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Abstract 

Thermoforming, a commonly used technique in thermoplastics and composites manufacturing, involves interaction 

of various mechanical components influencing the quality of the final product. Among those, a precise selection of 

heaters setting plays a pivotal role in pre-optimizing the process. While the traditional control theories have been 

historically employed for process optimization problems, recent advancements in Artificial Intelligence (AI) have 

encouraged its adoption across diverse manufacturing domains. Nevertheless, the AI application in thermoforming 

remains rather limited to date. This case study harnesses a Deep Reinforcement Learning (DRL) to enhance the 

thermoforming’s primary operation: optimizing the input heating setting given a target temperature profile, and 

possibly saving energy consumption. We showcase the implementation of two widely used DRL algorithms: Proximal 

Policy Optimization (PPO) and Deep Q-Networks (DQN). A comparison is made to evaluate their effectiveness under 

diverse process conditions, including both low and high temperature profiles along with single- versus multi-heater 

utilizations. The PPO algorithm demonstrated a higher performance across all simulated conditions. 
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1. Introduction
The integration of Artificial Intelligence (AI) in real-world problems have now become a standard practice, extending 

from manufacturing sectors to healthcare systems, education, and beyond. Such applications aim to achieve enhanced 

performance in addressing diverse challenges. The manufacturing sector has particularly gained advantages from AI 

implementation, leveraging it to create intelligent and optimized process solutions that result in cost, energy, and time 

savings. Among the different sectors of manufacturing, composites have gained significant attention in recent years 

due to their capacity to offer customizable mechanical properties with low structural weight—a feature highly sought 

after by industries such as aerospace, automotive, robotics, healthcare, and more [1-3]. In composites manufacturing 

domain, thermoforming is a widely utilized technique owing to its versatility and effectiveness in shaping 

thermoplastic and composite materials to complex 3D shapes. It is particularly advantageous for rapid prototyping, 

facilitating swift design iterations. Consequently, optimizing this process continues to hold the potential to enhance 

performance and reduce the costs associated with a number of advanced composites manufacturing sectors [4]. 

2. Synopsis of Related Research
Reinforcement Learning (RL)-based control, as a fairly recently emerged AI domain, has proven to be robust and 

efficient compared to traditional control theories. Arroyo et al. [5] introduced Reinforced Model Predictive Control 

(RL-MPC), enhancing the adaptability of Model Predictive Control (MPC) for dynamic energy control problems. 

Brandi et al. [6] compared online and offline Deep Reinforcement Learning (DRL) with MPC for energy management, 

emphasizing the efficiency of online-trained DRL agents. Gupta et al. [7] applied DRL to heating control in smart 

buildings, improving thermal comfort and reducing energy costs. Wang et al. [8] used DRL for forced convection 

control, achieving a lower temperature with a novel value-based deep Q-network (DQN). Hachem et al. [9] utilized 

Proximal Policy Optimization (PPO) in a Computational Fluid Dynamic (CFD) environment for conjugate heat 

transfer systems. Römer et al. [10] employed a DRL method called Deep Deterministic Policy Gradient (DDPG) for 

temperature control in Automated Tape Laying (ATL) processes. Zhao et al. [11] introduced a memory-augmented 

(MA) DRL algorithm for energy management in commercial buildings with dueling networks to mitigate time delays. 
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Szarski et al. [12] optimized Carbon Fibre Reinforced Plastic (CFRP) manufacturing cycle time using DRL, reducing 

cycle time in aerospace parts. 

3. Problem Description and objective 
Despite the prevailing trend of employing AI to optimize manufacturing and industrial processes, to date its usage in 

thermoforming has been relatively limited. This research aims to employ Deep Reinforcement Learning (DRL) to 

fine-tune the heating parameters of a lab-scale thermoforming setup and achieve the desired temperature distribution 

on the thermoplastic sheet. 

4. Methodology 
In a typical thermoforming process, a thermoplastic sheet is heated and shaped into a mold using vacuum pressure. 

The goal is to achieve a uniform temperature distribution throughout the sheet for an optimal (high quality) forming. 

Controlling the temperature in specific regions of the material is critical to ensure defect-free product with consistent 

thickness. However, the temperature on the sheet varies over time, adding complexity to the process control [4]. Figure 

1 shows a lab-scale thermoforming setup and its components that were used in this case study. 

 

Figure 1: Lab-scale thermoforming setup including fifteen heaters and other components. 

Reinforcement Learning (RL) was employed as an optimization tool to address the sequential decision-making nature 

of the process. RL involves two components: the agent and the environment. At every time step 𝑡, the agent observes 

a state 𝑠𝑡 within the state space 𝑺, selects an action 𝑎𝑡 from the action space 𝑨 according to the policy 𝜋(𝑎𝑡  |𝑠𝑡) 

(defining the agent's behavior), receives a scalar reward 𝑟𝑡, and moves to the subsequent state 𝑠𝑡+1. These transitions 

follow the dynamics of the environment, determined by the reward function 𝑹(𝑠, 𝑎) and state transition probability 

𝑷(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). In episodic problems, this process continues cyclically until the agent reaches a terminal state, 

restarting thereafter [13]. First, a heat transfer simulation tool was developed, which acts as the environment for the 

agent to interact with, similar to what is being implemented in actual process, while accounting for conduction, 

convection, and radiation mechanisms [14]. The details of the model are described in a previous work by Jalilvand et 

al. [15]. Then, the RL agent was trained using two main algorithms, Deep Q-Network (DQN) and Proximal Policy 

Optimization (PPO). Lastly, their performances have been compared under various process conditions (to be outlined 

in section 5). 

4.1. Deep-Q Networks (DQN) 

Q-learning stands as a foundational algorithm in RL, strategically crafted to empower agents in learning optimal 

policies within environments characterized by discrete state and action spaces. The "Q" in Q-learning symbolizes the 

quality of an action in each state. The algorithm's objective is to iteratively update Q-values based on received rewards 

and the maximum expected future rewards. The underlying concept revolves around learning a Q-function, estimating 

cumulative future rewards for each state-action pair. In the context of DRL, a Deep Q-Network (DQN) emerges as a 

neural network tasked with estimating a state-value function. This architecture often leverages Experience Replay, 
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storing episode steps in memory for off-policy learning through randomly selected samples from the replay memory. 

By averaging the behavior distribution over previous states, Experience Replay safeguards against oscillations or 

divergence in parameters. DQN outshines standard online Q-learning by enhancing data efficiency, potentially using 

each experience step in numerous weight updates. It further limits variance through sample randomization and avoids 

undesired feedback loops linked with on-policy learning [16]. 

4.2. Proximal Policy Optimization (PPO) 

PPO is inspired by the dilemma of how to make the largest potential improvement to a policy based on the existing 

data without mistakenly causing efficiency drop. PPO is a series of first-order approaches that employ a few additional 

twists to maintain the similarity of new and old policies [17]. Two versions of PPO have been commonly used in the 

literature: 1) PPO-Penalty and 2) PPO-Clip. PPO-Penalty algorithm changes the penalty factor autonomously during 

training to ensure that it is suitably calibrated, while PPO-Clip uses customized clipping in the objective function to 

eliminate opportunities for the new policy to diverge from the old policy. PPO constructs a probabilistic policy by 

utilizing the latest iteration of its stochastic strategy. The degree to which action selection is random is dependent on 

both the baseline circumstances and the training technique. Typically, the policy grows less random over time as the 

update rule pushes it to exploit previously discovered incentives. PPO algorithm has two distinguishing characteristics: 

1) It is a policy-driven algorithm. 2) It is applicable to contexts with discrete or continuous action spaces [17]. Figure 

2 represents the designed block diagram in MATLAB synchronized with the above-mentioned heat transfer simulation 

tool as the environment, used for both RL models. 

 

Figure 2:  MATLAB Simulink Block Diagram designed for the DRL model. 

5. Results and Discussion 
To assess the efficiency of PPO and DQN algorithms in the simulated thermoforming control problem, a processing 

scenario was configured with a single heater as the base case. The algorithms were compared under three distinct 

conditions: 

• Fixed target temperature (50 ℃) 

o Large action space (9 possible actions) 

o Small action space (3 possible actions) 

• Random variable target temperature via small action space (50 ± 5℃) 

o Uniformly distributed and constantly changing in every episode. 
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Given the practical operating power range of the ceramic heaters in the experimental setup (150 W to 500 W), two 

action (search) spaces/scenarios were assumed: small and large spaces. The small space included three modes: 0 W 

(heater off), 150 W (minimum power), and 500 W (maximum power). The large space had nine modes, represented 

as {0, 150, 200, 250, 300, 350, 400, 450, 500}. Figures 3a and 3b illustrate DQN's performance in optimizing heater 

settings, with cumulative rewards over 5000 training episodes for 9 and 3 action spaces. Similarly, Figures 4a and 4b 

show results for the PPO agent, with the 3-action space configuration proving more robust, consistently converging 

within around 500 episodes compared to DQN. Testing a random variable target temperature (50±5℃) with smaller 

action space, Figures 3c and 4c demonstrate that PPO was consistently outperforming DQN in terms of convergence 

and stability. Q0 in Figures 3 and 4 represents the expected cumulative reward at each episode based on prior state-

action pairs and policies. 

 
a)  b) c) 

Figure 3:  DQN’s reward against episode number. a) 9 actions space, b) 3 action space, and c) random target 

temperature space. 

 
a)  b) c) 

Figure 4:  PPO’s reward against episode numbers. a) 9 actions space, b) 3 action space, and c) random target 

temperature space. 

PPO proved to be, in this case study, the more optimal choice for training the agent, based on the achieved performance 

on a single heater scenario. Therefore, the model was then opted to extend to control temperature distribution on the 

full left side of the thermoplastic sheet, now using five heaters. Figure 5a shows a hypothetical low-temperature desired 

profile (57 − 62℃, 𝜇 = 59.2, 𝜎 = 2.2), while Figure 5b displays a high-temperature desired profile (158 −
175℃, 𝜇 = 164.6, 𝜎 = 6.6); but assumed to be without randomness. To enhance the agent's performance, the refined 

action space included a complete deactivation (0 W) and a complete activation at maximum power (500 W). The PPO 

agent was trained for 2500 episodes, with each episode simulating the complete thermoforming process lasting 1000 

seconds. As illustrated in Figure 6a, the agent reached the peak cumulative reward after nearly 1200 episodes and 

achieved a minimal error band (difference between the desired temperature distribution and the actual temperature 

distribution) of ±2℃ after 650 seconds into the process, as depicted in Figure 6b. Finally, Figure 6c provides a visual 

representation of the actions taken by the agent at each time step throughout the entire process. 
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a)  b) 

Figure 5:  a) Low temperature profile, and b) high temperature profile selected as desired distribution. 

 
a)  b) c) 

Figure 6: a) Cumulative reward, b) error, and c) actions in the low desired temperature profile. 

Leveraging the success of the preceding training phase, the satisfactory results encouraged a subsequent trial involving 

a higher temperature profile with an increased standard deviation (Figure 5b). This was intentionally aimed to evaluate 

the agent's performance in a more challenging scenario. The latter training outcomes are depicted in Figure 7. In this 

case, the agent has achieved the maximum cumulative reward after approximately 1000 episodes, maintaining an error 

band of ±7℃ across all five zones within 400 seconds into the process, as indicated in Figure 7a and 7b, respectively. 

Given the elevated temperature profile, the heaters exhibited a higher activation frequency than that observed in the 

low-temperature profile (compare Figure 6c and Figure 7c). 

 
a)  b) c) 

Figure 7:  a) Cumulative reward, b) error, and c) actions in the high desired temperature profile. 

6. Conclusions 
This study explored the application of Reinforcement Learning (RL) in thermoforming. The DQN and PPO algorithms 

were first employed and compared for optimizing a single heater power setting. PPO exhibited superior performance 

under varying test conditions, including different action spaces and desired temperature profiles. The model was then 

extended to control the full column of five heaters (across one side of the sheet), with PPO retrained for simultaneous 

optimization. Results showcased the DRL model achieving a ±2℃ error band within 600 seconds under a low-

temperature profile, and ±7℃ in a high-temperature profile, maintained after only 400 seconds. Training on a high-

performance PC (10-core Xeon CPU, 3.70 GHz, 32.0 GB memory) for the multiple heater scenario lasted almost six 
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hours, four times longer than the single-heater scenario, indicating significant computational cost. This emphasizes 

the need for future exploration into multi-agent DRL models, considering computational cost improvement and refined 

reward functions to reduce errors further. The current model could merely optimize the left side of the sheet’s 

temperature distribution (as proof of concept). Future research can involve developing multi-agent RL models to cover 

the full sheet area, integrating techniques to also concurrently reduce energy consumption in the process. 
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