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Abstract

The early warning of drilling faults is of paramount importance to prevent or reduce environmental and property damages.
In view of the complex drillstring kinematic characteristics and changeable formation environment, this paper proposes a
new fault early warning method for the drillstring system based on a multi-model fusion and self-updating strategy. The
major contributions are twofold: 1) A hybrid drillstring early warning method is proposed to identify faulty conditions
based on the fusion of multi-dimensional prediction models of the drillstring system; 2) An event-triggered model self-
updating strategy is proposed to mitigate the prediction performance degradation caused by formation uncertainties.
The effectiveness and practicability of the proposed method are demonstrated by industrial case studies, and the results
indicate that the proposed method outperforms other approaches.
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1. Introduction

Geological drilling is an indispensable process for deep
geothermal development, geological prospecting, and min-
eral exploration. The complex geological environments
with high temperature, high pressure, and high terres-
trial stress contribute to undesirable drilling faults, such
as drillstring failures, which can compromise human safe-
ty and increase the asset cost [1, 2]. Therefore, ensuring
process safety has long been desired for geological drilling
processes. In drilling processes, identifying the dynamical-
ly changing formation environment and processing multi-
source heterogeneous data are challenging for a drilling
operator, making downhole faults difficult to detect or pre-
dict timely [3, 4]. Therefore, a well-designed early warning
system is paramount to prevent or reduce environmental
and property damage caused by faults. The research topic
on detecting downhole faults is commonly encountered in
oil, natural gas, and geological drilling processes.

With the advent of modern information systems, data-
driven methods have been extensively studied due to the
availability of a large amount of process data [5, 6, 7]. Neu-
ral networks often provide superior performance in fitting
the strong nonlinear relationship between drilling data and
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the corresponding faults [8, 9]. A 3D-convolutional neural
network was used to detect early signs of a stuck pipe [10].
Fault diagnosis models were established using neural net-
works and Bayesian classifiers based on change features of
drilling signals, such as multi-scale trend features and local
trend features [11, 12]. Since obtaining data in faulty con-
ditions is rather tricky in geological drilling, unsupervised
learning methods were applied where almost no faulty da-
ta were available. An abnormality detection method was
proposed based on clustering drilling conditions and estab-
lishing normal operating zones [13]. A prediction model for
the stuck pipe fault is built based on the trend of the key
signal captured using change point detection and moving-
window regression [14]. Further, the dissimilarity between
distributions is utilized to detect incipient downhole fault-
s [15]. However, the data-driven fault diagnosis approach
lacks mechanistic knowledge and primarily dependents on
historical data, which can hardly cover all drilling condi-
tions, and thus is prone to generate false alarms.

Recently, mechanical models were combined with data-
driven methods to improve the robustness of the fault di-
agnosis method [16]. These methods effectively reflect the
dynamic characteristics and variable dependencies in the
drilling process. For instance, drilling incident diagnosis
methods for the lost circulation and gas influx were pro-
posed using mechanistic model-based adaptive observer-
s and statistical change detection algorithms [17]. For
the drillstring washout fault detection, a hydrodynamical
model-based unscented Kalman filter was combined with
a likelihood ratio test [18]. However, the previously men-
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tioned approaches fall short in drillstring safety monitoring
because they are designed based on the hydrodynamical
model of the drilling fluid system, which is quite challeng-
ing to reflect the movements of the drillstring.

The development of the drillstring motion model has
received increasing studies in the fields of stick-slip vibra-
tions control and weight on bit control [19, 20]. A phys-
ically consistent nonlinear drillstring model was proposed
for analyzing the stick-slip and bit bounce using downhole
measurements [21]. A major problem with the mechanis-
tic model-based prediction method is that the performance
depends strongly on the estimated model parameters. S-
ince model parameters are prone to formation uncertain-
ties, the above methods for calculating model parameter-
s off-line have inherently poor adaptability. Consequent-
ly, existing drillstring monitoring methods typically focus
on analyzing the fault-sensitive signals or extracting their
change features [22].

According to the analysis, there are two major limita-
tions with the methods above: 1) The diagnosis model
was developed directly using original drilling signals with-
out considering their physical dependent relationships; 2)
Existing static models can hardly meet the safety mon-
itoring demands with the uncertainties of the geological
structure, rock type, and drilling mechanical design.

A well-designed monitoring system should be able to de-
tect existing abnormalities as well as achieve early warn-
ing of impending faults. According to the discussion, the
mechanistic model is helpful in describing variable depen-
dencies from physical kinematics; while the data-driven
method becomes powerful as it relies on data to learn the
underlying structure of drilling processes. In the era of in-
dustrial artificial intelligence, some advanced process mon-
itoring methods incorporate mechanistic knowledge into
data-driven models to improve nonstationary process mon-
itoring performance [23, 24]. This provides opportunities
to develop a hybrid early warning framework using the
drilling data and drillstring mechanism.

Due to formation uncertainty and downhole distur-
bance, the drillstring exhibits axial and torsional motion in
the drilling process. A single-motion model is difficult to
describe the motion characteristics of the drillstring accu-
rately. Meanwhile, the drillstring passes through multiple
formations in a drilling project. The formation uncertain-
ties, such as the formation trend, rock type, and hard-
ness grade, lead to the normal range of drilling signals
being different in various downhole formations. Motivat-
ed by the above discussions, this paper proposes an early
warning method for drillstring faulty conditions based on
multi-model fusion. The contributions are as follows: 1)
a hybrid drillstring early warning method is proposed to
identify faulty conditions based on the fusion of multi-
dimensional prediction models of the drillstring system;
2) an event-triggered model self-updating strategy is pro-
posed to mitigate the prediction performance degradation
caused by formation uncertainties.

The rest of the paper is organized as follows: Section 2

describes the problem to be solved. Section 3 presents the
systematic method for fault early warning. Section 4 pro-
vides the industrial case studies for illustration, followed
by discussions and conclusions in Section 5.

2. Problem Description

As shown in Fig. 1, a typical geological drilling system
is composed of several components, including a rotary ta-
ble, draw works, drill line, drillstring, drill bit, and mud
pump. The drilling process mainly depends on the drive
table rotating the drill bit to break downhole rocks. The
rock-breaking power comes from two aspects: 1) the rotary
table drives the drill bit to rotate through the drillstring,
which transfers the energy from the surface to the drill
bit; 2) the draw works controls the pressure applied to the
drill bit by changing the speed of the lowering drillstring.
Meanwhile, the mud pump pumps the drilling fluid into
the wellbore to ensure the borehole stability [3]. The ro-
tational speed of the rotary table is denoted by RPM; the
torque of the rotary motor is TRQ; the downward speed of
the drillstring is described by Rate Of Penetration (ROP);
and the pulling force of the draw works on the drillstring
is Hook Load (HKL).

Commonly seen faulty conditions associated with the
drillstring include the stuck pipe, bit bounce, washout,
and twist-off; these faults account for more than 15% of
the non-productive time. The stuck pipe is created from
one of several scenarios, such as insufficient hole cleaning
and wellbore-geometry issues. The bit bounce is due to the
drilling bit being rebounded by the hard downhole forma-
tion. The washout is caused by corrosion and abrasion of
the drillstring, allowing the drilling fluid to leak into the
annulus. If the washout is not detected, it can slowly de-
velop into a twist-off. The above events can be reflected by
abnormal changes in measured signals, such as HKL, ROP,
TRQ, and RPM. However, sometimes consequent changes
in response to the events are minor and not easily cap-
tured. Moreover, the drilling mechanism determines that
there are strong dependencies between the above four sig-
nals. Thus, the original signals, dependencies, and down-
hole uncertainties should be considered together to detect
faulty conditions.

This study aims to design a drillstring safety monitor-
ing method, enabling the early warning of downhole events
upon encountering high-risk scenarios, so as to preven-
t catastrophic accidents. The problem to be solved is to
monitor the drilling signals online and capture abnormal
changes that are sensitive to faults. First, the prediction
models should be developed to describe the normal operat-
ing characteristics of the drillstring. Then, the fault early
warning can be achieved by comparing the difference be-
tween the predicted signal and the online collected signal.
Considering the variable geological environments, a model
parameter updating strategy is necessary to improve the
adaptability of the method.
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Figure 1: Schematic of a geological drilling process. Key variables
associated with drillstring related faults are presented in rectangles.
The blue background represents the drilling fluid, and red arrows
indicate the flow directions.

3. The proposed fault early warning method

This section presents the drillstring fault early warning
method. First, the rotational and axial motion models
of the drillstring are developed to predict key variables.
Then, residual signals of the key variables are generated
and the corresponding alarm thresholds are designed. Nex-
t, an event trigger model parameter updating procedure is
presented. Last, the early warning scheme is summarized.

3.1. Constructing drillstring motion models

The energy of the drilling process comes from the rota-
tion crush and axial pressure, and the motion character-
istics of the drillstring can be described by the rotational
and axial motion models.

3.1.1. Rotational motion model

Inspired by rotational motion models for the modeling
and control of drillstring [21, 25], a simplified lumped pa-
rameter rotational modelMr without considering the dis-
placements of each drill pipes is given as

(Jrt + n2
0Jm)Θ̈ + cvΘ̇ − n0Tr = 0, (1)

where Jrt and Jm denote the inertia of the rotary table
and its motor shaft, respectively; Tr represents the Rotary
Torque (TRQ); n0 denotes the motor gearbox ratio of the
rotary table; cv and Θ denote the effective damping and
the angular displacement of the drillstring, respectively.

The model in eq. (1) can be rewritten as

n0(JΘ̈ + cvΘ̇) = Tr, (2)

where J = Jrt+n2
0Jm

n0
is the effective inertia. Since the sam-

ples are discrete, the discrete form of eq. (2) is expressed
as

1

n0

⎡⎢⎢⎢⎢⎣
J
(Θ̇(k) − Θ̇(k − 1))

ts
+ cvΘ̇(k)

⎤⎥⎥⎥⎥⎦
= Tr(k), (3)

where ts represents the sample interval, and k denotes
the current time stamp. Considering that Θ(k) cannot
be measured directly, the angular velocity is calculated by

Θ̇(k) = r(k)π
30

, (4)

where r denotes the rotational speed of the rotary table
(RPM). The relationship between RPM and TRQ is de-
scribed using the model Mr, which is used to calculate
the prediction TRQ signal.

3.1.2. Axial motion model

In the axial direction, the lifting and lowering of the
drillstring is controlled by a hosting system. By adjusting
the drill line speed via the draw works, the hosting system
carries partial gravity of the drillstring with a certain HKL,
so as to change the Downhole Weight On Bit (DWOB).
Since the DWOB cannot be measured directly, the HKL
is used to model the axial motion equation [20]. The axial
motion modelMa of the drillstring is given as [21]

mdsẍds =mdsg − Fh, (5)

where Fh denotes the hook load, mds is the suspension
mass, and xds indicates the axial response of the drillstring,
which is approximately equal to the hook displacement.

The discrete form of eq. (5) is written as

mds
(vds(k) − vds(k − 1))

ts
= (mdsg − Fh(k)), (6)

vds(k) =
(xds(k) − xds(k − 1))

ts
, (7)

where vds denotes the downward speed of drilltsring, which
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is equal to ROP, and g indicates the acceleration of gravity.
Considering that the axial response of the drillstring xds

is hard to measure accurately, the draw line displacement
xdl is used to calculate it. According to the movable pulley
mechanism, the relationship between xdl and xds is given
by

xds(k) = µxdl(k), (8)

where µ is the rope coefficient of the pulley. Based on
eqs. (5-8) the relation between HKL, ROP, and axial dis-
placement is established.

3.1.3. Model parameter estimation

After determining the drillstring model structure, an-
other key issue is calculating the model parameters. Some
constant values, namely, n0, ts, and g can be determined
based on the drilling mechanisms. Considering the dynam-
ic and time-varying characteristics of the motion model,
parameters such as J and cv in eq. (3), and mds in eq. (6)
should be estimated using historical drilling data. Either
Mr orMa is a single-input single-output discrete model,
which can be described as follows

T̂r = Ψr(r∣J, cv), (9)

F̂h = Ψa(xds∣mds), (10)

where Ψr and Ψa denote the functions from r to Tr and
xds to Fh, respectively.

Here, the non-linear least square is used to estimate
model parameters, which are determined based on nor-
mal historical data [26]. The optimal coefficients in eq. (9)
can be obtained by solving

min
A
∣∣Ψr(r∣A)−Tr ∣∣22=min

A
∑
i

(Ψr (r(i)∣A)−Tr(i))2 , (11)

Ψr(r∣A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ψr (r(1)∣A)
Ψr (r(2)∣A)

⋮
Ψr (r(n)∣A)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

where the set A = {J, cv}. The solution of eq. (11) can be
calculated using the Newton method.

3.2. Residual signal generation and alarm threshold design

According to the analysis in Section 2, the drillstring
faulty condition can be detected early by monitoring
changes in key variables. Here, the first-order residual sig-
nal is adopted to describe the changes and generated by
calculating the error between the estimated and measured
values. On the basis of the established models, T̂r and F̂h

are estimated online, and then residual signals er and ea
ofMr andMa are generated, respectively, as follows:

er(k) = Tr(k) − T̂r(k), (13)

ea(k) = Fh(k) − F̂h(k), (14)

the values of er and ea are calculated every sample.

To visualize the residual signal characteristics, Fig. 2
shows the histogram plots of er and ea, where the blue
and red areas represent the data in normal and faulty con-
ditions, respectively. Designing an alarm threshold that
separates normal and abnormal data is difficult due to the
overlapping area. Therefore, developing an early warning
approach based on amplitude changes is challenging.

Figure 2: Histograms of residual data of TRQ and HKL in normal
and faulty conditions.

Compared to the observation that the residual signals
show minor amplitude changes during early faulty states,
the residual signal distribution changes significantly dur-
ing the deterioration from a normal state to a faulty s-
tate. From this point of view, the early fault warning
can be conducted by detecting changes in the distribution
of residual signals. Several metrics to measure the differ-
ence between two Probability Density Functions (PDFs)
were proposed [27], among which the Wasserstein Distance
(WD) method showed good performance by calculating
the minimum transfer cost from one PDF to another [28].
For example, the performance of the generated adversar-
ial network is significantly improved by introducing WD
to design the loss function. Given two distributions P1

and P2 defined on Euclidean space H, the p-Wasserstein
distance Wp between P1 and P2 is defined by [29]

Wp(P1, P2) = ( inf
ϕ∈Π(P1,P2)

∫ d(x,y)pdϕ(x,y))
1
p

, (15)

where 1 ≤ p < ∞, ϕ indicates a joint probability distribu-
tion, Π(P1, P2) denotes the set of distributions on H ×H
with marginal P1 and P2, and d(x,y) is a function of dis-
tance cost, where the norm-based cost functions including
∣∣x − y∣∣1 and ∣∣x − y∣∣2 are commonly used.

Assume that the sliding window length for the online
monitoring is L1, the residual signals er(k) = [er(k), er(k−
1), ..., er(k − L1 + 1)]T and e(k)a = [ea(k), ea(k −
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1), ..., ea(k −L1 + 1)]T at t = k compose a residual matrix,
i.e., E = [er(k),ea(k)].

The distribution of residual signals can be described us-
ing a multivariate Gaussian distribution as

p(e) = 1

(2π)n
2 ∣Σ∣ 12

⋅ e−
1
2 [(e−µ)

T(Σ)−1(e−µ)], (16)

where e = [er, ea], µ is the mean vector, Σ represents the
covariance matrix, n denotes the dimension of samples.
The µ and Σ can be estimated by

µ̂ = 1

k −L1 + 1

k

∑
t=k−L1+1

ETt , (17)

Σ̂ = E [(E −E[E])T (E −E[E])] , (18)

where the symbol E[⋅] represents the expectation function,
and Ei denotes the ith row of E .

The L2-Wasserstein distance (p = 2) betweenN1(µ1,Σ1)
estimated from residual signals under the normal condition
and N2(µ2,Σ2) estimated from E is given as [29, 28]

W2[N1∣∣N2] = ∣∣µ1−µ2∣∣22+tr [Σ1+Σ2−2(Σ
1
2

1 Σ2Σ
1
2

1 )] , (19)

where ∣∣x∣∣22 = xxT, and tr(⋅) denotes the matrix trace.
To determine whether to generate a fault warning alarm,

it just needs to compare the online calculated W2(k) at
t = k with the alarm threshold Wat,

{ W2(k) ≤Wat ∶ A normal condition,
W2(k) >Wat ∶ Fault alarm,

(20)

It is worth noting that if the alarm threshold is too low,
the normal samples tend to be determined as faults, re-
sulting in massive false alarms. By contrast, higher alarm
thresholds may cause the faults to be misclassified as nor-
mal conditions, resulting in more missed alarms. Hence,
the threshold should be designed based on the statistical
characteristics of historical data. Given a confidence level
α, the threshold Wat is designed to meet the false alarm
rate requirement as follows

P (w ≤Wat) = ∫
Wat

0
p̂(w)dw = 1 − α, (21)

where w denotes the random distance variable calculated
using eq. (19).

3.3. Event triggered model parameter updating strategy

The hardness and compressive strength of rocks differ
in various formations, so the optimal model parameters
are different. The prediction model with fixed parameters
cannot accurately track changes in drilling signals in com-
plex formations, thus generating false alarms. To overcome
formation uncertainties, a model parameter self-updating
strategy should be carried out under the fault-free condi-

tion if the prediction model shows poor performance in the
current formation.

Here, the residual signals ea and er are exploited to de-
termine whetherMr andMa are applicable in the current
formation. First, ea and er are segmented by a sliding win-
dow of length L2. Then, the cumulative sum test is intro-
duced to measure the accuracy of the prediction models,
where the absolute cumulative modeling errors Sr(k) and
Sa(k) are defined as

Sr(k) = ∣
k

∑
i=1

er(i)∣ , k ≤ L2, (22)

Sa(k) = ∣
k

∑
i=1

ea(i)∣ , k ≤ L2, (23)

where k denotes the current time stamp, and e(k) repre-
sents the kth sample in the window. As discussed in Sec-
tion 2, Sr(k) and Sa(k) in the rotational and axial direc-
tions should be monitored, respectively. If an error signal
changes significantly, the corresponding model parameters
must be re-estimated; otherwise, the model parameters re-
main unchanged. An updating strategy for model param-
eters is designed by monitoring the cumulative modeling
errors, i.e.,

Ar(k) = {
0 if Sr(k) ≤ Sth

r

1 otherwise
(24)

Aa(k) = {
0 if Sa(k) ≤ Sth

a

1 otherwise
(25)

where Sth
r and Sth

a denote the change limits, which are de-
termined based on the historical data using the principle in
eq. (21). If Ar(k) or Aa(k) is equal to 1, the corresponding
modelMr orMa needs to be updated.

In the field of fault detection in modern industrial sys-
tems, the event-triggered mechanism has gained increas-
ing attention [30]. Under the event-triggered framework,
an event or alarm is generated only when a predefined
triggering condition is satisfied, such that the calculation
cost can be reduced. Accordingly, the model parameter-
s are updated in an event-triggered manner based on the
cumulative sum test results.

The detailed model parameters updating procedure is
summarized in Algorithm 1. Unlike the sliding window L1

for calculatingWD, the L2 slides window by window rather
than sample by sample. The input includes the window
length L2, the residual signals er and ea, the limits Sth

r and
Sth
a , the time stamp t, and k denotes the starting time

of the current window. The output includes the model
parameters, namely, J , cv, and mds.

3.4. Early warning scheme design

The proposed method includes two major phases, name-
ly, fault early warning and parameter self-updating:
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Figure 3: Scheme for the fault early warning phase in the geological drilling process.
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Figure 4: Scheme for the drillstring model parameter self-updating phase, taking the rotational motion model as an example.

Algorithm 1 Event-triggered model parameters updat-
ing.

1: Input Argument: L2, er, ea, S
th
r , Sth

a , t, k;
2: Output Argument: J , cv, mds;
3: for t − k ≥ L2 do
4: k = k +L2;
5: Slide the window to [k, k +L2 − 1];
6: Sa = 0, Sr = 0;
7: end for
8: if t − k < L2 then
9: Calculate Sr(t) using eq. (24);

10: if Sr(t) > Sth
r then

11: Ar(t) = 1;
12: Update J and cv using eq. (11).
13: else
14: Ar(t) = 0;
15: end if
16: Calculate Sa(t) using eq. (25);
17: if Sa(t) > Sth

a then
18: Aa(t) = 1;
19: Update mds using eq. (11).
20: else
21: Aa(t) = 0;
22: end if
23: if Ar(t) = 1 or Aa(t) = 1 then
24: k = t;
25: Slide the window to [k, k +L2 − 1];
26: end if
27: Sa = 0, Sr = 0;
28: end if

1. Fig. 3 shows the fault early warning phase scheme.
First, the rotational and axial motion models of the
drillstring are developed based on mechanism struc-
ture to predict key variables; Some model parameters
are determined based on the drilling rig or technol-
ogy, while other parameters are estimated based on
the non-linear least square using normal historical da-
ta. Second, residual signals of the two subsystems are
generated based on the predicted and real-time sig-
nals. The dissimilarity between the distribution of
the online data and that of the normal template data
is calculated via WD, so as to obtain the dissimilarity
index. Last, the alarm threshold for the dissimilari-
ty index is designed based on normal historical data
under a given confidence level; the fault or normal s-
tate is determined by comparing the index with the
normal threshold.

2. Fig. 4 shows the scheme for the model parameter self-
updating phase. If no alarm is generated, the cumula-
tive sum errors for the two prediction models are cal-
culated; the model parameters should be re-estimated
if the error exceeds a change limit of the current for-
mation.

To evaluate the fault early warning performance, False
Alarm Rate (FAR), Missed Alarm Rate (MAR), and
Warning Time (WT) are employed as the criteria. The
WT denotes the time interval from the early warning alar-
m to the occurrence of the fault, and the FAR and MAR
are defined as

6



1) False Alarm Rate

PFAR =
Nfn

Ntp +Nfn
× 100%, (26)

2) Missed Alarm Rate

PMAR =
Nfp

Ntn +Nfp
× 100%, (27)

where Nfn stands for the number of normal samples in-
correctly classified into faults, Ntp represents the correctly
classified normal samples, Nfp denotes the normal samples
incorrectly classified into faults, and Ntn indicates the cor-
rectly classified faulty samples.

4. Case study

In this section, drilling data from the ZK3 well were used
to demonstrate the effectiveness of the proposed method.
The ZK3 well was a geological drilling project located in
Hubei Province, China, and the designed depth was 2000
meters. The dataset includes RPM, TRQ, ROP, and HKL;
the sampling period was 1 second. The training and val-
idation datasets came from the same well, where normal
historical data were used as the training dataset, and the
validation dataset included both normal and faulty data.
The signal prediction and fault warning performance are
demonstrated based on the data collected from the project.

4.1. Signal prediction and fault warning performance

To investigate the effectiveness of the established pre-
diction models, Figs. 5 and 6 show the prediction results
of TRQ and HKL under different downhole environments,
where the dashed blue curve and solid red curve denote
original signals and predicted signals, respectively. In
Fig. 5, the predicted signal with the self-updating scheme
could track changes in the original signal, especially when
there is a significant fluctuation in t ∈ [580,800]. By con-
trast, the prediction result with fixed model parameters is
shown in Fig. 6, in which a significant deviation existed
between the predicted signal and the original signal.

Owing to the changeable formation environment, the
prediction performance of a well-trained model with fixed
parameters in one formation can be poorer than in anoth-
er formation. Table 1 summarizes the prediction results of
the rotational motion modelMr and axial motion model
Ma, where the fixed parameter and self-updating strate-
gies are used, respectively. The performance is assessed
using the Root Mean Squared Error (RMSE) as follow

RMSE =

¿
ÁÁÀ 1

N

N

∑
j=1
(xj − x̂j)2, (28)

where N denotes the number of samples, xj represents the
original value, and x̂j indicates the predicted value. It can
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Figure 5: The original and predicted signals of TRQ and HKL, with
the self-updating model parameters.
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Figure 6: The original and predicted signals of TRQ and HKL, with
the fixed model parameters.

Table 1: Comparison of prediction results using different methods
with RMSE (%).

Fixed parameter Self-updating
Mr 15.11 6.28
Ma 13.39 1.08

Average 14.25 3.68

be found that the result of the self-updating method is sig-
nificantly better than that of the fixed parameter method.
The average RMSE decreased from 14.25% to 3.68%.

To investigate the influence of the sliding window length
L1 on fault early warning performance, Fig. 7 shows the
relationship between the Early Warning Time (EWT) and
L1. In general, the shorter L1 corresponds to the longer
ETW. Fig. 8 shows the W distance with different win-
dow lengths. In the case of L1 = 10, the W distance
signal changes frequently with large amplitude. The W
distance signal corresponding to L1 =250 changes more
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slowly, making distinguishing the two upward trends dif-
ficult. It indicates that a shorter L1 is more sensitive to
signal changes. However, the short time window can eas-
ily lead to false alarms. To balance sensitivity to signal
changes with response time to faults, the L1 = 60 was se-
lected for the early warning of drillstring faulty conditions.
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Figure 7: The relationship between the EWT and window length L1.

4.2. Case 1

This case verifies the superiority of the method for the
early warning of a drillstring slip faulty condition. Fig. 9
shows the signal plots and residual generation results.
Figs. 9(a) and (b) show the original and predicted sig-
nals of TRQ and HKL, respectively. The residual signals
er and ea are shown in Figs. 9(c) and (d); the fault early
warning results using the Multi-Model based Wasserstein
Distance (MM-WD) are presented in Fig. 10, where the
blue curve and the red line indicate the W distance and
alarm limit, respectively. For comparison, the T 2 and SPE
signals based on Principal Component Analysis (PCA) are
shown in Fig. 11.

The drillstring was in a normal condition for t ∈
[0,1550]. Due to changes in the geological structure, the
formation cracks encountered by the drill bit caused the
drillstring to slide down in t ∈ [1550,1651]. Then, the sig-
nals came back to the normal variation range. At about
t = 1820, the same event occurred again and lasted longer,
reducing the life of the drillstring. As shown in Figs. 9(a)-
(d), the differences between the original signal and the
predicted signal increased at t=1580, and the differences
were more obvious after t=1820. Meanwhile, the W dis-
tance signal rose sharply at about t = 1580, then peaked at
t = 1810. The above two increases in the W distance ex-
ceeded the normal threshold denoted by the red line, and
thus the first short-term faulty symptom and the second
continuous fault were both detected. It can be found that
the first faulty symptom was detected approximately 200s
earlier before the occurrence of the faulty condition, so the
fault early warning was achieved.
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Figure 8: The W distance with different window lengths.

Table 2: Comparison of fault early warning results using different
methods in Case 1 (%).

Methods PFAR PMAR

T 2 4.30 99.67
SPE 8.63 27.15
AE 7.24 33.44

MM-WD 7.52 7.72

Table 2 presents the fault early warning results using
PCA, Autoencoder (AE), and MM-WD methods with re-
spect to the aforementioned drilling process data. The
performance of these methods is evaluated by FAR and
MAR. The T 2 index has failed to capture the abnormal
changes in signals. Although the faulty symptoms were
detected by the SPE index, the MAR was higher than
25%. By contrast, the faulty condition was detected using
the proposed method with low FAR and MAR, and thus
the MM-WD method outperformed the PCA.

4.3. Case 2

This case shows the cycle from normal drilling to abnor-
mal signal changes, and finally to a twist-off fault. Fig. 12
shows the signals during the abnormal condition. The pre-
dicted and original signals of HKL and TRQ, and residual
signals are shown in Figs. 12(a)-(d). The corresponding
W distance signal is shown in Fig. 13.

The drillstring system was in a healthy state before t =
790, and then the drillstring system fell into an abnormal

8



0 500 1000 1500 2000
Time (s)

15

20

25

H
K

L
 (

kN
)

(b)

0 500 1000 1500 2000
Time (s)

0

2

4

T
R

Q
 (

kN
.m

)

(a)

Original signal
Predicted signal

0 500 1000 1500 2000
Time (s)

-2

0

2

-2

e a (
kN

)

(d)

500 1000 1500 2000
Time (s)

-2

0

2

e r (
kN

.m
)

(c)

Figure 9: Case 1: (a) and (b) The original and estimated signals of
TRQ and HKL; (c) and (d) Time series plots of residual signals ea
and er.
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Figure 10: Case 1: W distance using the proposed MM-WD.

condition in t ∈ [790,930]. After that, the abnormality
quickly deteriorated into a twist-off fault. For comparison,
the SPE and T 2 signals are shown in Fig. 14.
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Figure 11: Case 1: Fault warning results using T 2 and SPE.
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Figure 12: Case 2: (a) and (b) The original and estimated signals of
TRQ and HKL; (c) and (d) Time series plots of residual signals ea
and er.

As shown in Figs. 12(a) and (b), residual signals er and
ea climbed at about t=800, and the amplitudes of residu-
al signals increased significantly after t=930. Undesirable
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Figure 13: Case 2: W distance using the proposed MM-WD.

0 200 400 600 800 1000
Time (s)

0

5

10

T
2

0 200 400 600 800 1000
Time (s)

0

10

20

SP
E

Figure 14: Case 2: Fault warning results using T 2 and SPE.

deviations of er and ea also showed that the system devi-
ated from the normal state. In Fig. 12(e), the W distance
signal rose sharply at around t=790, indicating that the
abnormality was successfully detected. Next, significant
signal changes resulted in a sudden climb of the W distance
at around t=900, indicating the deterioration of the fault
was also detected. Although the potential abnormality in
t ∈ [790,930] did not affect normal drilling operations, it
was necessary to issue an alarm in advance to avoid the
eventual fault. In this way, the fault early warning can be
realized. This illustrates that the proposed method can
detect abnormal changes before the occurrence of faults
and achieve early warning of impending faults.

Table 3 presents the fault early warning results using
different methods in Case 2. Although the FARs of T 2

and SPE were acceptable, the MARs of both two methods
exceeded 70%. By contrast, the proposed method showed
lower FAR and MAR than the PCA-based methods.

Table 3: Comparison of fault early warning results using different
methods in Case 2 (%).

Methods PFAR PMAR

T 2 8.5 70.67
SPE 1.25 79.33
AE 5.87 50.00

MM-WD 0.75 0.00

5. Conclusion

This paper proposes an original framework for the ear-
ly warning of drillstring faulty conditions based on multi-
model fusion in the complex geological drilling process.
First, the rotational and axial drillstring kinematics mod-
els were developed to predict fault-sensitive signals. Then,
residual signals were generated using the difference be-
tween the original signal and the model-predicted signal.
After that, the two residual signals were comprehensive-
ly described with a multivariate Gaussian distribution. To
capture the early signs of faults, the WD was introduced to
calculate the difference from the distribution of the online
residual signal to that of the reference template. If the dif-
ference index violates a predefined threshold, an early fault
warning is generated. Furthermore, an event-triggered
drillstring model parameters updating procedure is pro-
posed to obtain optimal model parameters in the current
formation, so as to overcome the complex and changeable
geological environments. Industrial case studies indicate
that the proposed method outperforms other approaches.
In conclusion, this paper provides a new path to study
the drilling fault early warning problem, and the proposed
method is expected to help drilling operators detect un-
expected downhole events earlier. In future studies, the
alarm threshold can be optimized from the perspective of
reducing detection delay based on historical fault data.
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