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Abstract: Deep learning models have been widely employed in various domains, yet they have
certain limitations when it comes to industrial process applications. The two main challenges
are their inability to effectively handle long-sequence predictions and the complexity of their
internal structure, which makes it difficult to explain the output of the model. This work aims
to build accurate and interpretable soft sensors for industrial processes. The Informer model
is used to build accurate soft sensors due to its proficiency in long sequences. Additionally, an
interpretable machine learning algorithm, SHapley Additive exPlanations (SHAP), is used to
infer the global and local contributions of each feature to the predictions. The effectiveness of
the proposed algorithms is validated on real industrial fluid catalytic cracker unit data, and
the results show that the Informer model has higher accuracy and better long-sequence data
prediction ability. Furthermore, the SHAP analysis enhances the model’s utility by providing
clear insights into the influence of individual features on the predictions, thereby increasing its

transparency and trustworthiness in industrial settings.
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1. INTRODUCTION

With stringent requirements for product quality and cost,
the complexity of automation of industrial processes is
constantly increasing. As the scale of plants grows, it is
urgent to improve the safety and stability of the process,
as any accidental situation in industrial processes can lead
to disastrous consequences, such as serious casualties, eco-
nomic losses, and environmental pollution. Therefore, in
industrial processes, it is vital to monitor critical variables
that are closely related to process safety and economic ben-
efits. These critical variables are called quality variables.
However, some quality variables are difficult or costly to
measure in real-time, posing a significant challenge for
real-time process monitoring. To overcome this challenge,
soft sensor technology has been introduced(Yu et al., 2020;
Qin, 2014). The basic idea of a soft sensor is to select easily
measurable process variables to construct a mathematical
relationship that can estimate the values of quality vari-
ables.

Modern industrial processes are often highly complex,
characterized by multilevel, high-dimensional, strong cou-
pling, and high nonlinearity. Therefore, the search for
soft sensor models capable of accurately describing and
predicting these intricate industrial processes has always
been a focal point in both the industrial and academic

sectors. During the last decades, with the accumulation of
industrial data(Fan et al., 2014; Qin, 2014), the enhance-
ment of computational capabilities(Zhu et al., 2021), and
the advancement of machine learning theories(Gopaluni
et al., 2020), soft sensor models have achieved significant
breakthroughs.

With the richness of process data and the rapid devel-
opment of machine learning techniques, data-driven soft
sensor technologies are increasingly favored. Although soft
sensor models have great potential and value in industrial
applications, they still face significant challenges, partic-
ularly in the areas of time-series prediction and model
interpretability.

Soft sensors for time-series data have become a crucial
tool in industrial process management, primarily due to
their ability to forecast future conditions and trends in
critical quality variables. By providing detailed insights
into potential future states of the system, these sensors
empower engineers to gauge and fine-tune production pro-
cesses preemptively. This proactive approach facilitates
not only process optimization but also a deeper under-
standing of production status and reliability assessment.
With the booming development of big data and computing
power, deep learning-based models have been widely used
in various fields. Compared with traditional statistical



models and machine learning models, deep learning models
can extract patterns and relationships in vast datasets and
often have more accurate results.

While deep learning models have revolutionized time-series
forecasting in industrial applications, their effectiveness
varies due to the complex nature of modern industrial pro-
cesses (LeCun, 2015). Recurrent Neural Networks (RNNs)
introduced the concept of memory to neural networks, en-
hancing their ability to process sequences. However, RNNs
struggle with long-term dependencies and are hindered by
slow training times. Long Short-Term Memory (LSTM)
networks addressed this by incorporating an additional
state in the RNN structure, enabling them to capture
long-term dependencies more effectively. Despite this im-
provement, LSTMs can be computationally demanding,
especially when dealing with large-scale, rapidly arriving,
and long-sequence data. The Transformer model offers a
solution to some of these challenges with its self-attention
mechanism and the ability to process sequences in parallel.
This design improves efficiency in the handling of complex
data structures. However, transformers tend to underper-
form in capturing long-term dependencies because of the
fixed size of their attention window.

In order to tackle the issue of long-term dependencies,
Informer was proposed (Zhou et al., 2021). This model
is specifically designed to be efficient and accurate in fore-
casting long-sequence time-series. It is able to do this by
using mechanisms such as ProbSparse self-attention and
distilling layer, which reduce the computational complex-
ity. Informer is especially effective when dealing with large-
scale time-series data and is capable of making predictions
about future values based on past data. It is more efficient
than the transformer and LSTM in terms of speed and has
excellent performance when dealing with long-sequence
data, making it suitable for industrial processes. In this
paper, we first use Informer to construct a soft sensor.

Although deep learning models have achieved good results
in many fields, little attention has been paid to explaining
their predictions. These models have a common problem:
The internal structure is very complex and difficult for
humans to understand. The output of the model is also
difficult to explain, making its application in some areas re-
lated to life safety or important decision-making very risky.
Due to the risk-sensitive nature of industrial processes, the
reliability and stability of soft sensors are necessary for
industrial applications. Interpreting soft sensor predictions
can increase the reliability and stability of soft sensors.

Interpretable machine learning is a popular field for cur-
rent and future machine learning research. In the design of
soft sensors, interpretability refers to the transparency and
ease of understanding of the model (Murdoch et al., 2019;
Molnar, 2020; Du et al., 2019). A highly interpretable soft
sensor allows users to understand how the model makes
predictions based on input data, which input variables
significantly impact the prediction results, and how these
variables interact with each other. The main methods
of explainable machine learning include LIME (Local In-
terpretable Model-Agnostic Explanations)(Ribeiro et al.,
2016), SHAP (SHapley Additive exPlanations)(Lundberg
and Lee, 2017), Counterfactual Explanations, Explainable
Neural Networks, and Self-explanatory Machine Learning,

etc. Among these methods, SHAP is one of the most
commonly used representative approaches.

SHAP is a post-hoc interpretability method that employs
perturbation tests and is applicable for both local and
global explanations. Inspired by game theory, particularly
the concept of Shapley valuesShapley (1951). Specifically,
it involves perturbing the inputs to the model to under-
stand how combinations of different features affect the pre-
diction. Through this method, SHAP assigns a quantified
importance score to each feature, indicating its importance
in the model decision-making process. This approach not
only provides explanations for individual predictions, but
also assists in analyzing the overall importance of features
in the model.

This work aims to establish robust and interpretable in-
dustrial soft sensors based on Informer and SHAP. The
remainder of this article is organized as follows. In Section
2, detailed explanations of Informer and SHAP are given.
In Section 3, novel robust and interpretable inferential
sensors are proposed, with detailed implementation pro-
cedures and analysis. Section 4 presents a case study on
real commercial fluid catalytic cracker (FCC) unit data to
verify the effectiveness of the proposed method. Section 5
closes the paper with a summary.

2. METHOD
2.1 Informer

The Informer model addresses two critical challenges in
long-term sequence forecasting: efficiently managing long-
term dependencies and reducing both computational and
memory requirements. This model is specifically designed
to handle the complexities of extended sequences, ensuring
that important temporal relationships are captured with-
out overwhelming computational resources. The model’s
effectiveness stems from its innovative architecture, which
we will explore in detail in the following sections.

The ProbSparse Self-Attention Mechanism  Attention in
machine learning is a mechanism that allows a model to
focus on specific parts of an input, allowing it to better un-
derstand the data and make more accurate predictions. At-
tention works by assigning weights to different parts of the
input, allowing the model to focus on the most important
parts of the data. Traditional attention mechanisms were
initially designed for specific tasks, such as sequence-to-
sequence models in machine translation. While traditional
attention is effective in mapping relationships between
elements of two different sequences, it is not inherently
designed to capture the relationships between elements
within a single sequence.

Self-attention, a variant of the attention mechanism, is
designed to weigh the importance of different elements
within a single sequence. This is crucial in tasks where
the relationship between samples in time-series data is
significant. Self-attention is crucial in scenarios where
understanding the internal dynamics of a single sequence
is key. Its ability to consider each element of a sequence in
relation to all others allows for a deeper understanding of
the data, which is essential in soft sensors. Traditional self-
attention computes attention weights using three matrices:



a query matrix Q, a key matrix K, and a value matrix V,

as follows:
KT
Attention(Q, K, V) = softmax <Q > v, (1)

N

The input sequence embeddings are transformed into
these matrices through linear transformations, specifically
Q = XW®O for queries, K = XWX for keys, and V =
XWYV for values, where X represents the input sequence
embedding, and W, WX and WV are the learnable
weight matrices.

The process of self-attention involves calculating the dot
product between each query and all keys to generate a
matrix of scores. These scores are scaled down by dividing
by the square root of the dimension of the key vectors
(V/dy). Next, the softmax function is applied to these
scaled scores to transform the scores into probabilities.
These probabilities dictate how much each part of the
sequence should be considered when constructing the part
of the output corresponding to a given query. Finally, the
output of the self-attention layer is computed as a weighted
sum of the value matrix V, where the weights are the
attention scores.

However, the computational intensity of this mechanism
increases significantly with longer sequences due to the
quadratic growth in the number of pairwise dot-products.
To mitigate this computational burden, the Informer
model introduces the ProbSparse Self-Attention mecha-
nism, which intelligently and selectively samples key-query
pairs from the sequence. Rather than computing the atten-
tion weights for all pairs in K, the ProbSparse mechanism
focuses on a subset of these pairs, represented as K. The
corresponding scores, S, are computed as:

S=QK' (2)
A crucial step in ProbSparse Self-Attention is the selection
of key-query pairs. This is achieved through a statistical
approach where a metric Mgparse is used. One approach
to compute Mgparse for a query q; is to measure the
discrepancy between the maximum score and the average
score across all key interactions. Formally, this can be
expressed as follows.

Miparse(qi) = max(Score(q;, k;))—average; (Score(q;, k;))
J

Here, max; represents the maximum score for query g
across all keys, and average; represents the average score
for the same query across all keys. Once we have computed
the Mgparse values for all queries, we select the queries with
the larger Mgparse values. These queries are considered
more important in the self-attention mechanism. The
selection criterion can be a fixed threshold, a percentile,
or a fixed number of top queries based on their Mgparse
values. This method of calculating Mgparse and using it
to select the most important queries helps speed up the
self-attention mechanism.

Optimizing Memory Usage  The distilling layer in the
Informer model is a crucial component designed to en-
hance the model’s efficiency, particularly in handling long-
sequence data. This layer addresses the challenge of mem-
ory usage and computational overhead associated with
processing extended sequences. One of the primary func-
tions of the distilling layer is to reduce the length of the

sequence. This is achieved without losing critical infor-
mation, which is essential for accurate forecasting. The
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Fig. 1. Informer model overview

distilling layer uses convolutional operations to process
the output from the preceding ProbSparse Self-Attention
blocks. The convolutional operation is mathematically rep-
resented as:

Xout = ELU (W % X;,, + b) (3)
In this equation, Xj, is the input to the distilling layer,
W represents the convolutional kernel, b is the bias
term, and Xy is the output after convolution. The ELU
(Exponential Linear Unit) function is applied for non-
linear activation. The ELU function is defined as follows:

BLU(z) = {Z(ew ~1) ii Z 8 )

Here, x is the input to the activation function, and « is
a hyperparameter. Following the convolutional operation,
the distilling layer applies a max-pooling operation. Max-
pooling helps in further reducing the dimensionality of
the data, which is crucial for managing large sequences.
It selects the maximum value from each subregion of
the convolution output. The operation is represented as
follows:

X pooled = MaxPooling (Xoyt) (5)

This step results in a compressed representation of the
input sequence, retaining the most significant features
while reducing its length. By reducing the length of the
input sequence, the distilling layer significantly decreases
the computational complexity and memory requirements,
making the model more efficient. The addition of the
distilling layer makes the Informer more scalable, capable
of handling very long sequences which are common in time-
series data. This makes the Informer particularly suitable
for complex time-series forecasting tasks.

Figure 1 illustrates the Informer model, which is designed
for long-sequence forecasting tasks. The encoder takes in
lengthy input sequences and uses the ProbSparse self-
attention mechanism and distilling layer to extract and
compress important information, reducing the size of the
network. The encoder’s output, a combined feature map,
combines information from all layers, providing a compre-
hensive context to the decoder. The decoder has both of
those layers, but between them there is a self-attention
layer that helps the decoder focus on relevant parts of the
input sentence. The output of the decoder is generated



through a fully connected layer that converts the output
of self-attention into the final prediction value.

2.2 SHAP (Shapley Additive exPlanations)

There is a trade-off between model prediction accuracy
and model interpretability. It’s evident that the model
with high accuracy such as the deep learning models
typically with lower interpretability. These models with
lower interpretability often be said to be ” black-box”
models that bring challenges when attempting to explain
their prediction.

It is essential to comprehend these black boxes, particu-
larly in industrial applications, where forecasting is closely
linked to safety and financial gains. SHAP is a method
used to interpret predictions made by machine learning
models. It provides a consistent approach for evaluating
the effect of each feature on a prediction, taking into
account both the feature’s value and its interactions with
other features. SHAP values are based on the concept of
Shapley values in cooperative game theory, which guaran-
tees a fair distribution of a coalition’s contribution among
its members. The Shapley value of the feature x is ex-
pressed as follows:

()= D w($)[f(SUfa}) =1 ()] (©)

S'Cp\w

The complex model Informer is represented by f, and
¢, (o) is the Shapley value of feature x under f. The
number of input features is denoted by p, and S’ is a
subset of these features. The union of S’ and the feature
x is represented by S’ U{z}, which combines the elements
of both S’ and {z} to form a new set. The weight of
S’ is defined as W, where |S’| is the number
of elements in the subset S’. The denominator p! stands
for all possible feature combinations, while the numerator
|S'[1(p—1]S5’|—1)! is the number of times S’U{z} appears in
all p! combinations. The expected marginal contribution of
the feature x in one combination is given by f(S'U{x}) —

CHE

The Shapley value can be expressed as a linear additive
feature model, which is the definition of SHAP. This is
represented as follows:

9(Z) =0+ > _ ;) (7)
j=1

where ¢q is the base prediction without any input infor-
mation, usually the mean of the output in the training
data, and ¢; is the distributed contribution for feature j.
z" € {0,1} is the subset features vector, with 1 indicating
that the corresponding feature is present and 0 indicating
that it is absent. Computing the Shapley values is an NP-
hard problem. For deep learning models such as Informer,
the traditional way to compute the Shap value can be
computationally challenging. To address this, DeepSHAP,
a faster algorithm, is used to compute SHAP values for
the Informer-based soft sensor. DeepShap is an extension
of SHAP designed to handle the calculation of the deep
learning model’s shap value.

3. PROPOSED METHOD

This work introduces a novel approach to developing ro-
bust and interpretable soft sensors for industrial appli-
cations using the Informer model and SHAP for feature
importance analysis. Figure 2 shows the flowchart of the
proposed method. The core of this method lies in leverag-
ing the Informer’s ability to handle long-sequence data and
the interpretability afforded by SHAP to provide insights
into the model’s predictions.

The first part of the proposed method utilizes the In-
former, a transformer-based model adept at processing
long sequences with reduced computational overhead. Un-
like traditional transformer models, the Informer incor-
porates ProbSparse self-attention, which selectively fo-
cuses on the most informative parts of the input data,
thereby enhancing efficiency. Additionally, the distilling
layers within the Informer act to compress the sequence
length without losing critical temporal information. For
industrial soft sensors, which often rely on large amounts
of historical data to predict future states, the Informer’s
architecture is particularly beneficial. It guarantees that
the model can accurately represent the fundamental be-
havior of the process over a long time, something that
traditional models such as RNNs and LSTMs may not be
able to do.

The complex encoder and decoder structure of the In-
former model makes it impossible to explain the prediction
by the model itself. The second part of the method involves
the use of SHAP values to interpret the predictions of
the Informer model. By decomposing the output of the
Informer into contributions from each input feature, SHAP
provides a granular understanding of how each feature
influences the model’s predictions. This is particularly
important in industrial settings, where explanations of
predictions can inform critical decisions. SHAP also allows
for the assessment of the model’s reliability, ensuring that
its predictions are based on sensible data-driven insights
rather than spurious correlations.
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Fig. 2. Flowchart of interpretable Informer soft sensor
model

The integration of the Informer model with SHAP-based
interpretability represents a significant advancement in
soft sensor technology. The method enables real-time mon-
itoring and forecasting of quality variables in industrial
processes, facilitating early warning and proactive inter-
vention strategies. The ability to interpret the model’s pre-
dictions ensures that operators can trust and act upon the



insights provided, leading to better decision making and
improved process control. The combination of Informer’s
predictive power and SHAP’s interpretability creates a
powerful tool for modern industrial applications, balancing
the need for both accuracy and understanding in complex
systems.

4. CASE STUDY

In the case study, we demonstrate the application of
the Informer model coupled with SHAP analysis in a
practical industrial setting. The study is conducted using
data from a Fluid Catalytic Cracking (FCC) unit at the
Parkland Refinery in Burnaby, British Columbia. The
FCC unit, a critical component in refining operations,
converts heavy hydrocarbons into lighter compounds that
form the basis for various petroleum products (Su et al.,
2022). FCC unit consists of three main parts, namely
the reactor, the regenerator and the fractionator, which
can be seen in Figure 3. The complex interactions within
the FCC process, characterized by its multilevel systems
and nonlinear dynamics, make it an ideal candidate for
applying advanced soft sensor models like the Informer.
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Fig. 3. A flow diagram of a Fluid Catalytic Cracking unit

Specifically, the model is trained to predict the distillation
temperature, which is a significant quality variable in the
FCC process. The input features are selected based on
process knowledge and include readily measurable vari-
ables that influence the distillation temperature. A dataset
comprising 58,719 samples collected between January 2019
and November 2022 is used. The dataset is partitioned,
with 80% allocated for training and the remaining 20%
for testing.

It is configured to process input sequences comprising 24
time steps, using these data to predict the subsequent 6
time steps. This capability is crucial for capturing the long-
term temporal dependencies integral to the FCC process.
The model is composed of two encoder layers and a single
decoder layer, with an embedding depth of 512 and eight
attention heads. The depth of the feedforward network is
set at 2048 with a dropout rate of 0.05 to avoid overfitting.
The sequence configuration is designed such that the
encoder ingests a 24-time step sequence and the decoder,
using an additional 12-time step sequence, forecasts the
next 6-time steps, thereby providing a comprehensive view
of the system’s future state. Figure 4 shows the detailed

prediction performance of the Informer soft sensor on the
test data.
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Fig. 4. The performance of Informer soft sensor on test
data

Table 1. Comparison of different soft sensors
on test data

RMSE R?
Informer 1.9204 0.8829
Lasso Regression 3.6371 0.5790
Elastic Net 3.6171 0.5836
Huber Regressor 4.9286 0.2269
Bayesian Ridge 4.1901 0.4412
Ridge Regression 4.1907 0.4411
Linear Regression 4.1908 0.4410
Least Angle Regression 5.2178 0.1335
Extra Tree Regressor 5.0910 0.1751
Gradient Boosting Regressor 5.5064 0.0350
AdaBoost Regressor 5.3472 0.0900
Random Forest Regressor 5.9515 -0.1273
Passive Aggressive Regressor 4.2592 0.4226
Dummy Regressor 6.1233 -0.1933
LSTM 7.0044 | -0.5614
Orthogonal Matching Pursuit 7.2656 | -0.6801
Decision Tree Regressor 10.5976 | -2.5744
K Neighbors Regressor 14.8899 | -6.0561

Table 1 presents a comparative performance analysis of
different soft sensors applied to test data from an FCC
unit. It is evident from the results that the Informer
model significantly outperforms traditional statistical and
machine learning models, with an RMSE of 1.9204 and an
R? value of 0.8829, indicating high prediction accuracy and
a strong correlation with the actual data. This underscores
the Informer’s advanced capability in handling complex,
long-term dependencies in time-series forecasting. In con-
trast, the LSTM model, which is also designed for time
series data, exhibits a lower performance (RMSE of 7.0044
and an R? value of -0.5614), highlighting its limitations in
capturing long-term dependencies.

We now have a soft sensor with outstanding performance,
however, the Informer model itself has a complicated struc-
ture, making it hard to comprehend the inference process
of the result from within the model. Generally, only the
predicted value is provided, and the model is not inter-
pretable at present. By incorporating SHAP to improve
the interpretability of the model after the model is trained,
and to extract the implicit information learned by the
model, industry workers can understand the contribution
of each feature in the forecasting process.
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Fig. 5. Feature importance of Informer based on Shap

The SHAP analysis demonstrates that certain features,
such as particular temperature and pressure readings, have
a more significant effect on the model’s predictions. These
data confirm the effectiveness of the soft sensor and pro-
vide a layer of transparency to its operations. Figure 5
displays a visual representation of the SHAP values, which
shows the contribution of each feature to the model’s pre-
dictions, further strengthening the interpretability of the
soft sensor. The SHAP value (contribution) is represented
on the X axis. It is evident that for all the data, the
most influential feature is feature 52PI1250; On the other
hand, feature 52FC231 has the smallest SHAP value, so
its feature value has the least contribution to the final
prediction.

5. CONCLUSION

In summary, this research has successfully demonstrated
the implementation and effectiveness of the Informer
model, combined with SHAP for better understanding, in
industrial settings. The Informer model has been proven
to be highly efficient in dealing with large-scale, long-
sequence time-series data. The performance of the pro-
posed algorithms was tested on real industrial FCC unit
data, and the results showed that Informer models outper-
formed traditional statistical and machine learning mod-
els, with RMSE 1.9204 and R? 0.8829, indicating a high
degree of prediction accuracy and a strong correlation with
the actual data. The addition of SHAP analysis enhances
the model’s utility by providing clear insights into the
influence of individual features on the predictions, thereby
increasing the model’s transparency and trustworthiness
in an industrial setting.
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