
Guiding Reinforcement Learning with Incomplete System Dynamics

Shuyuan Wang1, Jingliang Duan4, Nathan P. Lawrence2, Philip D. Loewen2

Michael G. Forbes3, R. Bhushan Gopaluni1, Lixian Zhang5 Fellow IEEE

Abstract— Model-free reinforcement learning (RL) is inher-
ently a reactive method, operating under the assumption that
it starts with no prior knowledge of the system and entirely
depends on trial-and-error for learning. This approach faces
several challenges, such as poor sample efficiency, generaliza-
tion, and the need for well-designed reward functions to guide
learning effectively. On the other hand, controllers based on
complete system dynamics do not require data. This paper
addresses the intermediate situation where there is not enough
model information for complete controller design, but there is
enough to suggest that a model-free approach is not the best
approach either. By carefully decoupling known and unknown
information about the system dynamics, we obtain an embedded
controller guided by our partial model and thus improve the
learning efficiency of an RL-enhanced approach. A modular
design allows us to deploy mainstream RL algorithms to refine
the policy. Simulation results show that our method signifi-
cantly improves sample efficiency compared with standard RL
methods on continuous control tasks, and also offers enhanced
performance over traditional control approaches. Experiments
on a real ground vehicle also validate the performance of our
method, including generalization and robustness.

I. INTRODUCTION

Human learning, such as riding a bicycle, is often accel-
erated by leveraging accumulated prior knowledge about the
dynamics of the world. This ability allows adults to learn new
tasks through a relatively small number of trials, emphasiz-
ing the value of prior knowledge in efficient learning [1].
Humans’ dynamic process of trial and error bears a striking
resemblance to reinforcement learning (RL) [2]. However,
despite these similarities, RL agents typically learn from
scratch, which necessitates a large number of interactions
with the environment. This limitation blocks RL’s application
toward real-world continuous control tasks.

The current work seeks to narrow this gap by enhancing
RL algorithms with partial system knowledge. In particular,
we focus on incorporating prior knowledge related to model
structure and some parameters into RL algorithms. To il-
lustrate, consider the inverted pendulum system in Fig. 1,

*This work was supported by NSERC and Honeywell Connected Plant.
Video available at https://youtu.be/xGNNiuYJh98.
1Department of Chemical and Biological Engi-

neering, University of British Columbia, Vancou-
ver, Canada, wshuyuan@student.ubc.ca,
bhushan.gopaluni@ubc.ca

2Department of Mathematics, University of British Columbia, Vancouver,
Canada, lawrence@math.ubc.ca, loew@math.ubc.ca

3Honeywell Process Solutions, North Vancouver, Canada,
michael.forbes@honeywell.com

4School of Mechanical Engineering, University of Science and Technol-
ogy Beijing, Beijing, China, duanjl@ustb.edu.cn

5Department of Astronautics, Harbin Institute of Technology, Harbin,
China, lixianzhang@hit.edu.cn

a classic control problem. In this system, certain parameters
related to the mechanical properties of the system (like length
and inertia) are unknown, while the model structure and other
parameters are known exactly, such as the 0 and 1 elements in
the matrices. Most RL methods do not take such information
into account.

Fig. 1: Dynamics model and partial model knowledge for dif-
ferent tasks: quadruped robot; self-driving vehicle; inverted
pendulum. Green elements represent known parameters and
structure; Red elements represent unknown parameters.

In this work, we introduce a control module into RL
policies that harnesses partial model knowledge, thereby
aiming to improve both the sample efficiency and general-
izability of RL algorithms. Our proposed method stands out
by effectively decoupling known and unknown information.
This results in a more efficient use of model information
and an expected improvement in sample efficiency. Our
approach integrates partial model knowledge into RL while
preserving the core RL structure. Thus, it can be readily
implemented with mainstream RL methods. Empirical results
from simulations and real-world robot experiments show that
our approach outperforms several prominent RL algorithms.

We highlight the following contributions:
1) We introduce a novel framework that brings partial

model knowledge into RL in a decoupled way, bridging
the RL and control frameworks without disrupting the
RL structure.

2) Our method enhances RL’s sample efficiency, consis-
tency, and generalization while maintaining its capacity



for optimality.

II. RELATED WORKS

A. Reinforcement learning and adaptive control

RL algorithms have proven to be highly effective in
tackling complex decision-making and control tasks through
trial-and-error. However, such data collection usually entails
high sample complexity, which limits the feasibility of RL
algorithms when applied in real-world applications [3], [4].

Various enhancements have been developed to bolster RL
performance, such as double Q-learning [5] for mitigating
overestimation, proximal policy optimization [6] for safe
updates, and soft iterations [7] for exploration. Nonetheless,
RL’s nature of learning from scratch remains unchanged,
impeding faster learning and generalization. Our approach
breaks the policy network ‘black box’ by integrating a
control module that utilizes partial model knowledge, thus
enhancing learning without altering the existing framework.
This strategy maintains existing frameworks’ strengths and
also capitalizes on the benefits of control and partial models
for more efficient learning.

Our method is distinct from model-based RL [8], [9],
which constructs a model from scratch to generate synthetic
data or estimate cost gradients relative to policy parameters.
Our approach diverges by leveraging known structures and
parameters a priori, rather than building from zero. We aim
to incorporate this knowledge into a model-free framework,
merging model-free RL’s flexibility with control theory’s pre-
cision. Notably, model-based RL methods such as ME-TRPO
[10], SLBO [11], and MBPO [12] still utilize model-free RL
for policy optimization after model creation, indicating that
improvements in model-free techniques could benefit model-
based strategies. Thus, our method complements rather than
conflicts with existing paradigms.

In the context of adaptive control, [13], [14] explored
policy iteration with partial knowledge. These works assume
the control matrix B is fully known and the state transition
matrix A is fully unknown for linear systems xk+1 =
Axk + Buk. Although the titles include ‘partial model’,
these assumptions narrow the scope of partial knowledge to
a specific subset, limiting its breadth in the domain of partial
models.

B. End-to-end learning

In the context of control and planning, end-to-end learning
optimizes any parameters (such as policy parameters, and
model parameters) directly from the overall performance
metric. As a milestone, [15] shows that embedding the
planning module into an RL policy network can augment the
policy’s generalizability, leading to acceptable performance
even in unexplored domains. However, [15] assumes discrete
action and state spaces. Differentiable model predictive con-
trol (MPC) [16], [17], [18] provides insights to incorporate
a continuous-action control module into a network. How-
ever, these approaches assume a linear model structure and
quadratic cost. These issues make the approaches fall short in
handling model biases and flexible rewards, thereby limiting

their application to RL tasks. Our method is built upon
these methods but bypasses these limitations by introducing
a compensation structure, enabling control to dance better
with RL.

III. PRELIMINARY: DIFFERENTIABLE MPC

In order to incorporate partial knowledge-based control
within the reinforcement learning framework, we introduce
a differentiable control module as an integrated layer within
the RL policy network. At the core of this module lies a
linear MPC strategy, formulated as follows:

x(t+dt)−xd(t+dt) = A(x(t)−xd(t))+B(u(t)−ud(t)),
(1)

where x(t) represents the system state at time t, u(t) denotes
the control input, and xd(t) and ud(t) correspond to the
desired state and control input, respectively. When xd and ud
are set to zero, the problem reduces to the well-known Linear
Quadratic Regulator (LQR). The objective is to minimize a
quadratic stage cost:

J =

∞∑
t=0

(x(t)− xd(t))
⊤Q(x(t)− xd(t))

+ (u(t)− ud(t))
⊤R(u(t)− ud(t))

(2)

with weight matrices Q ≥ 0 and R > 0 specifying the
importance of state and control input deviations in the cost
function. In our framework, the weights can be aligned with
the rewards from the RL environment or predefined based
on common practices. As shown in the experiment section,
our proposed framework can adapt well to various kinds of
objective functions from the environment.

The action u that optimizes the accumulated cost is
obtained by solving the Discrete Algebraic Riccati Equation
(DARE)

P = Q+A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA, (3)

and the optimal controller is given by

u = −(R+B⊤PB)−1B⊤PA(x− xd) + ud. (4)

To integrate linear MPC as a differentiable layer within
the RL framework, it we need to know the sensitivity of the
solution matrix P with respect to the dynamics A and B.
As shown in [18], this can be achieved by differentiating
through (3) and solving for a closed-form solution. Here is
the result.

Proposition 1 ([18]): Let P be the stabilizing solution of
DARE, and assume that Z−1

1 and (R + B⊤PB)−1 exists.
Then the Jacobians of the implicit function defined by DARE
are given by

∂ vecP

∂ vecA
= Z−1

1 Z2,
∂vecP

∂vecB
= Z−1

1 Z3, (5)



where Z1, Z2, Z3 are defined by

Z1 = In2 −
(
A⊤ ⊗A⊤) [In2 −

(
PBM2B

⊤ ⊗ In
)

+(PB ⊗ PB) (M2 ⊗M2)
(
B⊤ ⊗B⊤)

−
(
In ⊗ PBM2B

⊤)]
Z2 = (Vn,n + In2)

(
In ⊗A⊤M1

)
Z3 =

(
A⊤ ⊗A⊤) [(PB ⊗ PB) (M2 ⊗M2)

(Im2 +Vm,m)
(
Im ⊗B⊤P

)
(6)

and M1,M2,M3 are defined by

M1 := P − PBM2B
⊤P,M2 :=M−1

3 ,M3 := R+B⊤PB.

IV. MAIN METHOD

A. Partial Knowledge Representation

We consider the dynamical system model in continuous
time, given by:

ẋ = f(x, u). (7)

We adopt a continuous-time model, as it often captures the
physical properties of the system and thus contains inherent
prior information. Note that this does not limit our method’s
ability to adapt to discrete-time systems. We will elaborate
on this point later in this section.

In order to formulate known information and unknown
information, we decompose the model as follows:

f(x, u) = fapp(f1(x, u), f2(x, u)) + fbias(x, u). (8)

Here, fapp represents the approximated model with known
structure, while fbias(x, u) accounts for the bias of the
approximate model. Within fapp(x, u), we have both known
information f1(x, u) and unknown information f2(x, u), and
we also know how f1 and f2 combine to form fapp. In
essence, f2(x, u) and fbias(x, u) make up the unknown
part of the overall model. Taking the inverted pendulum
example from Fig.1, fapp represents the linearized model
of the system. fbias captures the error introduced by this
linearization, which is not explicitly represented or learned
within our framework. f1 corresponds to the known effects
of the input, represented by zeros and ones in the matrix,
while f2 deals with the impact of unknown elements in
the matrix on the input. The unknown parameters within f2
are denoted by ψ, making fapp rewritten as fapp(ψ). Our
framework focuses on fapp(ψ), leveraging the capabilities
of RL to learn control strategies that effectively address the
uncertainties and biases represented by f2 and fbias.

B. Framework

We construct a novel policy network that incorporates a
differential control module. This module enables planning
based on partial knowledge and facilitates training within
an RL framework. To address the action errors stemming
from the model’s bias and uncertainties associated with
unknown parameters, an additive, separate neural network
is introduced for compensation, thereby enhancing perfor-
mance. Together, the policy with partial system knowledge
can be deployed in a standard model-free RL pipeline. Fig. 2
illustrates our framework.

In the module, fapp is built as a differentiable computa-
tional graph, with ψ representing its unknown but trainable
parameters. The module first linearizes the nonlinear model
around the reference trajectory or setpoint, xd and ud. This is
done by taking the in-graph gradient with respect to xd and
ud. The output is a linear model with coefficient matrices
given by

A(ψ) =
∂fapp
∂x

∣∣∣
xd

, B(ψ) =
∂fapp
∂u

∣∣∣
ud

. (9)

Given step size τ , we discretize the continuous model with
the Euler method:

Adis(ψ) = τA(ψ) + I,Bdis(ψ) = τB(ψ) (10)

where I is the identity matrix with the same dimension as
A(ψ). If the system (8) originally operates in discrete time,
the linearization directly applies to the model with partial
knowledge, bypassing the need for discretization

Adis(ψ) =
∂fapp
∂x

∣∣∣
xd

, Bdis(ψ) =
∂fapp
∂u

∣∣∣
ud

. (11)

This direct linearization simplifies the adaptation of our
method to inherently discrete systems.

With Adis(ψ) and Bdis(ψ), the parameterized value matrix
P (ψ) can be obtained by solving the DARE (3). The gradient
of P with respect to ψ will be introduced in the section IV-
C. With P (ψ), the module calculates a sub-optimal baseline
action by

û(ψ) = −K(ψ)(x− xd) + ud, (12)

where K(ψ) is given by

(R+Bdis(ψ)
⊤P (ψ)Bdis(ψ))

−1Bdis(ψ)
⊤P (ψ)Adis(ψ),

(13)
which follows exactly the scheme of linear MPC.

In contrast to existing differentiable LQR and MPC meth-
ods [18], [16], our framework can mitigate the model bias.
This is achieved by introducing the corrective structure

u = û+ δu. (14)

Here δu is generated from a trainable neural network, with
input directly as the state. The δu is used to address the
suboptimality introduced by the linear control with unknown
parameters, and the model bias term fbias(x, u) from the
original nonlinear model and the linearization error from (9).
We hypothesize that this approach will enjoy a lower learning
burden and hence faster learning speed. For deterministic
policy in DDPG and TD3, δu is output from a network
directly. For stochastic policy in SAC and PPO, the output
of the network is the mean and standard deviations of a
Gaussian distribution. We admit that the initial value and
magnitude of δu may impact the training outcomes. At this
early stage, we have not yet explored theoretical guidance
for these parameters. In our experiments, we set the initial
value of δu to 0 in order to emphasize the dominant role of
û.



Policy 

network

Value 

network

Env

obs

action

RL agent

Flow for trainable 

variables

Flow for known 

parameters. Fixed during 

backpropagation

Fig. 2: Schematic diagram for our policy network with partial knowledge control module inside.

C. Training

All the operations in the proposed framework are differ-
entiable, and consequently, the whole process can be trained
through backpropagation. To separate the contribution from
known parameters and unknown parameters, our framework
keeps the known parameters fixed and only backpropagates
the gradient through the unknown parameters. In this way,
the contributions from different information are decoupled.
Therefore, RL only learns the policy with respect to unknown
information.

For the backpropagation within MPC, we use the chain
rule to calculate the gradient:

∂P

∂ψ
=
∂P

∂A

∂A

∂ψ
+
∂P

∂B

∂B

∂ψ
. (15)

By keeping the known model parameters constant, the
gradients of P,A,B w.r.t. parameters outside of ψ are
eliminated. The ∂A

∂ψ and ∂B
∂ψ can be obtained using Automatic

Differentiation (AD) tools provided in standard packages
such as PyTorch [19] and TensorFlow [20]. Combined with
the analytical solutions of ∂P

∂A and ∂P
∂B from Prop. 1, the gra-

dient of P with respect to unknown parameters is calculated.

V. EXPERIMENTS

A. Simulation results

We evaluate our method using tasks from OpenAI gym
[21] and the MuJoCo physics engine [22]: CartPole, and
Inverted Double Pendulum, which are widely recognized
benchmarks in control and RL. The goal of the tasks can
be summarized as achieving an expected configuration.

We demonstrate the following features of our method:
1) Faster learning speed than its corresponding base RL

method.

2) Performance improvement over LQR.
3) Adaptation to different reward functions.

To better showcase the strength of our method, we have
modified the original Gym environments. For CartPole, we
retained the original environment’s alive bonus of 1 but
changed the action space from discrete to continuous. For
the Inverted Double Pendulum (IDP), we removed the en-
vironment’s original alive bonus of 10, relying solely on
the quadratic cost of configuration and velocity to motivate
the RL agent. Specifically, the reward is calculated as the
negative sum of the distance penalty, x2 + 2(y − 1.2)2,
where x and y are the coordinates of the pendulum tip, and
the velocity penalty, 10v21 + 20v22 , where v1 and v2 are the
angular velocities of the two pendulum joints. This encour-
ages minimizing deviations from the upright position and
penalizes excessive joint velocities. Experiments demonstrate
that traditional RL methods struggle to learn from quadratic
costs effectively.

For our baseline algorithms, we selected SAC [7], TD3
[23], and Policy Gradient (PG) [24]. When our method is
applied to these baselines, we denote them as PK-SAC,
PK-TD3, and PK-PG, respectively. (PK stands for Partial
Knowledge.)

For our partial knowledge-based method, we represent par-
tial knowledge using the model structure as shown in Table
I, where all mechanical properties, such as mass and length,
are treated as unknown parameters. Specifically, for the
CartPole task, to demonstrate the limits of our approach, we
intentionally initialize the model’s unknown parameters with
values that render the system unstable under a classic LQR
controller. For the IDP task, we broaden the range of initial
states in the environment to include configurations that are
difficult for LQR to control effectively. The baseline methods



CartPole Inverted Double Pendulum

θ̈ =

g sin(θ)− cos(θ)

(
u−mplθ̇

2 sin(θ)

mp+mc

)
1
10

(
4
3
− mp cos(θ)2

mp+mc

)
ẍ =

u−mplθ̇2 sin(θ)

mp +mc
−

mplθ̈ cos(θ)

mp +mc

(m0 +m1 +m2) ẍ+ (0.5m1L1 +m2L1) cos θ1θ̈1 + 0.5m2L2 cos θ2θ̈2
− (0.5m1L1 +m2L1) sin θ1θ̇21 − 0.5m2L2 sin θ2θ̇22 = u(

0.25m1L2
1 +m2L2

1 +m1L2
1/12

)
θ̈1 + (0.5m1L1 +m2L1) cos θ1θ̈0

+0.5m2L1L2 cos (θ1 − θ2) θ̈2 + 0.5m2L1L2 sin (θ1 − θ2) θ̇22
−g (0.5m1L1 +m2L1) sin θ1 = 0

0.5m2L2 cos θ2θ̈0 + 0.5m2L1L2 cos (θ1 − θ2) θ̈1 +
(
0.25m2L2

2 +m2L2
2/12

)
θ̈2

−0.5m2L1L2 sin (θ1 − θ2) θ̇21 − 0.5m2gL2 sin θ2 = 0

TABLE I: Visualizations and dynamics models of CartPole and Inverted Double Pendulum (IDP): Displacement x and angle
θ for the cart with cart mass mc and pole mass mp; Displacement x, angles θ1 and θ2, and masses m0 (the cart), m1 (the
pole below), and m2 (the pole above) for Inverted Double Pendulum. All mechanical properties, such as mass and length,
are unknown parameters. The models are derived from Lagrangian mechanics.

(a) CartPole with only alive bonus. (b) IDP with only quadratic cost.

Fig. 3: Training curves on the control benchmarks. Solid lines show the mean; shaded regions show the standard deviations
over five runs.

TABLE II: Cost comparison between our method and LQR
on IDP.

Initial velocities PKSAC PKTD3 LQR

[−0.13,−0.13, 0.17] −1012.54 -731.33 −10444.72
[−0.11,−0.13, 0.17] −793.89 -720.17 −11635.68
[−0.13,−0.13, 0.18] −864.21 -709.86 −10973.45

are adopted directly from OpenAI Spinning Up (https:
//github.com/openai/spinningup), a renowned li-
brary recognized for its implementations of RL algorithms
that consistently achieve state-of-the-art performance as re-
ported in the literature.

We conducted five separate tests for each algorithm, using
distinct random seeds across all algorithms. All the exper-
iments are conducted on a platform with AMD 3700X, 8
core, 3.6GHZ, and 16G memory.

1) Enhanced Learning Speed: Figure 3 compares all
algorithms in terms of the performance. This comparison
demonstrates that our PK-based method can achieve superior
performance with significantly less data than the baselines,
demonstrating the enhanced sample efficiency of our ap-
proach. Notably, our framework improves the performance of

algorithms that previously failed to learn in more complex
settings. We applied Policy Gradient (PG) to our CartPole
task, which is traditionally used as a fundamental bench-
mark within discrete action spaces. As shown in Fig. 3a,
PG was unsuccessful when adapted to continuous action
spaces, demonstrating a significant gap in its applicability.
However, by integrating our partial model framework into
PG, thereby creating PKPG, we significantly enhance its
learning capability and stimulate it to control the system
successfully.

Similarly, in the IDP experiments that relied solely on
quadratic cost, baseline algorithms such as SAC and TD3
were also unable to successfully learn to control the system.
Our method, however, not only achieves exceptionally high
returns from the outset but also continues to enhance perfor-
mance within just a few hundred steps. Note that our curves
only display the learning process within the first 1,000 steps,
however for SAC and TD3, training extended beyond 80,000
steps, yet these algorithms consistently failed to acquire a
successful control strategy for the IDP.

In addition, the results show that upon integration with
our approach, every baseline improves sample efficiency and



Fig. 4: Experiment overview. The field is 6 × 8m, with 8
cameras on top of the field capturing the pose and position
of the robot. A target for the capturing system is fixed on
the side of the robot.

displays a reduced variance, indicating a more consistent
learning process.

2) Adaptability to Various Reward Functions: The control
module optimizes based on a presumed quadratic cost. How-
ever, as observed with the CartPole task, which uses a simple
reward structure consisting only of a binary alive bonus (0
or 1), our method augments the performance of baselines,
irrespective of the alignment between the environment’s
reward and the control module’s cost. This indicates our
method’s adaptability in learning the optimal policy specific
to the environment’s reward structure.

3) Comparisons with LQR: In the CartPole task, we ini-
tialized our partial model with settings that led to an unstable
system configuration. We subjected LQR to the same initial
conditions for a fair comparison, as illustrated in Figure 3a.
Under these settings, LQR could only achieve a performance
score of around 100, significantly lower than our method. In
the IDP task, we benchmarked our learned policy against
LQR with accurately defined model parameters. While LQR
is generally capable of stabilizing the system, it struggles
to maintain control under certain challenging initial condi-
tions, failing to keep the system within the environmental
constraints. Leveraging the adaptive capabilities inherent in
RL, our method demonstrates the ability to learn and perform
under these difficult conditions. We present the accumulated
costs encountered in such scenarios in Table II, where the
vectors in the first column include the cart’s linear velocity
and the angular velocities of the first and second poles.

B. Real-world experiments

In our real-world experiments, we used a four-wheeled
Mecanum robot to follow a sinusoidal path, y = 0.8 sin(x),
aiming to achieve a consistent travel speed of 0.35m/s along
the desired path, from various initial positions far from the
reference trajectory. We conducted two sets of experiments:
one with the robot starting above the sine wave, and the other
starting below, testing its ability to converge to the target
speed along the trajectory. The tracking performance was
defined as a quadratic cost function including the squared
sum of the orientation error, deviation in the y direction,

(a) Trajectories starting below
the sine wave

(b) Trajectories starting above
the sine wave

Fig. 5: Trajectories following our method, SAC, and the
reference.

and the difference from the desired tracking speed.
We use the OptiTrack Motion Capture System to capture

the robot’s positioning and orientation. An onboard computer
running ROS processed the real-time data. The sampling
interval for the controller was 0.1 s. The floor is covered
with a foam mat, bringing hard-to-model divergence between
simulation and reality.

The robot’s state variables included its position x and
y, yaw angle θ, linear velocity v, and angular velocity ω.
The controller generated outputs in terms of δv and dδω,
which denote the incremental changes in linear and angular
velocities within the sampling interval. In this experiment,
we implemented our approach with SAC as the foundational
framework and compared its performance directly against
the baseline SAC. The policies were pre-trained offline
and deployed to the real world without any fine-tuning.

TABLE III: Tracking error under different scenarios and
different methods.

Scenario PKSAC SAC Improvement (over SAC)

Upper start 126.27 173.68 27.3%
Lower start 72.55 120.72 39.9%

Fig. 6: Actions δv and δω with time. Left is δv, right is δω.

In Fig. 5, it is clear that our method closely follows the
desired sine curve trajectory, while the baseline SAC exhibits
significant deviations due to real-world complexities such as
wheel slippage and inaccuracies in lower-level controllers.
Moreover, as illustrated in Fig. 5b, SAC struggles with early
termination; in certain start positions, it prematurely halts the
trajectory to avoid accumulating further errors. This issue
is observed in both simulations and real-world experiments.
In contrast, our method demonstrates superior tracking pre-
cision. The incorporation of the control module enhances
the robustness of our approach, effectively bridging the sim-
to-real gap and guiding the robot along a higher-reward



trajectory. Specifically, Table III illustrates the reduction in
accumulated tracking error achieved by our method.

A detailed examination of the robot’s actions, as illustrated
in Fig. 6, shows that our method produces actions with less
fluctuation compared to SAC. This figure shows the actions
for the case where the robot starts below the sine wave.
Stable actions are essential for comfort and the health of the
platform. This clear distinction accentuates the added value
and efficacy of our control module.

In summary, the inherent challenges posed by the
simulation-to-reality gap were more pronounced in the base-
line SAC. In stark contrast, our extended method consistently
demonstrated superior robustness and adaptability.

VI. DISCUSSION

One advantage of our method is that it doesn’t break the
framework of RL. Consequently, other methods dealing with
safety and stability can be extended to our method, which is
important for RL-based controller design. It is worth noting
that if the system information is perfectly known, meaning
that there is no model bias and all the parameters inside the
dynamics are accurate, our framework reduces to a control
framework.

Our method is currently restricted to regulation and track-
ing style problems and requires a differentiable model. Such
tasks are often fit for an LQR controller. For more complex
tasks such as the locomotion of HalfCheetah, and Humanoid
that contain discontinuous contact force, our method cur-
rently has limitations. We leave the adaption towards more
complex tasks as future work.

VII. CONCLUSION

In control tasks, some partial parametric model informa-
tion is often known, but seemingly under-utilized in model-
free RL. We have developed a flexible framework that allows
RL to leverage such information solely by adapting the policy
network. Experiments show that our framework bridges RL
and control theory, significantly improving sample efficiency
and sim-to-real transfer compared to RL alone, and enhanc-
ing performance over conventional control methods. Future
work will explore incorporating such information into the
value network as well and extending our method to more
complex tasks, such as locomotion and vision-based control.

REFERENCES

[1] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,
“Building machines that learn and think like people,” Behavioral and
brain sciences, vol. 40, p. e253, 2017.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[3] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quan-
tifying generalization in reinforcement learning,” in International
conference on machine learning, pp. 1282–1289, PMLR, 2019.

[4] Y. Yao, L. Xiao, Z. An, W. Zhang, and D. Luo, “Sample efficient rein-
forcement learning via model-ensemble exploration and exploitation,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4202–4208, IEEE, 2021.

[5] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proceedings of the 30th AAAI conference
on artificial intelligence, vol. 30, pp. 2094–2100, 2016.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, pp. 1861–
1870, PMLR, 2018.

[8] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), pp. 465–
472, 2011.

[9] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa,
“Learning continuous control policies by stochastic value gradients,”
in Advances in Neural Information Processing Systems, vol. 28, Curran
Associates, Inc., 2015.

[10] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, “Model-
ensemble trust-region policy optimization,” in International Confer-
ence on Learning Representations, 2018.

[11] Y. Luo, H. Xu, Y. Li, Y. Tian, T. Darrell, and T. Ma, “Algorithmic
framework for model-based deep reinforcement learning with theoret-
ical guarantees,” in International Conference on Learning Represen-
tations, 2019.

[12] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and
P. Abbeel, “Model-based reinforcement learning via meta-policy opti-
mization,” in Proceedings of The 2nd Conference on Robot Learning,
vol. 87 of Proceedings of Machine Learning Research, pp. 617–629,
PMLR, 29–31 Oct 2018.

[13] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral rein-
forcement learning and experience replay for adaptive optimal control
of partially-unknown constrained-input continuous-time systems,” Au-
tomatica, vol. 50, no. 1, pp. 193–202, 2014.

[14] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. Lewis, “Adaptive
optimal control for continuous-time linear systems based on policy
iteration,” Automatica, vol. 45, no. 2, pp. 477–484, 2009.

[15] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iter-
ation networks,” Advances in neural information processing systems,
vol. 29, 2016.

[16] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differen-
tiable MPC for end-to-end planning and control,” Advances in neural
information processing systems, vol. 31, 2018.

[17] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning, pp. 136–145, PMLR, 2017.

[18] S. East, M. Gallieri, J. Masci, J. Koutnik, and M. Cannon, “Infinite-
horizon differentiable model predictive control,” Proceedings of ICLR
2020, 2020.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,” 2015. Software
available from tensorflow.org.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” OpenAI, 2016.

[22] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems, pp. 5026–5033, IEEE, 2012.

[23] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning, pp. 1587–1596, 2018.

[24] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.


