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Abstract

Learning effective behaviors requires both adaptability and structured planning,
traditionally split between model-free and model-based methods. Differentiable
control combines the strengths of both, but iLQR, a powerful nonlinear controller,
lacks differentiability, limiting its use in end-to-end learning. Differentiating
through extended iterations introduces scalability challenges, further hindering its
application. We propose a framework that enables iLQR to function as a trainable
and differentiable module, either as or within a neural network, by using implicit
differentiation to compute accurate gradients with constant backward cost. On
behavior imitation tasks across standard benchmarks, our method achieves up to
128x speedup (minimum 21x) over automatic differentiation and improves learning
efficiency by 106x compared to conventional neural policies. This framework
equips neural networks with control and planning abilities, bridging control theory
and behavioral learning.

1 Introduction

Human learning, such as riding a bicycle, is often accelerated by leveraging accumulated prior
knowledge about the dynamics of the world. This ability allows adults to master new tasks with
relatively few trials, underscoring the importance of prior knowledge in efficient learning [1]. Inspired
by this principle, researchers have sought to incorporate structured control knowledge within machine
learning models [2], particularly in reinforcement learning (RL) and imitation learning, to improve
sample efficiency and performance.

Differentiable control has emerged as a powerful approach in these fields, enabling gradient-based
optimization techniques to directly adjust policy parameters. By embedding control policies within
a differentiable framework, this approach allows for end-to-end training, where both the control
strategy and the model can be learned simultaneously, enhancing adaptability and precision.

The iterative Linear Quadratic Regulator (iLQR) [3] is widely used for trajectory optimization [4]
due to its computational efficiency [5] and strong control performance [6]. However, making iLQR
trainable as a neural network module is challenging. Naively differentiating through iLQR introduces
scalability issues, as forward and backward passes are tightly coupled. The forward pass involves
solving LQR optimization iteratively to find an optimal trajectory, while the backward pass propagates
gradients through each iteration step. This coupling increases memory usage and slows down training,
making it impractical for long-horizon or high-dimensional tasks.
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Figure 1: An overview of iLQR, and AutoDiff vs our proposed planner with implicit differentiation.
As shown in the flowchart, autodiff must backpropagate through each layer of the LQR process, which
leads to significantly increased memory usage to store intermediate gradients and computational load.
In contrast, our proposed planner, using implicit differentiation, only needs to handle the final layer.
This results in constant computational costs and memory usage, making our method much more
efficient.

Efficient differentiable controllers are essential in frameworks where neural networks are integrated
with control systems, such as multi-modal learning [7, 8] and deep reinforcement learning [9, 10].
Differentiable controllers enhance sample efficiency and reduce computational time for online tuning,
making them critical for large-scale learning systems. Analytical solutions, such as DiffMPC [11],
have demonstrated significant improvements in computational efficiency, scalability, and generaliza-
tion, inspiring their use in broader planning and control applications [12, 13].

This paper makes the following contributions

1. We develop an efficient method for analytical differentiation. We derive analytical trajectory
derivatives for optimal control problems with tunable additive cost functions and constrained
dynamics described by first-order difference equations, focusing on iLQR as the controller.
Our analytical solution is exact, considering the entire iLQR graph. The method guarantees
O(1) computational complexity with respect to the number of iteration steps.

2. We demonstrate the effectiveness of our framework in imitation and system identification
tasks using the inverted double pendulum and cartpole examples, showcasing superior
sample efficiency and generalization compared to traditional neural network policies, as
well as more accurate parameter estimations than the reference method.

Notation For a scalar function f with a vector input, ∇f denotes the gradient. Subscripts on ∇
indicate partial derivatives with respect to a subvector or the variable of interest. For tensor operations,
we use ∂(·)

∂(·) for linearization (e.g., eq. (9) for Jacobians). To simplify some equations, we use DθX to
represent ∂X

∂θ . Careful tracking of dependencies is crucial throughout.

2 Related Work

2.1 Differentiable Planning

Model-free policy search methods have achieved notable results in various domains by mapping
observations directly to actions [14, 15, 16, 17]. However, these methods often lack interpretability,
generalization, and sample efficiency [9, 18, 19, 20]. Differentiable planning combines classical
planning with deep learning, enabling end-to-end training of models and policies, leveraging the
strengths of both model-free and model-based approaches. Value Iteration Networks (VIN) [21] and
their extensions [22, 23, 24, 25] have shown significant improvements, particularly in discrete spaces.
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In continuous control, differentiable LQR approaches are prevalent, focusing on finite and infinite
horizon LQR [11, 26, 12], constrained LQR [27], and PMP-based methods [28, 29, 30]. While
PMP-based methods have slower convergence compared to iLQR [28], iLQR remains a robust
numerical control technique [3, 31, 32], with approaches like [33] differentiating through iLQR to
learn cost-shaping terms.

Many of these methods, however, involve unrolling optimization procedures, which increases memory,
computation costs, and reduces stability [34, 35]. A key advance is [11], which avoids full unrolling
by differentiating through the last iLQR layer, though their analytical gradients are limited due to
treating the fixed point as a constant, rather than a function of learning parameters.

2.2 Relations with Neural Networks

A neural network is essentially a function. By formulating iLQR as a differentiable module, iLQR
can be embedded into auto-differentiation tools such as PyTorch for training. Thus, the iLQR module
can be treated as a trainable network or embedded into a larger network structure for complex tasks,
such as interacting with image processing networks for vision-based control (end-to-end learning
and control). Previous works have demonstrated the advantages of such methodologies in terms of
sample efficiency over black-box neural networks [21, 36, 37]. Our work serves as a foundational
study on differentiable iLQR, and we believe our technique can be broadly utilized as a fundamental
tool for complex tasks as illustrated by the references. Detailed applications of the technique are
beyond the scope of this research.

3 Differentiable iLQR

3.1 End-to-end learning framework

In the differentiable control pipeline, the cost function g and system dynamics f are parameterized by
θ, which is unknown and learnable through a performance metric L. We followed standard practice
by leaving the θ-dependence implicit in the previous section, but at this point we must bring it into
view by changing the notation to f = f(x, u, θ) and g = g(x, u, θ). Of course the derivatives shown
in (9) and (10) are also functions of θ. For a given reference trajectory τ , the dynamics will generate
three θ-dependent matrices we must consider:

At(θ) =
∂f

∂x
, Bt(θ) =

∂f

∂u
, and

∂f

∂θ
.

Careful accounting for the θ-dependence at every level is required for accurate gradients. If the loss
function L can be presented as an explicit function of the trajectory τ , the influence of θ on the
observed L-values will be indirect. For the composite function θ 7→ L(τ(θ)), the chain rule gives

∇θ(L ◦ τ)(θ) = ∇τL(τ(θ))
∂τ

∂θ
. (1)

The partial derivatives required to form ∇τL are provided during the backward pass by automatic
differentiation tools [38, 39]. The main challenge, however, is to find ∂τ

∂θ , i.e., the derivative of the
optimal trajectory with respect to the learnable parameters. Next, we will analytically evaluate ∂τ

∂θ
through implicit differentiation on the fixed point.

3.2 Fixed point differentiation

The sequence of trajectories produced by iLQR can be understood as an iterative rollout of LQR
layers:

τ0
iLQR−−−−→ τ1

iLQR−−−−→ τ2
iLQR−−−−→ · · · iLQR−−−−→ τ⋆

iLQR−−−−→ τ⋆
iLQR−−−−→ · · · . (2)

Each LQR layer includes the three steps noted above: linearizing the system, conducting the backward
pass, and performing the forward pass. After a sufficient number of iterations (shown as N in above),
the output τ⋆ to an LQR step will be the same as the input, indicating that the LQR can no longer
improve the trajectory it linearizes around. This trajectory τ⋆ is called a fixed point for the iLQR. The
fixed point of iLQR is usually reached because the line search operation in the forward pass ensures
that the accumulated cost decreases with each iteration.
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A fixed-point problem can be solved by various methods, typically iterative in nature. As pointed
out in [35], naively differentiating through such a scheme would require intensive memory usage
[21, 23] and computational effort [34]. Instead, we propose use implicit differentiation directly on
the defining identity. This gives direct access to the derivatives required by decoupling the forward
(fixed-point iteration as the solver) and backward passes (differentiating through the solver).

Let us write X = (x1, . . . , xT ) and U = (u1, . . . , uT ) for the components of a trajectory τ =
(x1, u1, x2, u2, . . . , xT , uT ), and abuse notation somewhat by identifying τ with (X,U). At a fixed
point (X∗, U∗) of the iLQR, we have the following:

X∗ = F (X∗, U∗, θ), U∗ = G(X∗, U∗, θ) (3)

where F and G summarize the operations that make up a single LQR layer.

In eq. (3), the solutions X∗ and U∗ depend on the parameter θ. By treating both X∗ and U∗ explicitly
as functions of θ, we can interpret eq. (3) as an identity valid for all θ. Differentiating through this
identity yields a new one:

DθX
∗ =

∂F

∂X
DθX

∗ +
∂F

∂U
DθU

∗ +
∂F

∂θ

DθU
∗ =

∂G

∂X
DθX

∗ +
∂G

∂U
DθU

∗ +
∂G

∂θ
.

(4)

Here DθX
∗ and DθU

∗ are the sensitivity matrices (Jacobians) that quantify the θ-dependence of
the optimal trajectory; both depend on θ. The matrix-valued partial derivatives of F and G above
are evaluated at (X∗(θ), U∗(θ), θ). Rearranging the identities above produces a system of linear
equations in which these matrices provide the unknowns:(

I − ∂F

∂X

)
DθX

∗ − ∂F

∂U
DθU

∗ =
∂F

∂θ

− ∂G

∂X
DθX

∗ +

(
I − ∂G

∂U

)
DθU

∗ =
∂G

∂θ
.

(5)

The analytical solution for this system is given below.
Proposition 1. The sensitivity matrices in eq. (5) are given by

DθX
∗ = M(Fθ + FU (K −GXMFU )

−1(GXMFθ −Gθ))

DθU
∗ = (K −GXMFU )

−1(GXMFθ +Gθ),
(6)

where we denote M = (I − FX)−1 and K = I −GU , and use the condensed notation

FX =
∂F

∂X
, FU =

∂F

∂U
, Fθ =

∂F

∂θ
, GX =

∂G

∂X
, GU =

∂G

∂U
, Gθ =

∂G

∂θ
. (7)

Proof. Please check Appendix for detailed proof.

To be completely explicit, suppose a parameter θ is given. Then eq. (3) defines a fixed point τ∗ in
terms of this particular θ, and this τ∗ provides the evaluation point (X∗(θ), U∗(θ), θ) for all the
Jacobian matrices involving F and G in Equations (4) to (6).

4 Experiments

Following prior work [11, 28, 27, 40], we evaluate our method on two control benchmarks: CartPole
and Inverted Pendulum. All experiments were conducted on an AMD 3700X CPU (3.6GHz), 16GB
RAM, and RTX3080 GPU with 10GB VRAM using PyTorch [38].

4.1 Computational Performance

Figure 2 highlights the computational advantages of our method over AutoDiff. For 10 horizons and
300 iterations, AutoDiff takes 8.57s, while our method requires only 0.067s, yielding a 128x speedup.
Even with fewer iterations (50), AutoDiff takes 1.41s, compared to 0.067s for our method—a 21x
speedup. These results demonstrate that our method scales efficiently, maintaining near-constant
time regardless of iteration count, unlike AutoDiff.
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Figure 2: Backward computation time comparison between AutoDiff and our method under different
iLQR iterations and horizons. AutoDiff scales linearly, while our method maintains constant compu-
tation time. Experiments conducted with batch size 20 on the pendulum domain.
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Figure 3: (a) Imitation loss comparison across methods. (b) Cost function parameter estimation
between our approach and DiffMPC on CartPole.

4.2 Imitation Learning

We compare our approach against: 1. NN: An LSTM-based model predicting actions from state x.
2. SysId: Assumes known cost and learns system dynamics via next-state prediction. 3. DiffMPC:
Uses analytical gradients for trajectory optimization.

We evaluate two variants of our approach: - diLQR.dx: Learns dynamics with known cost by
optimizing imitation loss. - diLQR.cost: Learns cost with known dynamics by optimizing imitation
loss. Details can be found in the Appendix.

Imitation Loss: In Figure 3a, our method (diLQR.dx) outperforms NN and SysId, achieving
improvements of 106 and 104 on the respective tasks. In diLQR.cost mode, our method performs
comparably to SysId, despite relying solely on action data, which contains less information than
state-based models.

Model Loss: Figure 3b shows the model loss (MSE(θ − θ̂)) when estimating cost parameters. Our
method achieves an 18% reduction in model loss compared to DiffMPC, demonstrating superior
accuracy in recovering the true parameters.

5 Conclusions

We introduced DiLQR, an efficient framework that empowers neural networks with control and
planning abilities through implicit differentiation. Our analytical solution eliminates the overhead of
iterative unrolling, achieving O(1) computational complexity in the backward pass for scalable and
real-time learning.

Experiments show that DiLQR outperforms existing methods in both runtime and learning efficiency,
making it a powerful tool for behavioral learning tasks. By integrating control algorithms into neural
networks, DiLQR enables adaptive, structured decision-making, paving the way for more efficient
learning in complex environments.
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A Appendix / supplemental material

A.1 ILQR Background

The Iterative Linear Quadratic Regulator (iLQR) is a trajectory optimization algorithm. At each
iteration step, it linearizes the dynamics and makes a quadratic approximation of the cost function,
and then solves the problem using a finite-time Linear Quadratic Regulator (LQR). For a non-linear
control problem defined by

J⋆ = min
x1:T ,u1:T

T∑
t=1

g(xt, ut) s.t. xt+1 = f(xt, ut), u ≤ u ≤ ū, x1 = xinit, (8)

the iLQR algorithm optimizes the trajectory by repeatedly executing the following steps:

A.2 The Approximate Problem

Iteration i begins with the trajectory τ i = {τ i1, . . . , τ iT }, where τ it = {xi
t, u

i
t}. We linearize the

dynamics by defining

Dt = [At, Bt] =

[
∂ft
∂x

∣∣∣∣
τ i
t

,
∂f

∂u

∣∣∣∣
τ i
t

]
, dt = ft(x

i
t, u

i
t)−Dt

[
xi
t

ui
t

]
, t = 1, 2, . . . , T, (9)

and form a quadratic approximation of the cost function using

c⊤t = [ct,x, ct,u] =

[
∂gt
∂x

∣∣∣∣
τ i
t

,
∂gt
∂u

∣∣∣∣
τ i
t

]
, Ct =

[
Ct,xx Ct,xu

Ct,ux Ct,uu

]
, t = 1, 2, . . . , T, (10)

where

Ct,xx =
∂2gt
∂x2

∣∣∣∣
τ i
t

, Ct,uu =
∂2gt
∂u2

∣∣∣∣
τ i
t

, Ct,xu = C⊤
t,ux =

∂2gt
∂u∂x

∣∣∣∣
τ i
t

.

These elements lead to an approximate problem whose unknowns are δτt = τt − τ it :

min
δτ1:T

T∑
t=0

1

2
δτt

⊤Ctδτt + c⊤t δτt s.t. δxt+1 = Dtδτt, δx1 = 0; u ≤ u ≤ ū. (11)

A.3 The Trajectory Update

Problem (11) can be solved by the two-pass method detailed in [5]. First a backward pass is conducted,
using the Riccati-Mayne method [41] to obtain a quadratic value function and a projected-Newton
method to optimize the actions under box constraints. Then a forward pass uses the linear control
gains Kt, kt obtained in the backward pass to roll out a new trajectory. Let δτ⋆ denote the minimizing
trajectory in (11). We use the controls in δτ∗ directly, but discard the states in favor of an update
based on the original dynamics, setting

ui+1
t = ui

t + δu⋆
t , xi+1

t+1 = f(xi+1
t , ui+1

t ). (12)

With these choices, defining τ i+1
t = {xi+1

t , ui+1
t } provides a feasible trajectory for (8) that can serve

as the starting point for another iteration.

A.4 Proof of proposition 1

Proposition 2. Define Fθ := ∂F
∂θ , FU := ∂F

∂U , FX := ∂F
∂X , Gθ := ∂G

∂θ , GU := ∂G
∂U , GX := ∂G

∂X .
Define M := (I − FX)−1, and K := I −GU . The analytical form of the gradients dX

dθ and dU
dθ are

given as follows:

dX

dθ
= M(Fθ + FU (K −GXMFU )

−1(GXMFθ −Gθ))

dU

dθ
= (K −GXMFU )

−1(GXMFθ +Gθ)

(13)
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Proof. With the new notations, equations can be rewritten as:

(I − FX)
dX∗

dθ
− FU

dU∗

dθ
= Fθ

−GX
dX∗

dθ
+ (I −GU )

dU∗

dθ
= Gθ

(14)

Focusing on the first equation, dX
dθ can be represented with dU

dθ :
dX

dθ
= (I − FX)−1(Fθ + FU

dU

dθ
)

= M(Fθ + FU
dU

dθ
)

(15)

Then, substituting 15 into the second equation of 14 to obtain an equation with respect to only dU
dθ :

−GX(M(Fθ + FU
dU

dθ
)) + (I −GU )

dU∗

dθ
= Gθ (16)

Solving equation 16 will give the solution to dU∗

dθ :
dU

dθ
= (K −GXMFU )

−1(GXMFθ +Gθ) (17)

Substituting 17 into 15, the solution to dX
dθ can be obtained:

dX

dθ
= M(Fθ + FU (K −GXMFU )

−1(GXMFθ +Gθ)) (18)

This completes the proof.

A.5 Obtaining each term in (14)

The functions F and G whose sensitivity matrices appear in eq. (7) are defined by rather complicated
arg min operations. The Chain-Rule pattern below, which we can apply to either H = F or H = G,
suggests that

HX =
∂H

∂D

∂D

∂X
+

∂H

∂d

∂d

∂X
+

∂H

∂C

∂C

∂X
+

∂H

∂c

∂c

∂X
,

HU =
∂H

∂D

∂D

∂U
+

∂H

∂d

∂d

∂U
+

∂H

∂C

∂C

∂U
+

∂H

∂c

∂c

∂U
,

Hθ =
∂H

∂D

∂D

∂θ
+

∂H

∂d

∂d

∂θ
+

∂H

∂C

∂C

∂θ
+

∂H

∂c

∂c

∂θ
.

(19)

In each term on the right, the first matrix factor (e.g., ∂H/∂D) expresses the sensitivity of the optimal
LQR trajectory to the corresponding named ingredient of the formulation in eq. (11). Efficient
methods for calculating these terms are known: see [11, 42]. The second factor in each term of (19)
can be computed using automatic differentiation.

A.6 Experimental Details

We refer to two methods based on DiffMPC as follows.

• mpc.dx: Assumes the cost of the controller is known and approximates the parameters of
the dynamics by directly optimizing the imitation loss;

• mpc.cost: Assumes the dynamics of the controller are known and approximates the cost
by directly optimizing the imitation loss.

For all settings involving learning the dynamics (mpc.dx, mpc.cost, iLQR.dx, and iLQR.cost), a
parameterized version of the true dynamics is used. In the pendulum domain, the parameters are the
mass of the arm, the length of the arm, and gravity; and in the cartpole domain, the parameters are the
cart’s mass, pole’s mass, gravity, and length. For cost learning in mpc.cost, iLQR.cost and mpc.cost,
we parameterized the controller’s cost as the weighted distance to a goal state C(τ) = ∥wg(τ − τg)∥.
As indicated in [11], simultaneously learning the weights wg and goal state τg was unstable. Thus,
we alternated learning wg and τg independently every 10 epochs.

10



Training and Evaluation We collected a dataset of trajectories from an expert controller and varied
the number of trajectories our models were trained on. The NN setting was optimized with Adam
with a learning rate of 10−4, and all other settings were optimized with RMSprop with a learning rate
of 10−2 and a decay term of 0.5.
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