts such as bad inputs, outliers, and irrelevant or misleading data. The arc loss201

benchmark is concerned with workflows that take in raw data and yield models that pro-202
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vide operational insights and predictions. Therefore, the arc loss dataset published with203

this paper is available in a raw form with minimal pre-processing to structure the data.204

To make the data easier to utilize, we pre-processed all raw daily exports to follow a struc-205

tured format where all PVs have a unified timestamp. As illustrated in Figure 9, data struc-206

turing was performed by identifying the most frequently sampled PV and using the cor-207

responding timestamp as a reference to reindex the remaining PVs. The unified sampling208

frequency is three seconds. Additionally, all PVs with categorical values were replaced by209

numerical indicators (e.g., close and open became 0 and 1, respectively). Finally, prob-210

lematic entries (e.g., tag not found, access denied, bad data, etc.) were substituted with not211

a number (NaN) values.212

Overall, the data consists of a time index and 111 PVs. Although it is too much informa-213

tion to present here, the tag, description, range, and unit of measurement for each PV are214

provided in Table A1. There are 92 PVs with high-frequency samples representing physi-215

cal process properties (e.g., feed rate, temperature, etc.), 14 variables with discrete values216

(label encoded) that correspond to valve positions, and five laboratory measurements with217

a sampling period greater than one hour.218

5.2. Accessing the arc loss data219

For the purpose of this challenge, the data is chronologically split into training/validation220

(Jan.-Oct.) and testing (Nov.-Dec.) sets. The daily exports are bundled and stored in221
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two compressed (.parquet) files. Participants are allowed to use any data in the train-222

ing/validation set for tuning the hyperparameters of their candidate model. The arc loss223

challenge data can be downloaded from here in the form of (.parquet) files:224

1. trainval.parquet: This 1.21 GB dataset (Jan.-Oct.) is intended for training225

and validating the process monitoring workflows226

2. test.parquet: This 0.60 GB dataset (Nov.-Dec.) is for testing the monitoring227

algorithm and benchmarking with performance metrics.228

6. Data Exploration and Analysis229

Process knowledge and data exploration can guide participants to discover valuable in-230

formation for their analysis. This section provides insightful summaries and observations231

regarding the industrial data and the underlying process. The content provided in this232

section was collected from process experts and previous data analysis.233

6.1. Dataset statistics234

Table 1 summarizes relevant statistics for the arc loss benchmark dataset. Figure 10 shows235

the daily arc loss events over an entire year of operation. It can be observed that arc loss236

faults are most frequent from May through September. Additionally, Figure 11 presents237

a circular graph for the arc loss rate in June. The chart displays a time series of 30 days,238

starting from June 1st, 2022 at 00:00 at the innermost circle, and moving clockwise until239

reaching June 30th, 2022 at 23:00 at the outermost ring. Dark blue is used to indicate240

periods with a higher fault rate, while light blue denotes periods with the fewest faults.241

Both Figures 10 and 11 imply that the process faults are characterized by randomness,242

seasonality, and variability, making fault detection a non-trivial task.243

Table 1: Summary of arc loss dataset statistics.
Total number of samples 10483200

Total number of PVs 111
Sampling period 3 sec

Total number of categorical variables 14
Training/validation set ratio 83.5% (Jan.-Oct.)

Testing set ratio 16.5% (Nov.-Dec.)
Number of classes 2

Class ratio (normal:faulty) 3337:1
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Figure 12: Statistics of the arc loss benchmark dataset.

In one year of operating data, the furnace experiences 3,141 arc loss events. As illustrated244

in Figure 12a, the month that saw the most arc loss events was June, closely followed by245

September, and October was the month that witnessed the fewest arc loss events.246

Figure 12b shows that both subclasses (arc loss A and arc loss B) that constitute the faulty247

class (Y =1) are represented approximately equally in the arc loss data. This indicates248

that the arc loss event is independent of which electrode is operating. Even though arc249

loss events typically last less than one minute, a single arc loss fault can cause up to 10250

minutes worth of production loss involving significant material and energy inefficiencies.251

On average, 9.4 arc loss events occur daily, resulting in 82 minutes of lost production as252

shown in Figures 12c and d, respectively.253

6.2. Process shutdowns254

A shutdown is a period of time during which a process is taken from a normal to an idle255

state of operation to carry out all necessary maintenance. Even though shutdowns are256
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scheduled in advance, their duration is not known a priori with high certainty. If sam-257

ples corresponding to shutdown periods are not carefully imputed, the trained predictive258

models could be biased toward an irrelevant process state. Data from shutdowns do not259

possess any meaningful information from the process perspective. Therefore, it is essential260

to identify shutdown periods to prevent model degradation.261

The selection of relevant PVs for shutdown identification is a non-trivial problem and often262

requires the support of operators or domain experts. According to process experts, a time263

period [ta, tb] corresponds to a process shutdown period if and only if the total power (TP)264

drawn from both electrodes A and B are less than 10 MW (AP + BP ≤ 10 MW) for at265

least ten hours (tb− ta > 10 hrs) as shown in Figure 13. Participants are encouraged to use266

their judgment and select any strategy they deem appropriate for dealing with shutdown267

data.268
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Figure 13: Illustration and quantitative definition of shut down periods.

6.3. Sampling frequency269

Statistical process monitoring methods for fault detection are generally designed for uni-270

formly sampled data. However, like any other industrial process, the pyrometallurgy pro-271

cess in question is a multi-rate sampling system. In other words, PVs are measured in272

a non-uniform fashion and differ in sampling rate. The variables with the highest sam-273

pling rates are primarily temperature-related, while those with the lowest are laboratory274

measurements.275

Fusing multi-rate sampled process measurements has resulted in a significant amount of276

missing data. Missing data are encoded as blanks or not a number (NaN) values. In fact, 38277

PVs have over 90% of their values missing as demonstrated in Figure 14. The predictive278
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power and quality of a data-driven model can be adversely impacted by training it on data279

with lots of missing values. Hence, it is important to address the missing data problem.280

Participants are free to employ any data imputation technique to tackle the missing values281

problem.282

6.4. Observations from the data283

Several observations from the dataset that might be of interest to participants when devel-284

oping their monitoring algorithms are provided in the following list:285

• December 1st records are missing.286

• December 4th has the highest percentage of missing values, with over 83%.287

• W1F, W2F, W3F, W6F, W7F, W8F, and TMF measurements are unreliable due to288

instrumentation errors (i.e., incorrect calibration, malfunction, etc.).289

• The minimum time interval between two successive arc loss events is 10 minutes.290

• PV data does not always lie within the range provided by process experts and listed291

in Table A1. For instance, almost all crucible heat loss data are outside the limit as292

shown in Figure 15. Participants may have to evaluate data quality and perform san-293

ity checks to improve the reliability and robustness of monitoring algorithms (i.e.,294
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relying on process knowledge for data cleaning is not always an infallible strategy).295

• Different PVs are highly coupled and may exhibit strong cross-correlations. A PV296

may also have an autocorrelation with its previous values. These correlations reveal297

the underlying characteristics of the process and they may change during abnormal298

operations (e.g., arc loss). The electrical parameters pertaining to electrode A are299

depicted in Figure 16. The orange plot represents the measured voltage, while the300

blue plot corresponds to the theoretical voltage computed using Ohm’s law. Such301

theoretical relationships can be used for data reconciliation to enhance data quality.302

Figure 15: Box plots illustrating PV data distributions. Expected range lines are shown for each PV, normal-
ized to be consistent with the normalized values.

7. Submission and Evaluation303

This section outlines the procedures for submitting entries to the benchmark challenge304

and discusses the evaluation process. The submission and scoring procedures for the arc305

loss challenge are designed to ensure fairness through transparency and consistency. The306

evaluation also aims to prevent over-fitting by emphasizing soft sensor durability over307

two consecutive months of unseen operating data. The following section explains how308

submissions are scored. We encourage participants to post their questions and queries in309

our community discussion forum.310
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Figure 16: Observations from the benchmark dataset: comparing the actual vs. theoretical voltage drawn by
electrode A.

7.1. Submission of entries311

The arc loss challenge is divided into two stages. Firstly, participants should use the la-312

beled training/validation set to develop a monitoring workflow, optimize hyperparameters,313

and estimate the performance measures. In the second stage, participants are required to314

run their workflow on the unlabeled testing set (Nov. and Dec. data) to classify whether315

each timestamp in the testing set corresponds to stable operation (Y = 0) or an arc loss316

event (Y = 1). More specifically, participants are required to only submit the timestamps317

that belong to the faulty class (Y = 1). The scoring metric (described in subsection 7.2) is318

computed specifically on the instances that are important for the problem, i.e., identifying319

arc loss events. It is worth noting that since the minimum time interval between two con-320

secutive arc loss events is 10 minutes, submitted timestamps should be at least 10 minutes321

apart. Entries must be submitted as a .zip file containing the following:322

• A one-column .csv file containing the predicted timestamps of arc loss events. The323

entries should be in the form of (yy-mm-dd hh:mm:ss) (e.g., 22-12-01 14:04:12)324

To reduce the likelihood of over-fitting, we will not release the ground-truth labels of the325

testing set until the challenge is over. Releasing the true testing labels could lead to some326

"optimistic" results, where participants test several configurations on the testing set and327

only report the best result. This risk is present in any benchmarking initiative where the328

ground truth is made available.329

Participants may have a maximum of 20 attempts over the course of the competition. Upon330

submission, participants will receive their performance score on the held-out testing set.331

The arc loss challenge comprises an unofficial phase and an official phase. During the332
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unofficial phase, participants may receive scores for up to five attempts. This will allow333

participants to examine the testing software and compare different methodologies without334

being officially counted for the competition. In the official phase, participants are allowed335

to submit up to 15 attempts, and the best-performing attempt will be officially counted.336

Note that unused attempts during the unofficial phase can not be carried over to the official337

stage. Attempts that can not be scored due to incompleteness (e.g., improper formatting,338

missing components, etc.) will not be counted toward the attempt limits. The challenge339

deadlines are listed in Table 2 (check our website for further updates). The data will be340

publicly available for approximately a year before the submission deadline. This will341

allow substantial time for data cleaning and ensure that participants with limited access to342

computational resources have an equal chance of winning. After the competition deadline,343

the fully labeled data will be made publicly available to facilitate the development of data-344

driven process monitoring algorithms by the community.345

Table 2: Challenge deadlines
Phase Start date Deadline Entry limit

Unofficial phase June 1st, 2023 August 31st, 2023 5
Official phase September 1st, 2023 July 1st, 2024 15

7.2. Scoring346

Evaluating results on the two-class arc loss dataset poses several challenges, including347

the non-uniform prior distribution across the classes, with P (Y = 0) > 0.9997 and348

P (Y = 1) < 0.0003. For this reason, a simple performance measure like accuracy is349

not proper because it fails to distinguish between the number of correctly classified sam-350

ples of different classes. Moreover, the cost of misclassifying a positive sample (i.e., a351

false negative or missed alarm) is greater than the cost of incorrectly classifying a sample352

from the negative or majority class (i.e., a false positive or false alarm). These factors must353

be taken into account when designing a suitable scoring metric. In addition to these chal-354

lenges, it is critical to predict arc loss events before they occur to enable operators to take355

preventive measures. Hence, a novel scoring metric is designed to address the imbalanced356

classes and associated costs, reward early predictions, and penalize late predictions.357

For this challenge, a binary prediction Ŷ (t) is made for each time step t, i.e., :358
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Ŷ (t)


ŶN(t) = 0, a negative prediction at time t during a normal operating period (N)
ŶN(t) = 1, a positive prediction at time t during a normal operating period (N)
ŶF (t) = 0, a negative prediction at time t during a faulty operating period (F)
ŶF (t) = 1, a positive prediction at time t during a faulty operating period (F)

359

Figure 17 illustrates the scoring functions assigned to each Ŷ (t). During faulty operating360

periods (F) (i.e., tearly ≤ t ≤ tlate), early arc loss detection is crucial. Therefore, arc loss361

predictions made within 7 mins before the onset time of arc loss tloss are rewarded with a362

maximum reward of (+1.0) given at toptimal = tloss – 5 mins. However, positive predictions363

that are more than 7 mins before tloss (i.e., t < tearly) are penalized (-0.5). Additionally,364

late arc loss predictions are unhelpful, and missed arc loss predictions are significantly365

harmful. To reflect this, arc loss predictions made up to 2 minutes after tloss (i.e., t > tlate)366

are slightly penalized (-0.1), while no arc loss predictions or missed alarms are heavily367

penalized (-2.0).368
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Figure 17: The scoring functions for negative and positive predictions during normal (right) and faulty (left)
operating periods. True positives are rewarded based on their time stamps, while false negatives (i.e., models
that fail to predict arc loss before tlate) receive a penalty of -2.0. Late predictions (tloss < t < tlate) are
slightly penalized with -0.1, and false positives are penalized with -0.5. True negatives are neither rewarded
nor penalized.

During normal operating periods (N), when no arc loss events occur within 10 mins (i.e.,369

t < tearly or t > tlate), false alarms can lead to decreased confidence in monitoring models370

and poor allocation of operational attention and resources. To address this, false alarms371

(i.e., ŶN(t) = 1) are penalized with a score of -0.5. However, negative predictions (i..e,372

ŶN(t) = 0) are neither rewarded nor penalized.373

The total score of a model’s predictions is calculated by summing the scores across all374

time steps t:375
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Utotal =
∑
t∈T

U(t) (2)

To facilitate interpretation, we normalize Equation 2 such that all scores fall within the376

range [0 - 1], using the following Equation:377

Unormalized =
Utotal − Uinactive

Uoptimal − Uinactive

(3)

where Uoptimal denotes the unnormalized optimal score while Uinactive denotes the unnor-378

malized score for a completely inactive classifier (no positive predictions). The highest379

possible normalized score Unormalized is 1, which is awarded to the optimal model that380

accurately predicts all arc loss events with a 5-min warning and generates no false alarms.381

Conversely, an inactive model that only outputs negative predictions and does not detect382

any arc loss events will receive a normalized score Unormalized of 0. The winner of the chal-383

lenge will be determined based on the model with the highest normalized score Unormalized384

on the unseen testing set.385

8. Demonstration of an Arc Loss Prediction Workflow386

This section provides a demonstration example of the arc loss prediction workflow us-387

ing the benchmark dataset. The example serves as a baseline framework for the arc loss388

challenge. The demonstration starts with an overview of the methods used to clean the raw389

data. It is followed by a description of the predictive model used for workflow development390

and its performance evaluation. Participants can use the baseline Python implementation391

available on the challenge website as a template for developing their own submissions.392

8.1. Data preprocessing393

Data preprocessing is a crucial procedure that involves cleaning and preparing data for394

analysis and modelling. The quality of data preprocessing can significantly impact the395

generalization performance and effectiveness of the final model or analysis. When done396

properly, data preprocessing can enhance the accuracy of the analysis and improve the397

model’s performance. However, inadequate data preprocessing can lead to inaccurate or398

biased results. In this demonstration example, data preprocessing tasks include removing399

outliers, handling shutdown data, imputing missing data, and scaling or normalizing data.400

22



Outliers are data points that lie far away from the rest of the data points in a dataset. To401

remove outliers from the raw dataset, the Z-score method was used. This method involves402

calculating the Z-score for each data point, which is the number of standard deviations403

away from the mean that the point lies. Data points with a Z-score greater than a specified404

threshold were considered outliers and were replaced with NaN (Not a Number). The405

threshold value used in this method was set to 3. Next, the data from shutdown periods406

(i.e., periods of zero or low activity) were carefully handled using the zero-imputation407

technique. It involves identifying periods of time during which power values are below a408

certain threshold for more than a certain time threshold (refer to section 6.2) and replacing409

these values with zeros. To address missing data (represented by NaN values), a forward-410

fill operation was performed. This method involves filling missing values with the last411

measured value. However, in cases where missing values occur at the beginning of the412

time series with no previous measurements, a backward-fill approach was used, where413

missing values were filled with the first measured value in the time series. Finally, the414

data were scaled to have zero mean and unit variance. The scaling was performed by415

subtracting the mean and dividing it by the standard deviation of the training data.416

8.2. Arc loss prediction: baseline performance417

Given the binary characteristic of the problem at hand, logistic regression was chosen418

as the natural baseline model to demonstrate the feasibility of our benchmark in validat-419

ing data-driven process monitoring workflows. Logistic regression is a widely used and420

well-established algorithm for binary classification tasks, providing an effective and in-421

terpretable starting point for our analysis. The logistic regression model estimates the422

probability of a time stamp belonging to the faulty class (Y = 1), using a logistic or sig-423

moid function. This probability is then converted into a binary prediction by applying a424

threshold, typically 0.5. To address the class imbalance, cost-sensitive learning was used.425

This involves assigning different costs to both classes during the training process inversely426

proportional to their frequencies. Specifically, misclassifying faulty class instances (false427

negatives) has a higher cost than misclassifying normal class instances (false positives).428

A hold-out strategy was employed for model evaluation. The train/val set was split into429

two subsets: a training set comprising January-August data used for training the model,430

and a validation set comprising September-October data used for validating the models’431

hyper-parameters. Next, a random search over a manually predefined search space is per-432

formed to find a well-performing model configuration. Finally, the model with the hyper-433

parameter configuration that achieved the best performance on the validation set during434

the random search was tested on the testing set.435

Table 3 summarizes the performance evaluation of the baseline model reported on the436
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testing set. To assess the model’s performance, we use three key terms: true positive437

(TP), false negative (FN), and false positive (FP) predictions. In our case, we define a TP438

prediction as a positive prediction made between the time interval of tearly and tloss. On439

the other hand, an FN prediction is a negative prediction made during t ∈ [tearly − tloss].440

Finally, an FP is a positive prediction made at t /∈ [tearly − tloss]. To help illustrate a TP441

prediction made by the baseline model on the testing set, readers are referred to Figure 18.442

Table 3: Performance evaluation of the baseline workflow. Abbreviations: TP- true positives, FP - false
positives, FN - false negatives.

Baseline score TP FP FN Precision Recall F2 Unormalized

247 499 173 0.3311 0.5881 0.5091 0.2077
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Figure 18: An illustration of a TP prediction.

The baseline workflow presented in this section is intended to serve as a starting point443

rather than a complex solution. Participants are encouraged to use it as a reference point444

to measure and compare their own workflows. The results of the baseline demonstrate the445

suitability of the benchmark dataset for testing data-driven process monitoring workflows.446

The well-defined problem and well-documented faults provide a suitable testing ground.447

For more complex solutions, readers can refer to our previous work [32] where traditional448

and contemporary approaches to representation learning and binary classification were449

compared in a comprehensive analysis for their ability to predict arc loss. Additionally,450

Table 4 summarizes various approaches for addressing different challenges that can be451

tested and validated using this benchmark dataset. By exploring these approaches, re-452
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searchers can develop a deeper understanding of the strengths and limitations of different453

methods, and develop more effective and robust monitoring workflows.454

Table 4: Comparison of baseline and suggested methods for various challenge tasks: a guide for participants

Tasks Baseline approach Suggested methods

Outliers removal Z-score method
Interquartile range method [33]

Distance-based methods [34, 35]
Domain knowledge (PV limits)

Shutdown data
handling Zero-imputation

Exclusion (removal from analysis)
Integration (include in the analysis)

Segmentation (separate analysis)

Missing data
imputation

Forward/ backward
filling

Regression imputation [36, 37]
K-nearest neighbor imputation [38]

DL imputation [39, 40]

Feature selection/
extraction

N/A
Dimensionality reduction [41]

Embedded methods [42]
Deep representation learning [43]

Fault detection &
diagnosis Linear ML model

Threshold-based methods [44]
Statistics-based methods [45]

DL models [46, 47]

9. Conclusion455

The arc loss benchmark dataset is a valuable resource that contains a large amount of his-456

torical industrial data from a large-scale metallurgical process with an unexpected process457

fault, namely an arc loss. The dataset spans an entire year of operation data collected458

from various metallurgical process units with fast sampling rates. The paper describes the459

process in detail and presents an overview of the data characteristics, such as data types,460

variables, and sampling rates. Additionally, the paper introduces the arc loss challenge,461

which is an open-source challenge that provides the community with a standardized dataset462

and evaluation framework for comparing different industrial fault detection methods. The463

primary objective of the arc loss challenge is to catalyze research in the fast-growing field464

of process monitoring and FDD, and to investigate whether the success of deep learn-465

ing and ML in computer vision and natural language processing can be replicated in the466
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process industries. The authors believe that the arc loss benchmark dataset will be a valu-467

able asset to the FDD community and will inspire new ideas for real-world industrial data468

applications.469
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Appendix A. Process Variable Information476

Table A1: Overview of process parameters.

Tag Description Range Unit

Progress parameters
1. t Time [yyyy-mm-dd hh:mm:ss]
Smelting parameters
2. AP Electrode A power 0-60 MW
3. BP Electrode B power 0-60 MW
4. TP Total power (AP+BP) 0-100 MW
5. APSP Electrode A power set point 0-60 MW
6. BPSP Electrode B power set point 0-60 MW
7. AC Electrode A current 0-100 kA
8. BC Electrode B current 0-100 kA
9. ACSP Electrode A current set point 0-100 kA
10. BCSP Electrode B current set point 0-100 kA
11. AV Electrode A voltage <2200 Volts
12. BV Electrode B voltage <2200 Volts
13. AVSP Electrode A voltage set point ≤2200 Volts
14. BVSP Electrode B voltage set point ≤2200 Volts
15. AR Resistance around electrode A ≥ 0 mΩ
16. BR Resistance around electrode B ≥ 0 mΩ

To be continued
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Table A1 (continued)

Tag Description Range Unit

17. ARSP Resistance around electrode A set point ≥ 0 mΩ
18. BRSP Resistance around electrode B set point ≥ 0 mΩ
19. SER Specific Energy Ratio 410-440 W/ton
20. AL Arc A length mm
21. BL Arc B length mm
22. CrucHL Crucible (the wall) heat loss 0-5 MW
23. RoofHL Roof heat loss 0-5 MW
24. PCHL Plain cooler heat loss ≥ 0 MW
25. UWCHL Upper chilled water heat loss ≥ 0 MW
26. LWCHL Lower chilled water heat loss ≥ 0 MW
27. HFansHL Hearth (Fans) heat loss ≥ 0 MW
28. HTCsHL Hearth (Technological Control System) heat loss ≥ 0 MW
29. SL Slag level mm
30. ML Metal level mm
31. FOGET Off-gas temperature 180-630 ◦C
32. TPA Slag tap A valve opening 0-100 %
33. TPB Slag tap B valve opening 0-100 %
34. CO2 CO2 volume 0-25 %
35. ST Slag temperature after being tapped ◦C
Furnace feed parameters
36. FF Furnace feed rate 0-200 tons/hr
37. FFDiv5APos Furnace Feed Inlet Diverter 5A Position 1 [0,1]
38. FFDiv5BPos Furnace Feed Inlet Diverter 5B Position 1 [0,1]
39. FFDiv5CPos Furnace Feed Inlet Diverter 5C Position 1 [0,1]
40. FFDiv5DPos Furnace Feed Inlet Diverter 5D Position 1 [0,1]
41. FFDiv5EPos Furnace Feed Inlet Diverter 5E Position 1 [0,1]
42. FFDiv5FPos Furnace Feed Inlet Diverter 5F Position 1 [0,1]
43. W1OC Weir 1 valve opening [0,1]
44. W2OC Weir 2 valve opening [0,1]
45. W3OC Weir 3 valve opening [0,1]
46. W4OC Weir 4 valve opening [0,1]
47. W5OC Weir 5 valve opening [0,1]
48. W6OC Weir 6 valve opening [0,1]
49. W7OC Weir 7 valve opening [0,1]

To be continued
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Table A1 (continued)

Tag Description Range Unit

50. W8OC Weir 8 valve opening [0,1]
51. W1F Weir 1 flow rate 0-200 tons/hr
52. W2F Weir 2 flow rate 0-200 tons/hr
53. W3F Weir 3 flow rate 0-200 tons/hr
54. W6F Weir 6 flow rate 0-200 tons/hr
55. W7F Weir 7 flow rate 0-200 tons/hr
56. W8F Weir 8 flow rate 0-200 tons/hr
57. W1 Weir 1 flow rate ≥ 0 mA
58. W2 Weir 2 flow rate ≥ 0 mA
59. W3 Weir 3 flow rate ≥ 0 mA
60. W4 Weir 4 flow rate ≥ 0 mA
61. W5 Weir 5 flow rate ≥ 0 mA
62. W6 Weir 6 flow rate ≥ 0 mA
63. W7 Weir 7 flow rate ≥ 0 mA
64. W8 Weir 8 flow rate ≥ 0 mA
65. TMF Total microwave flow rate ≥ 0 mA
66. W1T Feed temperature after leaving weir 1 ◦C
67. W2T Feed temperature after leaving weir 2 ◦C
68. W3T Feed temperature after leaving weir 3 ◦C
69. W4T Feed temperature after leaving weir 4 ◦C
70. W5T Feed temperature after leaving weir 5 ◦C
71. W6T Feed temperature after leaving weir 6 ◦C
72. W7T Feed temperature after leaving weir 7 ◦C
73. W8T Feed temperature after leaving weir 8 ◦C
74. IT1 Feed temperature in the distribution bin 1 ◦C
75. IT2 Feed temperature in the distribution bin 2 ◦C
76. IT3 Feed temperature in the distribution bin 3 ◦C
77. IT4 Feed temperature in the distribution bin 4 ◦C
78. PAT Feed temperature entering port A ◦C
79. PB1T Feed temperature entering port B1 ◦C
80. PB2T Feed temperature entering port B2 ◦C
81. PB3T Feed temperature entering port B3 ◦C
82. PB4T Feed temperature entering port B4 ◦C
83. PB5T Feed temperature entering port B5 ◦C

To be continued
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Table A1 (continued)

Tag Description Range Unit

84. PB6T Feed temperature entering port B6 ◦C
85. PC1T Feed temperature entering port C1 ◦C
86. PC2T Feed temperature entering port C2 ◦C
87. PC3T Feed temperature entering port C3 ◦C
88. PC4T Feed temperature entering port C4 ◦C
89. PC5T Feed temperature entering port C5 ◦C
90. PC6T Feed temperature entering port C6 ◦C
91. PC7T Feed temperature entering port C7 ◦C
92. PC8T Feed temperature entering port C8 ◦C
93. PC9T Feed temperature entering port C9 ◦C
94. PC10T Feed temperature entering port C10 ◦C
95. WBCVPF Weigh bin cone valve position feedback ≥ 0 mA
96. WBCVOMV Weigh Bin Cone valve opening (Measured Value) 0-100 %
97. WBCVPCO Weigh Bin cone valve position controller output ≥ 0 mA
98. CVPCSP Cone valve position controller set point 0-100 %
99. FFPAPAF Furnace feed pipe A, A-port flow ≥ 0 tons/hr
Reduction parameters
100. FBRLSP Fluidized bed reducer level set point m
101. FBRL Fluidized bed reducer level m
102. FBRCMV Fluidized bed reducer level mA
103. FBRLCO Fluidized bed reducer level controller output ≥ 0 mA
104. FBRCVC Fluidized bed reducer cone valve control 0-100 %
105. FBRBedT Fluidized bed reducer temperature 800-1100 ◦C
Calcining parameters
106. CalcFR Calciner feed rate ≥ 0 tons/hr
107. CoalFeed Coal feed rate ≥ 0 tons/hr
Laboratory parameters
108. AL2O3 Al2O3 concentration in the slag ppm
109. FeO FeO concentration in the slag ppm
110. MgO MgO concentration in the slag ppm
111. Ni Ni concentration in the slag ppm
112. SiO2 SiO2 concentration in the slag ppm
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