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A B S T R A C T

A digital twin provides a digital replication of a physical system for remote monitoring, viewing, and
control objectives. It has the potential to reshape the future of industrial processes, hence paving
the way for smart manufacturing. Automatic system identification techniques that are robust to
measurement noise are critical for the development of high-fidelity digital twins and their applications.
By establishing a sparse regression framework, the sparse identification of nonlinear dynamics
(SINDy) algorithm automatically determines the parsimonious governing equations for physical
systems. However, there are some major challenges associated with using SINDy to identify digital
twin models. First, the SINDy is restricted to solving the ordinary differential equation (ODE)
and partial differential equation (PDE) problems. Second, measurement noise may significantly
deteriorate the performance of SINDy. In this paper, the generalized SINDy (GSINDy) algorithm
is first introduced to enlarge the SINDy’s applicable range. Then, the modified GSINDy (MGSINDy)
algorithm is proposed, in which an objective function is constructed to simultaneously identify the
digital twin input time-series dynamics model and output model while separating noise from the
noisy input. Two numerical examples and one industrial case study are analyzed to demonstrate
the advantages of applying the proposed MGSINDy to construct digital twin models. Furthermore,
the proposed algorithm can be integrated with the existing SINDy-based online model-adjusting
frameworks to become online-adjustable.

1. Introduction
The recent advances in computing technology allow

for faster data processing, larger computational power, and
the use of sophisticated algorithms and thus enabling the
digital representation of a physical system for the purposes
of prediction, monitoring, and control (S Wang et al., 2016).
Digital twins provide users with computer-based digital
representations of physical systems that imitate system be-
haviours and allow digital interactions with real-world pro-
cesses. A digital twin receives process data, asset informa-
tion, record tags, and sensor conditions from the real system.
As a result, the digital twin integrates information from
disparate system sections and processes real-time data from
various sensors or devices to provide estimates of objective
outputs and insights on operational conditions (Kender et al.,
2021; T Wang et al., 2022; Aversano et al., 2019). By
connecting the physical and virtual spaces, the digital twin
becomes the promising technology to achieve industrial 4.0
(Kaur et al., 2019; Tao et al., 2018; Cavone et al., 2022; Hung
et al., 2022).

Digital twins have been broadly applied to enhance man-
ufacturing performance across various industries. It is stated
in (Jimenez et al., 2019) that the digital twins in medical
settings are advantageous and will elevate the medical cyber-
physical system (MCPS). In (T Wang et al., 2022), the
digital twin technique was used to provide a framework
for the deployment of real and virtual spaces inside an
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automated conveyor system in the context of a smart factory.
In (Papanagnou, 2019), a digital twin was constructed for an
assembly line. In this design, the internet of things (IoT)-
captured data is fed back to the digital twin to enhance the
online manufacturing performance. A digital twin is used to
re-engineer an aircraft structural life forecast by integrating
individual physical models into a complete picture of the
aircraft (Tuegel et al., 2011).

Digital twin modelling is the vital step in enabling a
digital twin to accurately simulate the real physical be-
haviour in order to understand the system conditions and
anticipate output precisely (Yin, Bo, et al., 2021). According
to the analysis in (Wright and Davidson, 2020), comparing
with general system identification, an effective digital twin
identification should fulfill three criteria. First, an effec-
tive digital twin model should incorporate sufficient first-
principles knowledge. A completely data-driven model usu-
ally has a limited domain of applicability (Bangi and Kwon,
2023). Including first-principles knowledge will improve the
model’s interpretability and enlarge its domain of applica-
bility. Second, a digital twin model should be sufficiently
accurate to be able to reflect the process dynamics precisely.
Third, a digital twin model should be online-adjustable in
response to the process dynamic changes.

While much work has been expended on introducing the
digital twin concept and defining its architecture, automatic
digital twin modelling from raw sensory data is not yet a
widespread practice. An effective, robust, automatic digital
twin identification technique will reduce modelling time



consumption and minimize the time delay between data
collecting and digital twin creation for a manufacturing
process (Uhlemann et al., 2017).

Data-driven approaches for system dynamics discovery
are pushing the boundaries of system identification and
providing an extraordinary opportunity for automatic dig-
ital twin modelling (Kaiser et al., 2018). However, typi-
cal data-driven identification techniques have several com-
mon issues, such as overfitting, lack of interpretability, and
sensitivity to data quality (Yin and Huang, 2022). Real-
time measurements are contaminated by noise, which will
deteriorate system identification accuracy. This paper pro-
poses an automatic, noise-robust digital twin identification
approach that promotes sparsity to strike a compromise
between model complexity and accuracy while improving
model interpretability.

The sparse identification of nonlinear dynamics (SINDy)
proposed in (Brunton et al., 2016) allows for the automated
discovery of dynamic systems’ governing equations from
abundant data. The SINDy consists of three major phases.
Collecting time-series data is the initial stage. Then, the sec-
ond stage is to build a model term library. At this stage, if po-
tential first-principles model terms are available, they can be
directly included in the library. The flexible library construc-
tion procedure allows SINDy to combine first-principles
knowledge and data-driven techniques (Raviprakash et al.,
2022) to increase the model’s interpretability and domain of
applicability. Since the number of model terms inside the
library is usually numerous, the last phase of SINDy is to
solve a sparse regression problem between the library model
terms and objective outputs to select active model terms
from the library. By solving the sparse regression problem,
parsimonious models will be generated to minimize overfit-
ting, hence improving the interpretability of the discovered
models (Kaiser et al., 2018).

SINDy-based algorithms have been applied extensively
in identifying chemical process models, including continu-
ous stirred tank reactor (CSTR) (Bhadriraju, Narasingam,
et al., 2019), distillation column (Subramanian et al., 2021),
hydraulic fracturing (Narasingam and Kwon, 2018), and
isothermal batch reactor (Abdullah et al., 2021). In addi-
tion to chemical processes, SINDy-based algorithms have
also been applied to fluid dynamics (Brunton et al., 2016),
physics (K P Champion et al., 2019), and biology (Mangan
et al., 2016) to identify the governing equations.

Although SINDy and its variants have been widely uti-
lized to discover governing equations in a variety of fields,
there are still several challenges of using SINDy to construct
general digital twin models. First, the SINDy is restricted
to solving the ordinary differential equation (ODE) and
partial differential equation (PDE) problems, in which the
output is the derivative or partial derivative of the input
and the number of input and output variables is equal. In
(J Wang et al., 2022), the authors earlier extended the SINDy
to the generalized SINDy (GSINDy), making it applicable
to general multi-input multi-output (MIMO) digital twin
identification problems.

Second, the real industrial measurements are contami-
nated by noise, which deteriorates the accuracy of SINDy-
identified digital twin models, resulting in deviations be-
tween digital twin simulations and actual system conditions
(Shardt and Huang, 2013; Xu et al., 2008). The ensemble-
SINDy (E-SINDy) technique was proposed in (Fasel et al.,
2021), conducting sparse regression on bootstraps and then
finding an ensemble of SINDy models to make the algorithm
robust to noisy and limited data. In (Kaheman et al., 2020),
the modified SINDy (MSINDy) algorithm was proposed to
simultaneously denoise process data and discover nonlinear
dynamics of the state. In this paper, the modified GSINDy
(MGSINDy) is developed with the utilization of both SINDy
and GSINDy. The proposed algorithm simultaneously de-
tects the digital twin input time-series dynamics model and
output model while denoising the noisy input. By utilizing
the proposed approach, the robustness and accuracy of digi-
tal twin identification will be enhanced.

In addition to time-invariant system identification, sev-
eral SINDy-based online model-adjusting frameworks have
been developed. In (Bhadriraju, Bangi, et al., 2020), an
operable adaptive sparse identification of systems (OASIS)
was proposed to first identify multiple SINDy-based sparse
models according to different operating conditions, and then
train a deep neural network to predict and update the sparse
model that should be used for the model-based controller.
The OASIS algorithm was subsequently integrated with a
risk assessment approach to provide a fault prognosis for
chemical processes (Bhadriraju, Kwon, et al., 2021). In
(Bhadriraju, Narasingam, et al., 2019), a three-step frame-
work was developed to first apply SINDy offline to iden-
tify the model terms and then use ordinary least-squares
regression and step-wise feature selection to update model
parameters and features online in response to the process
dynamic changes. A SINDy-based rapid model recovery
framework was proposed in (Quade et al., 2018) to detect
model divergence and update the SINDy-identified model to
ensure online estimation accuracy. The proposed MGSINDy
algorithm can be seamlessly integrated with the above men-
tioned adaptive implementation frameworks by substituting
the SINDy step with the MGSINDy to adjust the MGSINDy-
identified models online.

The main contribution of this paper is to propose a novel
digital twin identification approach for automatic digital
twin construction in the presence of input measurement
noise. In this approach, the input time-series dynamics and
the output model mapping the denoised input to actual
output are simultaneously identified. This simultaneous sys-
tem identification and measurement denoising procedure is
accomplished by solving an optimization problem with an
appropriately designed objective function, considering the
input measurement noise, the input time-series dynamics,
and the sparse output model parameters as optimization
variables. The proposed algorithm has the potential to be
adjusted online by integrating with the current SINDy-based
adaptive system identification frameworks.
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The remainder of this paper is organized in the following
manner. Section 2 explains the current challenges of ap-
plying SINDy to identify general digital twin models, and
Section 3 provides an overview of the SINDy and GSINDy
algorithms. Section 4 elaborates on the proposed MGSINDy
approach. In Section 5, two numerical examples and one case
study of an industrial diesel hydrotreating (DHT) unit are
investigated to demonstrate the advantages of the proposed
MGSINDy approach. Finally, section 6 concludes this paper.

2. Problem Statement

This work focuses on the development of digital twin
models for MIMO nonlinear physical systems. As a conse-
quence, we consider the continuous-time, nonlinear system
of the form,

�̇�𝑡 = 𝑓𝑥(𝐱𝑡),
𝐲𝑡 = 𝑓𝑦(𝐱𝑡),

(1)

where 𝐱 ∈ ℝ𝑛𝑥 is the input variable, and 𝑓𝑥 is a Lip-
schitz continuous vector field describing the input time-
series dynamics; 𝐲 ∈ ℝ𝑛𝑦 is the output variable, and 𝑓𝑦 is
the nonlinear output model, mapping the input variables to
the output variables. In addition, 𝑡 ∈ ℝ𝑚 represents time
instants.

In this study, we would like to simultaneously identify
the time-series dynamics, 𝑓𝑥, and the output model, 𝑓𝑦. We
assume that the inputs are directly measured, and the outputs
are either directly measured or collected from lab analysis.
When simulating a real physical system with a digital twin,
the input measurements are unavoidably contaminated by
noise,

𝐗𝐧 = 𝐗 + 𝐍, (2)

where 𝐗 =
[

𝐱𝑡1 𝐱𝑡2 … 𝐱𝑡𝑚
]𝑇 ∈ ℝ𝑚×𝑛𝑥 is the noise-free

input measurement, and 𝐗𝐧 represents the noise-corrupted
input measurement, and 𝐍 denotes the input measurement
noise, which is assumed to be Gaussian noise in this analysis.

When applying SINDy to identify the digital twin mod-
els, there exist some major challenges. As previously stated
in Section 1, SINDy is restricted to identifying the ODE and
PDE relationships, in which the output is set to be equal to
the derivative or partial derivative of input, resulting in equal
number of input and output variables. As a result, the SINDy
is only applicable to solve for 𝑓𝑥. In (J Wang et al., 2022),
the GSINDy is introduced to extend the SINDy’s output
to general system output measurements and eliminate the
constraint on the number of output variables. Consequently,
GSINDy is applicable to identify 𝑓𝑦.

In addition, a digital twin simulates the real physical sys-
tem operations. A well-built digital twin model can correctly
mirror the state of the real system. The construction of digital
twin models is based on the data collected through sensors or
other measurement devices (Dang et al., 2022). In real oper-
ations, such measurements are invariably affected by noise,

and the measurement noise will deteriorate model identifica-
tion accuracy from SINDy or GSINDy, resulting in estima-
tion deviations from the actual values (Sun et al., 2021). The
objective of this study is to propose a noise-robust, automatic
digital twin identification algorithm, which simultaneously
identifies the digital twin input time-series dynamics model
and output model while denoising the input measurement.
In this instance, since the output variable is the prediction
objective, the output value is considered accurate and used
as a benchmark for evaluating the model accuracy.

3. The SINDy and GSINDy Algorithms

3.1. SINDy

Understanding the time-series dynamics of the input is
critical for gaining an insight into the system operational
conditions. SINDy uses three phases to determine the non-
linear time-series dynamics of the input, 𝑓𝑥. The first step is
to acquire or generate data. In addition to collecting sensor
readings, clean data may be generated by solving an ODE
or a PDE problem in numerical simulations. Although the
input derivative is difficult to measure, it may be calculated
using numerical techniques, such as the central difference
approach. The second stage is to establish a model term
library, which will include prospective model terms, from
which the system model may be constructed. This library
is highly flexible. If prior knowledge about the system is
accessible, particular model terms from first-principles in-
formation can be included in the library. Data-driven model
terms, such as polynomial, trigonometric, and Fourier terms,
are conventional to construct a SINDy model term library.
Notably, the first-principles and data-driven terms can be
combined to create an overall comprehensive model term
library, resulting in a hybrid identification procedure.

An integrated model term library with polynomial and
first-principles terms is provided as an example,

𝚯𝐱(𝐗) =
[

𝟏 𝐗 𝐗𝑃2 … UAΔT …
]

, (3)

where 𝚯𝐱(𝐗) denotes the model term library for input dy-
namics, and 𝐗𝑃𝑖 represents all polynomial terms of order 𝑖.
For instance,

𝐗𝑃2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥21,𝑡1 𝑥1,𝑡1𝑥2,𝑡1 … 𝑥22,𝑡1 … 𝑥2𝑛𝑥,𝑡1
𝑥21,𝑡2 𝑥1,𝑡2𝑥2,𝑡2 … 𝑥22,𝑡2 … 𝑥2𝑛𝑥,𝑡2
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑥21,𝑡𝑚 𝑥1,𝑡𝑚𝑥2,𝑡𝑚 … 𝑥22,𝑡𝑚 … 𝑥2𝑛𝑥,𝑡𝑚

⎤

⎥

⎥

⎥

⎥

⎦

.

(4)

In equation (3), UAΔT is a hypothetical first-principles term
from heat transfer, where U is the overall heat transfer coef-
ficient, A denotes the heat transfer area, and ΔT represents
the temperature difference (Bergman et al., 2011).

SINDy’s last phase, after constructing the model term
library, is to solve a sparse regression problem to extract
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relevant model terms from the library. The regression is
formulated as,

�̇� = 𝚯𝐱(𝐗)𝚵𝐱, (5)

where �̇� denotes the numerically calculable input derivative,
and 𝚵𝐱 is the sparse parameter matrix for input dynamics,
which provides the users with sparse model term selection
and the corresponding parameters for the input time-series
dynamics. Typically, the sequential least squares (SLS) re-
gression algorithm is used to solve the sparse regression
problem in SINDy, since it forces zero magnitude parameters
to promote model sparsity (Brunton et al., 2016; K Cham-
pion et al., 2020).

3.2. GSINDy

To enlarge the SINDy’s applicable range, in (J Wang
et al., 2022), the GSINDy is introduced to relax the restric-
tions on the SINDy’s output. Along with collecting input
measurements, GSINDy also collects output measurements
over time,

𝐘 =
[

𝐲𝑡1 𝐲𝑡2 … 𝐲𝑡𝑚
]𝑇 , (6)

where 𝐘 ∈ ℝ𝑚×𝑛𝑦 . Subsequently, the output model term
library, 𝚯𝐲(𝐗) is constructed. Then, the following sparse
regression problem is to be solved to achieve the sparse
parameter matrix for output model, 𝚵𝐲,

𝐘 = 𝚯𝐲(𝐗)𝚵𝐲. (7)

Fig. 1 illustrates the GSINDy method graphically. Both
SINDy and GSINDy use the SLS to solve the sparse regres-
sion problem between objective outputs and library model
terms through an iterative procedure. In each iteration,
the SLS forces the parameters in 𝚵 whose magnitudes are
smaller than the threshold, 𝜆, to be zero. The nonzero param-
eters indicate that their corresponding library model terms
are active. Subsequently, another iteration is performed
between the active model terms and the objective outputs
until convergence. Usually, ten iterations are sufficient for
parameter convergence. By solving the sparse regression
problem, the majority of the entries in the sparse parameter
matrix, 𝚵, will equal to zero, providing us with a sparse
governing equation. In Fig. 1, the colourful dots in the
𝚵𝐲 matrix reflect the identified active model terms for the
individual output variable.

4. The MGSINDy Algorithm
Section 3, introduced the SINDy and GSINDy ap-

proaches. In this section, the MGSINDy is proposed using
SINDy to identify the time-series dynamics of input vari-
ables, 𝑓𝑥, while using GSINDy to estimate the relation-
ship between denoised input and actual output, 𝑓𝑦. In the
MGSINDy, a time-stepping constraint is used to estimate
the input noise and ensure the consistency of estimated and
true input time series dynamics (Kaheman et al., 2020; Rudy
et al., 2019). The simultaneous digital twin identification and

Fig. 1: Graphical illustration of the GSINDy procedure.

signal-noise decomposition is achieved through an appropri-
ately designed objective function. The three sections of the
designed objective function in MGSINDy are introduced in
detail in the following subsections.

4.1. Input Derivative Estimation Error

In MGSINDy, the input time-series dynamics are esti-
mated by

𝑓𝑥(𝐗) = 𝚯𝐱(𝐗)𝚵𝐱. (8)

When performing digital twin identification on a genuine
physical system, the input measurements are unavoidably
contaminated by noise. Then, the SINDy’s estimation for
the nonlinear time-series dynamics of a noisy input can be
written in the form of

�̇�𝐧 = 𝚯𝐱(𝐗𝐧)𝚵𝐱 = 𝚯𝐱(𝐗 + 𝐍)𝚵𝐱, (9)

where �̇�𝐧 is the derivative of noisy input, 𝚯𝐱(𝐗𝐧) is the
model term library constructed based on the noisy input.

This allows for the formulation of the derivative estima-
tion error of input, 𝑒𝑥,𝑑 , minimizing the difference between
the SINDy-estimated input derivative and the numerically
computed noise-free input derivative,

𝑒𝑥,𝑑 =
‖

‖

‖

‖

̇̂𝐗 −𝚯𝐱(�̂�)𝚵𝐱
‖

‖

‖

‖

2

2

=
‖

‖

‖

‖

̇̂𝐗 −𝚯𝐱(𝐗𝐧 − �̂�)𝚵𝐱
‖

‖

‖

‖

2

2
.

(10)

In equation (10), �̂� and𝚵𝐱 are two uncorrelated optimization
parameters, which will result in trivial solutions (Rudy et al.,
2019) using noise to capture all the input dynamics. In order
to solve this optimization problem to refine estimates for
both the input measurement noise, �̂�, and the SINDy model
parameter, 𝚵𝐱, time-stepping constraints are applied to form
the input simulation error, as described in (Rudy et al.,
2019), and (Kaheman et al., 2020).
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4.2. Input Simulation Error

Equation (8) uses SINDy to estimate the input vector
field, 𝑓𝑥. The discrete-time map from 𝐱𝑗 to 𝐱𝑗+1 may be
found by integrating this vector field over one step of time,
𝑡𝑗 to 𝑡𝑗+1,

𝐱𝑗+1 = 𝐅𝐱(𝐱𝑗) = 𝐱𝑗 + ∫

𝑡𝑗+1

𝑡𝑗
𝚯𝐱(𝐱(𝜏))𝚵𝐱 𝑑𝜏, (11)

where 𝐅𝐱 denotes the one time step integration of input
vector field, 𝑓𝑥. This integration can be performed for 𝑞 time
steps to integrate the current input forward or backward. For
example,

𝐱𝑗+𝑞 = 𝐅𝐱
𝑞(𝐱𝑗) = 𝐱𝑗 + ∫

𝑡𝑗+𝑞

𝑡𝑗
𝚯𝐱(𝐱(𝜏))𝚵𝐱 𝑑𝜏. (12)

With the availability of the SINDy-estimated, nonlinear
input time-series dynamics, 𝑓𝑥, we can also use the numer-
ical method to determine the denoised input value in the
future and previous 𝑞 steps, 𝐱𝑗+𝑞 and 𝐱𝑗−𝑞 . In this paper, we
use the 4th-order Runge-Kutta (RK4) approach to compute
the denoised estimate of 𝐱𝑗+𝑞 ,

�̂�𝑗+𝑞 = �̂�𝑞
𝐱(�̂�𝑗)

= �̂�𝑗 + ∫

𝑡𝑗+𝑞

𝑡𝑗
𝚯𝐱(�̂�(𝜏))𝚵𝐱 𝑑𝜏.

(13)

In this instance, we are able to generate two estimates of
the denoised input at time instant 𝑗 + 𝑞. One is the result
of subtracting the noise estimate from the noisy input mea-
surement, �̂�𝑗+𝑞 = 𝐱𝐧𝑗+𝑞 − �̂�𝑗+𝑞 , and the other is the result
of the 𝑞-step simulation from �̂�𝑗 using the RK4 algorithm,
�̂�𝑗+𝑞 = �̂�𝑞

𝐱(�̂�𝑗). This provides us with the time-stepping
constraint to optimize the combination between �̂� and 𝚵𝐱.

Equation (14) further elaborates on the integration of
input dynamics estimation and noise estimation based on
time-stepping constraint,

�̂�𝐧𝑗+𝑞 =

�̂�𝑗+𝑞
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
�̂�𝑞
𝐱(𝐱𝐧𝑗 − �̂�𝑗
⏟⏞⏟⏞⏟

�̂�𝑗

) +�̂�𝑗+𝑞 . (14)

Involving the time-stepping constraint to the overall objec-
tive function of the MGSINDy will not only provide us
with additional constraint to prevent trivial solutions but also
enforce the consistency of the estimated and true input time-
series dynamics.

Consequently, at time instant 𝑗, the error associated with
the input estimate from past 𝑞 time steps to the future 𝑞 time
steps is

𝑒𝑥,𝑠,𝑗 =
𝑞
∑

𝑖=−𝑞,𝑖≠0
𝑤𝑖

‖

‖

‖

𝐱𝐧𝑗+𝑖 − �̂�𝑗+𝑖 − �̂�𝑖
𝐱(�̂�𝑗)

‖

‖

‖

2

2
, (15)

where 𝑒𝑥,𝑠 is the input simulation error, and 𝑤𝑖 = 0.9|𝑖|−1
is a weighting parameter that exponentially decreases the
importance of the input simulation error at each time instant
away from 𝑖. This weighting parameter enables us to place
a higher premium on recent estimates and a lower premium
on distant forecasts. The overall input simulation error over
the entire estimation trajectory is

𝑒𝑥,𝑠 =
𝑚−𝑞
∑

𝑗=𝑞+1
𝑒𝑥,𝑠,𝑗

=
𝑚−𝑞
∑

𝑗=𝑞+1

𝑞
∑

𝑖=−𝑞,𝑖≠0
𝑤𝑖

‖

‖

‖

𝐱𝐧𝑗+𝑖 − �̂�𝑗+𝑖 − �̂�𝑖
𝐱(�̂�𝑗)

‖

‖

‖

2

2
.

(16)

4.3. Output Prediction Error

To determine the input time-series dynamics and the
output model at the same time, an additional error is in-
cluded in the overall objective function. Similar to equation
(10), the output prediction error, 𝑒𝑦, representing the differ-
ence between the output measurement and its corresponding
GSINDy prediction, is

𝑒𝑦 =
‖

‖

‖

𝐘 −𝚯𝐲(�̂�)𝚵𝐲
‖

‖

‖

2

2

= ‖

‖

‖

𝐘 −𝚯𝐲(𝐗𝐧 − �̂�)𝚵𝐲
‖

‖

‖

2

2
,

(17)

where 𝐘 denotes the measured output value and is regarded
as accurate; 𝚯𝐲 is the model term library for output predic-
tion, and 𝚵𝐲 is the corresponding sparse parameter matrix.

Up to now, we have introduced three categories of errors.
Among these error equations, there exist three optimization
parameters, 𝚵𝐱, �̂�, and 𝚵𝐲. By aggregating the three errors,
we are able to formulate the overall objective function of the
optimization problem in the MGSINDy,

(𝚵𝐱,𝚵𝐲, �̂�) = 𝑒𝑥,𝑑 + 𝑒𝑥,𝑠 + 𝑒𝑦

=
‖

‖

‖

‖

̇̂𝐗 −𝚯𝐱(�̂�)𝚵𝐱
‖

‖

‖

‖

2

2

+
𝑚−𝑞
∑

𝑗=𝑞+1

𝑞
∑

𝑖=−𝑞,𝑖≠0
𝑤𝑖

‖

‖

‖

𝐱𝐧𝑗+𝑖 − �̂�𝑗+𝑖 − �̂�𝑖
𝐱(�̂�𝑗)

‖

‖

‖

2

2

+ ‖

‖

‖

𝐘 −𝚯𝐲(�̂�)𝚵𝐲
‖

‖

‖

2

2
.

(18)

Subsequently, the optimization problem can be summarized
as

𝚵𝐱,𝚵𝐲, �̂� = argmin
𝚵𝐱 ,𝚵𝐲 ,�̂�

(𝚵𝐱,𝚵𝐲, �̂�), (19)

where the elements within 𝚵𝐱 and 𝚵𝐲 whose magnitudes
are less than the thresholding parameters 𝜆𝑥 and 𝜆𝑦 will
be forced to equal zero to form a thresholding optimization
procedure.

In the MGSINDy, the optimization technique is inte-
grated with the SLS to build the thresholding optimization

5



procedure (Kaheman et al., 2020). At the first optimization
loop, the noise estimates are initialized as zeros or small
values close to zero. In the overall thresholding optimization
procedure, the number of optimization loops is user-defined.
Generally, the estimation error diminishes as the number of
optimization loops increases and the algorithm converges.
Following each optimization loop, the user will acquire the
estimated 𝚵𝐱, �̂�, and 𝚵𝐲. After that, the denoised input, �̂�, is
calculated and used to build the model term libraries, 𝚯𝐱(�̂�)
and 𝚯𝐲(�̂�), while the ̇̂𝐗 is computed numerically. In the
meanwhile, the thresholding parameters 𝜆𝑥 and 𝜆𝑦 are used
to determine the active model terms from the parameters
given in 𝚵𝐱 and 𝚵𝐲, respectively. Afterward, regressions are
performed between the active terms inside 𝚯𝐱(�̂�), 𝚯𝐲(�̂�)
and ̇̂𝐗, 𝐘, respectively.

Typically, the model term library for SINDy-based al-
gorithms contains a number of nonlinear terms, creating a
non-convex optimization problem for the MGSINDy. When
constructing the model term library, 𝚯(�̂�), the complexity
of the library should be progressively enhanced to avoid
the SINDy-based algorithms identifying superfluous terms.
In the case of generating a large-size model term library,
the computational time required to solve the optimization
problem would increase. Nevertheless, since there is no
specific constraints on the overall objective function, the
MGSINDy optimization problem can be solved by using the
Adam optimizer with the capability to converge to a local
minimum. In the case of converging to a poor local mini-
mum, multi-start strategy can be conducted by re-initializing
the noise estimates.

In addition, the sparsity and accuracy of the identified
models are sensitive to the value of thresholding parameter,
𝜆. If the 𝜆 is too small, additional terms might be determined,
then, 𝚵 and �̂� will be easier to stuck in their local minimums.
If 𝜆 is too large, the algorithm will miss the necessary model
terms, resulting in performance degradation. When using the
MGSINDy, one may progressively raise the values of 𝜆𝑥 and
𝜆𝑦, until the performance begins to degrade significantly,
at which point the appropriate thresholding parameter value
will be determined. Detailed discussion about the effects of
data length, number of optimization loops, and values of
thresholding parameters can be found in (Kaheman et al.,
2020).

Fig. 2 illustrates the proposed MGSINDy algorithm.
As shown in this figure, MGSINDy aims to concurrently
identify the digital twin input time-series model and output
model while isolating the noise from noisy input measure-
ment. The MGSINDy accomplishes this objective by solv-
ing an optimization problem with a three-section objective
function. The first section is the input derivative estimation
error, 𝑒𝑥,𝑑 , minimizing the difference between the SINDy-
estimated derivatives and the numerically-calculated, de-
noised input derivatives. The input simulation error, 𝑒𝑥,𝑠, is
the second section, expressing the time-stepping constraint.
The last component of the overall objective function is
the output prediction error, 𝑒𝑦, minimizing the difference

between the real output measurements and the GSINDy
predictions.

5. Case Studies

5.1. Numerical Examples

5.1.1. Rössler Attractor

The Rössler attractor is also known as Rössler system
and was first introduced by Otto Rössler in 1970s as a three-
dimensional ODE system describing continuous chaotic dy-
namics (Maris and Goussis, 2015; Gaspard, 2005). The
Rössler attractor is defined by the following ODEs:

�̇�1 = −𝑥2 − 𝑥3,
�̇�2 = 𝑥1 + 𝑎𝑥2,
�̇�3 = 𝑏𝑥1 − 𝑐𝑥3 + 𝑥1𝑥3,

(20)

where 𝑥1, 𝑥2, 𝑥3 are dynamical variables, and 𝑎, 𝑏, 𝑐 are
parameters. In this study, we will evaluate the MGSINDy’s
performance using a set of Rössler attractor parameters that
is commonly used: 𝑎 = 0.2, 𝑏 = 0.2, 𝑐 = 5.7 (Kuznetsov
et al., 2014). The output model is designed as

𝑦1 = −2𝑥21 + 0.5𝑥33,

𝑦2 = 2𝑥1𝑥2 + 𝑥23,

𝑦3 = 𝑥1𝑥3 − 𝑥1𝑥2𝑥3.

(21)

When constructing a polynomial library, the library or-
der is progressively increased. As a result, the second-order
and the third-order model term libraries are built for the input
time-series dynamics model and the output model, respec-
tively. Owing to the noise-corrupted nature of the input, we
use 𝐗𝐧 inside the library representation. Accordingly,

𝚯𝐱(𝐗𝐧) =
[

𝐗𝐧 𝐗𝐧
𝑃2
]

, (22)

𝚯𝐲(𝐗𝐧) =
[

𝐗𝐧 𝐗𝐧
𝑃2 𝐗𝐧.

3 Xn,1Xn,2Xn,3
]

, (23)

here 𝐗𝐧.3 only contains the third-order term of each individ-
ual input variable, which is a subset of 𝐗𝐧

𝑃3 .
Traditionally, it requires one application of SINDy and

another application of GSINDy to identify both the input
time-series dynamics and the output model. Through apply-
ing the proposed MGSINDy algorithm, these two types of
models are achieved simultaneously with the signal-noise
decomposition of input. In this example, the clean input
values are generated by solving the ODE system with a time
step of dt = 0.02, a time span of T = 25, and the initial
condition is 𝐱0 =

[

5 2 15
]

. The accuracy of MGSINDy
is then evaluated by adding Gaussian noise to the clean
input at levels of 5%, 15%, and 25%. The magnitude of
the noise is generated according to the percentage of the
standard deviation of the clean data. It takes 400, 550, and
600 samples for the MGSINDy to identify the input time-
series dynamics and output prediction models with relatively
high accuracy at 5%, 15%, and 25%, respectively. In general,
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Fig. 2: Graphical illustration of the MGSINDy objective function.

as the noise level increases, more samples will be required to
accurately identify the model. The data length requirement
and the denoising performance for non-Gaussian noise for
the MSINDy-based algorithm are discussed in (Kaheman
et al., 2020). In this example, we use T = 25 (1250 samples)
for performance demonstration.

Thresholding parameters are set to 𝜆𝑥 = 0.1 for SINDy
and 𝜆𝑦 = 0.4 for GSINDy. The same parameters are applied
in MGSINDy. According to the investigation in (Kaheman
et al., 2020), the model identification accuracy will not
be notably increased by increasing the prediction step 𝑞.
However, the computational cost increases linearly with an
increase of 𝑞. As a consequence, 𝑞 = 1 is an appropriate

choice to preserve the accuracy of system identification
while minimizing the computational cost. In this example,
the number of optimization loops is three. For all examples
in this paper, the Adam optimizer with a learning rate of
0.001 is used to solve the optimization problem.

In Fig. 3, the left column shows the clean input data
generated by solving the Rössler ODE system and the
noise-corrupted data with different noise levels. While the
right column shows the denoised input data by applying
the MGSINDy algorithm with clean data as references.
Comparing the two columns in Fig. 3, we can observe
that the MGSINDy successfully denoised the noisy input
with varying levels of noise. In Table 1, the SINDy and
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Fig. 3: Graphical illustration of noise-corrupted and MGSINDy-
denoised Rössler attractor data with different noise levels using
clean data as references.

Table 1
SINDy and MGSINDy-estimated Model Parameters at 25% Noise
Level with References.

Model Library Terms
Methods 1 𝑥1 𝑥2 𝑥3 𝑥1𝑥2 𝑥1𝑥3 𝑥2𝑥3
Reference 𝟎 𝟎 −𝟏 −𝟏 𝟎 𝟎 𝟎

�̇�1 MGSINDy 0 0 −1.0 −1.0 0 0 0
SINDy 0 0 −0.9 0 0 0 −0.4

Reference 𝟎 𝟏 𝟎.𝟐 𝟎 𝟎 𝟎 𝟎
�̇�2 MGSINDy 0 1 0.2 0 0 0 0

SINDy 0 1 0.2 0.4 0 0 −0.1
Reference 𝟎.𝟐 𝟎 𝟎 −𝟓.𝟕 𝟎 𝟏 𝟎

�̇�3 MGSINDy 0 0 0 −5.1 0 0.9 −0.1
SINDy −0.2 0 0 −2.7 0 0.6 −0.3

MGSINDy-estimated model parameters at 25% noise level
are presented. Since neither the SINDy nor the MGSINDy
identifies the 𝐗.2 terms, these terms are omitted from the
table. In the presence of measurement noise, SINDy is more
susceptible to mistakenly determining the incorrect model
terms than MGSINDy. In addition, the SINDy-estimated
parameters show greater deviations from the references than
the MGSINDy-estimated values due to noise contamination.

The graphical illustration of output predictions from
GSINDy and MGSINDy-identified models are shown in Fig.
4. Without noise-signal decomposition, the GSINDy can
only form the model term library using noisy inputs, which

Table 2
ARMSE from the GSINDy and MGSINDy for Rössler System
Output Predictions.

Noise level(%) Variable GSINDy MGSINDy
𝑦1 6.82 7.1e-3

5% 𝑦2 3.18 4.1e-3
𝑦3 4.07 3.6e-3
𝑦1 21.34 0.48

15% 𝑦2 9.14 0.31
𝑦3 10.58 0.15
𝑦1 34.98 0.83

25% 𝑦2 14.89 0.72
𝑦3 16.07 0.97

will in turn, deteriorate the output model identification ac-
curacy. On the contrary, the MGSINDy estimates input
measurement noise, input time-series dynamics, and output
model simultaneously. The model term library based on the
denoised input enables identifying a more accurate output
model and hence improves the output prediction accuracy
significantly.

Table 2 presents the quantitative performance compar-
isons for GSINDy and MGSINDy output predictions. In
Table 2, the average root mean squared errors (ARMSE)
for 1000 Monte Carlo runs are presented. In each Monte
Carlo run, the noise is regenerated. The ARMSE values are
calculated as

ARMSE =

√

√

√

√
1
𝐿

1
𝐾

𝐿
∑

𝑙=1

𝐾
∑

𝑘=1
‖𝑒𝑘,𝑙‖2, (24)

where 𝑒 represents the error between the reference and the
prediction at each time instant for each Monte Carlo run;
L represents the number of Monte Carlo simulation runs,
which is 1000 in this example, and K is the number of
time step within each simulation run, equaling 1250. The
ARMSE values comparison presented in Table 2 proves that
the MGSINDy makes the system identification procedure
more noise-resistant.

5.2. Michaelis-Menten Kinetics

The Michaelis-Menten kinetics is derived from an enzy-
matic reaction and can be expressed as (Mangan et al., 2016)

�̇� = 0.6 − 1.5𝑥
0.3 + 𝑥

, (25)

which is a nonlinear ODE. Two strategies might be used
to detect this nonlinear ODE model using SINDy-based
methodologies. To begin, assuming prior knowledge is avail-
able, and we know that the objective function is rational,
we can therefore create a model term library involving the
rational terms, such as

𝚯𝐱(𝐗) =
[

𝟏 𝐗 𝐗
𝐚+𝐗

]

, (26)
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Fig. 4: Graphical illustration of GSINDy and MGSINDy output predictions for Rössler attractor example at different noise levels using
clean data as references.

where 𝐚 represents a set of arbitrary numbers and each value
inside 𝐚 corresponds to a rational model term. This type of
library is not recommended in the absence of precise prior
system knowledge.

Alternatively, equation (25) can be rearranged into

�̇� = 0.6 − 3𝑥 − 10
3
𝑥�̇�. (27)

In this case, the nonlinear ODE is converted into a linear-in-
parameter form, and the standard second-order polynomial
library is sufficient by assigning ẋ as the second variable.
Then, the input vector is augmented as, 𝐱 =

[

x ẋ
]

=
[

x1 x2
]

. When creating the second-order polynomial li-
brary, individual ẋ term is removed from the library to avoid
the trivial solution.

The output model is constructed in the following man-
ner:

𝑦 = 3�̇� + 2�̇�2. (28)

During simulation, equation (25) is solved using the python
function solve ivp with dt = 0.001 and T = 4 to generate
the clean input data. Following that, three levels of Gaussian
noise of 10%, 20%, and 30%, are applied to the clean data.
We chose 𝜆𝑥 = 0.3 for SINDy and 𝜆𝑦 = 0.5 for GSINDy,
and the same parameters are assigned for MGSINDy. Three
optimization loops were applied for MGSINDy optimization
process.

Table 3 presents the GSINDy and MGSINDy predic-
tions’ ARMSE values over 1000 Monte Carlo simulation
runs for the Michaelis-Menten kinetics example. According
to the ARMSE value comparison, denoising the input data
enables the MGSINDy to identify a more accurate output
model, resulting in more accurate output predictions and
demonstrating that MGSINDy is a noise-robust system iden-
tification technique.
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Fig. 5: Graphical illustration of the DHT unit.

Table 3
ARMSE from the GSINDy and MGSINDy for Michaelis-Menten
Kinetics Analysis.

Noise level(%) Variable GSINDy MGSINDy
10% 𝑦 0.022 3.4e-3
20% 𝑦 0.048 4.5e-3
30% 𝑦 0.070 5.7e-3

5.3. Diesel Hydrotreating Unit Digital Twin Construction

In petroleum industry, a DHT unit is critical to desulfur-
izing the crude oil input to comply with applicable environ-
mental criteria for generating clean fuels. A digital twin for
the DHT unit can assist the producer in optimizing process
control, allowing them to overcome the double-edged chal-
lenge of achieving the ever-stricter diesel fuel regulations
while simultaneously generating more diesel products from
lower-quality feedstocks.

Fig. 5 presents a simplified diesel hydrotreating process.
Seven input variables are utilized in the digital twin mod-
elling of this DHT unit, including flowrates of five feed
streams and one recycling stream, as well as the reactor tem-
perature. For proprietary reasons, specifics concerning the
input process variables have been withheld, and all the data
are normalized in this case study. In this process, five feed
streams are mixed together with the recycling stream and fed
into the furnace to be heated to the reactor operating temper-
ature. Meanwhile, a portion of the inlet hydrogen is directly
get into the reactor, while the remainder is heated through

a furnace and combined with the heated input stream to
enter the catalytic reactor. The diesel hydrotreating process
occurs inside the reactor and produces light and heavy reac-
tion products. The output from the reactor is cooled before
being transported to a separator. The light reaction products
separated from the separator will get into an absorber, which
will remove sulphur and ammonia from the hydrogen. The
heavy reaction products will enter the fractionation tower
for ultimate separation, yielding hydrocarbons, gasoline, jet,
diesel, and heavy oil, (Gary et al., 2007; Ahmad et al., 2011).

Flowrates of three critical outputs are selected as the
objective output variables, including gasoline, jet, and diesel
yields, all expressed in barrels per hour (BPH). Since the
number of input and output variables are different, GSINDy
is applied to provide the benchmark for this case study. Ac-
cording to hydrotreater reaction kinetics, the first-principles
term, e−

Ea
RT , is added to the model term libraries, where T is

the reactor temperature in unit of Kelvin and is one of the
input variables, and Ea represents the activation energy. The
value of Ea varies based on the feed streams composition,
types of catalyst, and reaction conditions. In this case study,
Ea = 121.4 KJ∕mol is utilized for analysis and the gas-law
constant R equals 8.314 J∕molK (Robinson and Dolbear,
2006). The values of this first-principles term are normalized
inside the library.

Subsequently, customized model term libraries are con-
structed for this DHT unit digital twin identification. The
model term libraries for input time-series dynamics and the
output predictions are

𝚯𝐱(𝐗) =
[

𝐗 e−
Ea
RX7

]

, (29)
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𝚯𝐲(𝐗) =
[

𝐗 e−
Ea
RX7 tanh(3.2 ⋅ X1−6)

]

, (30)

where 𝐗 =
[

X1 … X7
]

, and X1−6 represents the six
flowrates of the feed and recycle streams and X7 is the reac-
tor temperature. The hyperbolic tangent of the six flowrates,
tanh(3.2 ⋅ X1−6), are added to the output model term library
to help capture the nonlinearity, and 3.2 is a constant scale
factor scaling the X1−6 values within the tanh operator.

The thresholding parameters for input time-series dy-
namics and output model identifications are 𝜆𝑥 = 0.2, 𝜆𝑦 =
0.22, respectively. In MGSINDy, dt = 0.01 is used to de-
noise the input measurement. The Adam optimizer was used
with two optimization loops. In this example, hourly data
over one year are available. After removing outliers, 8593
samples are used to construct the digital twin model, while
the remaining 3682 samples are used to assess the models’
performance. Different from the numerical examples, which
apply the identified output models on denoised data set,
the MGSINDy-identified models are directly applied to the
noisy test data for performance testing in this case study.

Table 4 summarizes the prediction accuracy based on
testing samples in terms of mean squared error (MSE).
According to the MSE comparison, by denoisng the input
measurements, the MGSINDy is able to construct more
accurate digital twin models for the DHT unit output pre-
dictions, yielding 18% to 41% performance improvement.
Frequently, SINDy-based algorithms focus on identifying
parsimonious governing equations, which could provide
more interpretability and larger domain of applicability.
However, after implementation, the process dynamics may
change along time. Therefore, it would be beneficial to
monitor the performance of the implemented digital twin
model and adjust the model online when necessary. Several
SINDy-based online model updating frameworks have been
proposed in literature (Bhadriraju, Narasingam, et al., 2019;
Quade et al., 2018). In the presence of measurement noise,
the MGSINDy can be seamlessly integrated with these
frameworks by replacing the SINDy-identified models with
the MGSINDy-identified models to provide a noise-robust,
online-adjustable digital twin identification framework.

6. Conclusions

Digital twin is the vital concept that enables the use of
digital technology to boost system operational efficiency,
hence increasing economic profit and lowering labour costs.
Numerous conceptual and structural introductions have been
introduced to demonstrate the advantages of digital twins.
However, systematic digital twin identification approaches
that can automatically discover digital twin models in the
presence of input measurement noise have not been well
analyzed. In this work, the MGSINDy is proposed as an
extension of the SINDy (Brunton et al., 2016), the GSINDy
(J Wang et al., 2022), and the MSINDy (Kaheman et al.,
2020). The proposed MGSINDy algorithm simultaneously
identifies the input time-series dynamics and the output

Table 4
MSE from the GSINDy and MGSINDy for DHT Unit Objective
Outputs Prediction.

Objective GSINDy MGSINDy % Performance
Outputs (BPH) Increase

Gasoline 0.53 0.37 30
Diesel 0.17 0.14 18

Jet 0.39 0.23 41

model, while denoising the input measurements. Comparing
to traditional noise filtering approaches, such as low-pass
filtering, which only consider the information of input, the
proposed MGSINDy algorithm utilizes both input time-
series dynamics and the output information to denoise the in-
put, resulting in a more prediction-beneficial denoising pro-
cedure. Both numerical examples and industrial case study
demonstrate the effectiveness of the proposed approach. In
each numerical example, the capacities of denoising input
data and identifying the digital twin model are tested against
three distinct levels of noise. In the industrial DHT unit case
study, the MGSINDy successfully improves the output pre-
diction accuracy for 18% to 41%, indicating higher accuracy
of digital twin identification. The proposed modelling algo-
rithm can be applied to general industrial process digital twin
constructions, such as paper production, automobile manu-
facturing, and solvent recovery to automatically discover the
digital twin models in the presence of input measurement
noise. Additionally, the proposed MGSINDy algorithm can
be integrated with the SINDy-based online model updating
frameworks to perform online performance monitoring and
model adjusting.
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