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Abstract: Battery degradation poses a significant challenge for the usage of Lithium-ion
batteries, making accurate capacity estimation crucial for efficient operation. Data-driven
approaches hold promise for addressing this task, yet their complex structures often lead to
overfitting and obscure the decision-making process. The objective of this work is to build a
robust and interpretable model for capacity estimation. We propose the utilization of a robust
decision tree-based ensemble model, extremely randomized trees (ERT), to accurately estimate
battery capacity based on the features extracted from the partial charging curve. The random
splits in the tree construction process enhance the model’s generalization ability. Given that
the combination of multiple decision trees reduces interpretability, we further employ SHAP to
interpret the contributions of each feature to the ERT model’s predictions. The effectiveness of
the proposed method is validated on a large cycling dataset of Lithium-ion batteries.
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1. INTRODUCTION

With the continuous advancement of modern technology,
Lithium-ion batteries have been seamlessly integrated into
every facet of our lives because of their high energy and
power density. They power the cell phones we hold, an ar-
ray of electronic devices, and even electric cars, underscor-
ing their indispensable role (Bresser et al. (2018)). Despite
their central role in our technology-driven world, batteries
are not without limitations. The issue of battery degrada-
tion is a well-known challenge, typically characterized as
a gradual decline in performance over time, This not only
impacts the longevity of the battery but also its overall
efficiency (Han et al. (2019)). When assessing battery
performance, a key determinant is the battery capacity,
which measures the amount of electricity a fully charged
battery can discharge. However, due to the uncertainty in
battery operating conditions for practical applications, a
complete discharge process is seldom available for obtain-
ing battery capacity (Wang et al. (2022)). Therefore, to
optimize energy utilization and ensure proper equipment
functionality, it is crucial to precisely estimate battery
capacity using voltage and current measurements from the
partial charging curve.

Numerous research efforts have been devoted to the task
of battery capacity estimation in the last decades, which
can be broadly categorized into two main types, namely
model-based and data-driven methods. The former re-
volves around the utilization of either equivalent circuit

models (Hu et al. (2012)) or electrochemical models (Doyle
et al. (1993)) to simulate the dynamic characteristics
of batteries. Subsequently, recursive adaptive filters such
as the Kalman filter (Plett (2004)) and particle filter
(Schwunk et al. (2013)) are employed to identify model
parameters that are associated with capacity. While these
methods can attain a high level of accuracy, they lack
feasibility for online applications due to computational
intensity.

Contrastively, data-driven methods do not rely on in-
depth expert knowledge about batteries, focusing instead
on the relationship between inputs (i.e., features) and
outputs (i.e., capacity). A wide array of machine learn-
ing techniques, including support vector regression (SVR)
(Wang et al. (2018)), Gaussian process regression (GPR)
(Yang et al. (2018)), and deep neural networks (Roman
et al. (2021)), have been employed for this task, achiev-
ing commendable results in capacity estimation. In recent
years, ensemble models based on decision trees (Kotsiantis
(2013)), such as random forest (RF) (Breiman (2001)) and
light gradient boosting machine (LightGBM) (Ke et al.
(2017)), have gained widespread attention across various
tasks due to their ability to maintain high accuracy while
being easy to implement. However, these models suffer
from the risk of overfitting, as decision trees recursively
find the optimal split at each node, and data noise can
make it challenging for the model to develop appropriate
tree structures. To address this issue, extremely random-



ized trees (ERT) (Geurts et al. (2006)) adopt a method
of randomly selecting features and thresholds to construct
decision trees, thereby enhancing the model’s generaliza-
tion ability against data noise.

Although data-driven models have achieved remarkable
success in estimating the capacity of batteries, the com-
plex structure of these models often makes the decision-
making process difficult to understand. This opacity may
raise concerns about the reliability and safety of data-
driven models, especially in practical applications involv-
ing batteries. Interpretable machine learning (Murdoch
et al. (2019)) is an emerging field aimed at enhancing trust
in models by elucidating the contribution of each feature
to model predictions. Originating from game theory, the
Shapley value is proposed to fairly allocate the contribu-
tions of each player in a game (Shapley (1953)). When
the Shapley value is represented as an additive feature
attribution method, it evolves into the SHapley Additive
exPlanations (SHAP) model (Lundberg and Lee (2017)).
The SHAP model integrates the fairness principles of game
theory with local interpretability, offering a novel approach
to explain and understand complex data-driven models
(Agarwal and Das (2020)).

In this work, we propose the utilization of ERT to estimate
battery capacity based on features extracted from charging
curves. Subsequently, the SHAP model is employed to
interpret and quantify the contribution of each feature
to the estimated capacity. The remainder of the paper
is organized as follows. Section 2 provides the cycling
dataset studied in this work. Section 3 introduces the
proposed methodology, including the feature extraction
and the proposed models. The capacity estimation results
and discussion are reported in Section 4 and finally, some
conclusions are drawn in Section 5.

2. CYCLING DATASET

To validate the effectiveness of the proposed capacity es-
timation method, a large cycling dataset comprising 66
battery cells (Zhu et al. (2022)) is used in this study.
These battery cells, all featuring the same cathode ma-
terial (LiNi0.86Co0.11Al0.03O2), were cycled under various
temperatures and different charging current rates. Table 1
lists the detailed cycling conditions. As shown in the table,
the cycling temperatures include 25 ◦C, 35 ◦C, and 45
◦C, with charging current rates ranging from 0.25 C to
1 C. It is important to note that the current rates were
determined based on the battery’s nominal capacity, where
1 C corresponds to 3.5 A.

A complete cycle consists of both charging and discharging
processes. Specifically, in the charging phase, the cell
cycling is first performed in a constant current (CC) mode
with a specific current rate until the voltage reaches 4.2 V,
followed by a constant voltage (CV) mode at 4.2 V until
the current decreases to 0.05 C. During the discharging
process, a constant current of 1 C is employed until the
voltage drops to 2.65 V. After repeated charging and
discharging cycles, we can observe the change in the
capacity of all battery cells with the number of cycles,
as illustrated in Fig. 1. It is noticeable that the batteries
exhibit varying degradation characteristics, with the cycle
number ranging from 50 to 800 when the capacity drops to

around 2500 mAh. Generally, higher charging current rates
tend to accelerate battery degradation. Another finding is
that, even under identical working conditions, the batteries
still show inconsistencies in their cycling characteristics,
suggesting that relying solely on the cycle number for
capacity estimation is insufficient. More measurements
from the charging and discharging processes need to be
considered for accurate capacity estimation.

Fig. 1. Capacity change vs cycle number of all
batteries over varying cycling temperature and
charge/discharge rates from Table 1

3. METHODOLOGY

3.1 Feature Extraction

As demonstrated by Chen et al. (2017), extracting valuable
features as a first step of building a data-driven model
for capacity estimation, significantly impacts the model’s
performance. Compared to the discharge process, which
can be uncertain due to varying operational conditions
and loads, the charging process of a battery is often more
regular, thus attracting considerable attention. In this
study, as suggested by the work of (Li et al. (2018)), we
utilize the partial CC charging curve to extract relative
charging capacity for capacity estimation.

Fig. 2 illustrates the voltage change over time in a battery’s
CC charging process. For feature extraction, it is essential
first to fix a specific voltage range with a lower voltage
bound Vl and an upper voltage bound Vu. It’s worth men-
tioning that our motivation for utilizing only a segment
of the charging curve is to accommodate the real-world
situation where batteries rarely commence charging from
0% State of Charge (SOC). Subsequently, we discretize
the voltage range from Vl to Vu at equal voltage intervals
∆V . This operation ensures that different batteries have
the same number of sampling points across all cycles, thus
maintaining a fixed feature length. The time tj to reach a
discrete voltage point Vj is obtained through linear inter-
polation. The relative capacity Qj at Vj is then calculated
using the following formula:

Qj = I · (tj − t0) (1)
where I is the constant charging current and t0 is the
charging time to reach Vl.



Table 1. Cycling conditions of battery cells for dataset generation

Cell Specifications
Cycling Temperature Charging/Discharging Number of

(◦C) Current Rate (C) Cells

Anode: Graphite/Si
25

0.25/1 7
Cathode: LiNi0.86Co0.11Al0.03O2 0.5/1 19

Type: 18650 1/1 9
Cutoff Voltage: 2.65 - 4.2 V 35 0.5/1 3
Nominal Capacity: 3.5 Ah 45 0.5/1 28

For the task of capacity estimation, each cycle is con-
sidered as one sample. In this context, the input feature
of each sample is xi = [Q1, · · · , Qk], where k represents
the number of discrete points, which can be calculated as
(Vu − Vl)/∆V . The output is the capacity for that cycle,
experimentally determined by integrating the current over
time during the complete discharge process. From the
dataset we utilized in this work, we generated a total of
22638 samples for training and testing various regression
models.

Fig. 2. Illustration of feature extraction from partial CC
charging curve

3.2 Extremely Randomized Trees

Extremely Randomized Trees (ERT) are a popular en-
semble learning technique, especially effective for complex
supervised machine learning tasks. To facilitate under-
standing of ERT, we start with an introduction to the
decision tree, which forms the basis of an ERT model. The
decision tree is a machine learning method that is used for
classification as well as regression tasks, as shown in Fig. 3.
In the tree, for a branch node tb, atb is composed of binary
variables, each representing whether a feature participates
in the split, and btb is the threshold for splitting. Moreover,
to ensure that only one feature participates in the split at
each node, the sum of all elements in atb is forced to be
exactly 1. For regression tasks, the prediction at a leaf
node is typically the average of labels of all samples that
fall into that leaf.

Considering a regression task with a given dataset (X,y)
containing n samples (xi, yi), i ∈ {1, · · · , n}. Each sample
comprises p features xi ∈ Rp and a continuous label
yi ∈ R1, and the decision tree establishes a map from xi

to yi. More specifically, for a data sample i, as it traverses

Fig. 3. The structure of a decision tree

a branch node tb, it is assigned to the left child node if
aTtbxi < btb, otherwise to the right child node. In this
manner, sample i will eventually be assigned to a leaf node,
and the prediction of this leaf node is given to the sample.

Traditional decision tree algorithms, like CART (Breiman
(1984)), recursively find the optimal split at each branch
node until the number of samples at a branch node is less
than the minimum allowed leaf size or the maximum depth
is reached. For a regression task, mean squared error is a
common criterion to evaluate the loss, which is given by

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

(2)

where n is the number of samples passing through the
branch node and ŷ is the predicted value. For each branch
node, it tries to split the samples into two subsets. In
other words, CART finds the optimal splitting rule at
each branch node to divide the data samples into the two
subsets with the lowest possible variance.

Building upon this, ERT adds additional randomness.
Unlike traditional decision trees, each tree within ERT
randomly selects its splitting rules. To be more specific,
at each branch node of the tree, ERT randomly chooses
K features and generates random splitting thresholds for
these features. Subsequently, for each randomly generated
splitting rule, ERT computes the MSE of the post-split
data and keeps the splitting rule that minimizes the MSE.
Due to this random splitting approach, ERT is more ef-
ficient than CART in building decision trees, especially
for datasets with a large number of features. Addition-
ally, this randomness reduces the variance of the model,
thereby strengthening its generalization ability on unseen
testing samples. It is worth mentioning that, unlike RF,
ERT constructs all its decision trees using the original
dataset, as random splitting allows for the creation of
entirely independent trees even on the same dataset. After
constructing M randomly generated decision trees, ERT
outputs the average of the predictions from all trees, which



can be expressed as:

ŷi =
1

M

M∑
m=1

fm(xi) (3)

where fm : Rp → R1 denotes the output from the m-th
decision tree model.

3.3 SHAP

The decision-making process of a single decision tree
is fairly straightforward to understand. However, when
numerous decision trees are combined, as in the case of
ERT, the overall decision-making process becomes much
more complex and less interpretable. Therefore, there’s
a need for a tool to elucidate the predictions made by
ERT. SHAP offers a promising solution in this regard. By
using SHAP, we gain a more granular insight into how
different features contribute to the model’s predictions,
thus enabling a clearer interpretation and justification of
complex models.

SHAP quantitatively measures the influence of each fea-
ture on the model’s prediction, accounting for not just the
value of the feature itself but also its interaction with other
features. The foundation of SHAP is the Shapley value, a
concept from game theory that provides a fair allocation
of a coalition’s payoff to its participants.

In the context of machine learning, we consider the “coali-
tion” as the set of all features used by the model, and
the “payoff” as the prediction output by the model. The
SHAP value for a feature j is calculated as follows:

ϕj(f) =
∑

S′⊆P\j

wj(S
′) [f(S′ ∪ j)− f(S′)] (4)

where ϕj(f) represents the Shapley value of the feature j
under the model f . The set P denotes all input features,
and S′ is a subset of these features excluding j. The term
S′∪j symbolizes the union of the subset S′ with feature j,
essentially assessing the impact of adding j to the subset
S′. The weight wj(S

′) is calculated as |S′|! · (|P | − |S′| −
1)!/|P |!, where |S′| is the size of the subset S′ and |P |
is the total number of features. This weight factors in
the number of permutations in which j can be combined
with the features in S′, given all possible combinations of
features. Finally, f(S′∪ j)−f(S′) represents the marginal
contribution of feature j when it is added to the subset S′.

4. RESULTS AND DISCUSSIONS

4.1 Performance of Capacity Estimation

In this work, we utilize ERT to construct a data-driven
model for estimating the capacity of Lithium-ion batteries.
Specifically, we extract features from the constant current
charging voltage curve in the voltage range from 3.65 V to
3.85 V, and discretize the voltage at 0.002 V intervals, thus
resulting in 100 features. We normalize the capacity based
on the nominal capacity, making the output a percentage.
The model is trained on a randomly selected 80% of the
samples (18110 samples), and its performance is evaluated
on the remaining 20% of the samples (4528 samples)
using root mean squared error (RMSE) and coefficient of
determination (R2) as performance metrics. Typically, an

RMSE close to 0 and R2 close to 1 suggests a good match
between the measured and predicted data.

In order to evaluate the effectiveness of our proposed ERT
model, we compared it to a variety of models including
RF, LightGBM, CatBoost, and linear regression. The
linear regression model was chosen for comparison because
linear regression assumes a linear relationship between
features, which contrasts with the assumptions of tree-
based models, which assume a non-linear relationship
between features. Through this comparison, we aim to
better understand the relationships between features and
their impact on model performance. In addition, models
such as SVR and GPR are also tried to fully evaluate
the performance of different algorithms on the battery
capacity estimation task.

All models are trained using the same training dataset, and
their performances on the testing samples are summarized
in Table 2. The results show that linear regression has
the poorest performance with an RMSE of 2.24% and R2

of 0.8589, implying a nonlinear relationship between the
features and capacity. The proposed ERT model achieves
the best performance with an RMSE of 0.28% and R2

of 0.9978. It is noteworthy that the ERT model shows
a significant improvement in accuracy compared to other
decision tree-based ensemble models, indicating that ERT
is a more effective and robust model for this task.

Table 2. Performance comparison of different
modelling methods on test dataset

Model RMSE (%) R2

ERT 0.28 0.9978
RF 0.32 0.9971

LightGBM 0.50 0.9929
CatBoost 0.58 0.9905

Linear Regression 2.24 0.8589
SVR 1.90 0.8985
GPR 0.39 0.9957

Fig. 4 (a) provides a comparison of observed capacity
versus predicted capacity from the ERT model. As shown
in the figure, it is evident that the proposed model ac-
curately estimates the capacity for most testing samples,
as demonstrated by most points lying near the reference
line. Fig. 4 (b) further displays the testing errors across all
samples, highlighting that the errors for a vast majority
of samples remain within 10mAh, thereby confirming the
superior performance of our proposed model.

We further analyze the impact of different selected voltage
ranges on the model’s performance, as depicted in the
graph. In this study, we maintain a constant voltage
segment length of 0.2V, hence using the mean value to
denote the selected voltage range. For instance, a mean of
3.7 V refers to the range from 3.6 V to 3.8 V. As illustrated
in Fig. 5, the accuracy tends to initially increase and then
decrease with the rising mean value, with a performance
at higher voltage ranges generally inferior to that at lower
ones, and the optimal performance achieving at 3.75 V.
A significant observation is that mean values from 3.7V
to 3.85V all show remarkably excellent results, suggesting
that the mid-voltage ranges are all viable for the task of
capacity estimation. This broad range of effective choices
bolsters the practical feasibility of the proposed method.



Fig. 4. Testing results of the ERT model: (a) observed
capacity versus predicted capacity, (b) residual error
over all testing samples

Fig. 5. ERT model performance over selected voltage
ranges

4.2 SHAP Analysis

After obtaining an ERT model that accurately estimates
battery capacity, we utilize SHAP for interpreting the
model’s predictions. Firstly, Fig. 6 provides a global ex-
planation of the model, showcasing the average influence
of each feature on the predictions across all samples. As
illustrated in the figure, the indices of the 10 most sig-

nificant features are all above 80, corresponding to the
relative capacity after a 0.16V increase in voltage during
the charging process. This indicates that longer intervals of
charging offer more effective data for estimating capacity.
For these features, a larger feature value corresponds to
a greater contribution, suggesting a positive correlation
between the features and capacity. Moreover, the similar
levels of contribution from the top 10 features also hint at
potential strong collinearity among them, demonstrating
the ERT model’s exceptional performance in handling
feature collinearity.

Fig. 6. Global interpretation of the ERT model

To further illustrate the contribution of each feature to the
prediction of individual samples, Fig. 7 displays the water-
fall plots for two specific samples, with observed capacities
being 95.45% (3340.70 mAh) and 82.38% (2883.18 mAh),
respectively. These plots delineate the contribution of each
feature from the base prediction to the final prediction. No-
tably, the base prediction is the mean predicted value for
all training samples made by the ERT model. As depicted
in Fig. 7 (a), when the final prediction significantly exceeds
the base prediction, all features contribute positively to
the result, and the sum of these contributions leads to
the final prediction. In contrast, Fig. 7 (b) shows the
individual feature contributions when the final prediction
is close to the base prediction, with some contributions
being positive and others negative. In this way, we are
able to have a better understanding of the decision-making
process for battery capacity estimation of a complex ERT
model, which will benefit both the monitoring and early
warning of battery health status.

5. CONCLUSIONS

In this study, we propose to adopt the ERT model for bat-
tery capacity estimation, followed by an explanation of the
model using SHAP. By constructing decision trees through
random splits, ERT reduces the possibility of overfitting
to some extent, thus yielding more robust and effective
results. Experimental results confirm the superiority of our
proposed ERT model, achieving an RMSE of 0.28% and
R2 of 0.9978, significantly outperforming other decision
tree-based ensemble models. Furthermore, using SHAP, we
interpret the ERT model’s predictions from both a global
perspective and at the individual sample level. The success
of this work promotes the development of interpretable
data-driven models for capacity estimation.



Fig. 7. Interpretation of the ERT model for 2 samples with
observed capacities of 95.45% (a) and 82.38% (b)
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