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Abstract

With the rise of deep learning, there has been renewed interest within the

process industries to utilize data on large-scale nonlinear sensing and control

problems. We identify key statistical and machine learning techniques that

have seen practical success in the process industries. To do so, we start with

hybrid modeling to provide a methodological framework underlying several

core applications. Specifically, we traverse soft sensing and process optimiza-

tion and control. Soft sensing contains a wealth of industrial applications

of statistical and machine learning methods. We quantitatively identify re-

search trends, allowing insight into the most successful techniques in practice.

We consider two distinct flavors for data-driven control: hybrid modeling in

conjunction with mathematical programming techniques and reinforcement
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learning. Throughout these application areas, we discuss their respective

industrial requirements and challenges. A common challenge is the inter-

pretability and efficiency of purely data-driven methods. This suggests a

need to carefully balance deep learning techniques with domain knowledge.

As a result, we highlight ways prior knowledge may be integrated into indus-

trial machine learning applications. The treatment of methods, problems,

and applications presented here is poised to inform and inspire practitioners

and researchers to develop impactful data-driven sensing, optimization, and

control solutions in the process industries.

Keywords: statistical machine learning, deep learning, hybrid modeling,

soft sensing, reinforcement learning, control

1. Motivation

Data analytics and machine learning (ML) ideas are not new to the pro-

cess industries1. The review paper by Venkatasubramanian [1] provides an

excellent overview of the history, successes, and failures of various attempts

over more than three decades to use ideas from artificial intelligence (AI) in5

the industry. In particular, statistical techniques such as principal compo-

nent analysis, partial least squares, canonical correlation analysis, and time

series methods for modeling, such as maximum likelihood estimation and

prediction error methods, have been extensively used in industry [2]. Sev-

eral classification and clustering algorithms, such as k-means, support vector10

machines, and Fisher discriminant analysis, are also widely used in industry

1For simplicity, we refer to chemical and biological industries as process industries or
just industries.
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[3, 4]. And several nonlinear approaches, such as kernel methods, Gaussian

processes, and adaptive control algorithms, such as reinforcement learning,

have been applied in some niche applications [5, 6, 7].

Despite the longstanding success of many statistical techniques in in-15

dustry, there is also considerable interest in developing sensing and control

technologies based on more recent ML architectures [1, 8, 9]. Broadly speak-

ing, these aspirations are driven by the promises of increased autonomy:

increased operational efficiency, consistency, and safety; improved scalability

beyond linear methods; upskilling of plant personnel [10]. Consequently, this20

paper addresses the need to dissect and organize the general use of modern

ML techniques in industrial applications. In doing so, such a treatment will

inform practitioners of the latest research trends and their potential practical

impact. Conversely, researchers in core areas will benefit from a holistic view

of successful ML techniques and the industrial requirements they satisfy.25

1.1. Overview and scope

This paper is a significant extension of Gopaluni et al. [11]: in addition

to a more detailed and expansive treatment of the literature, we discuss the

practical success of various methods. Note that this is primarily a problem-

driven survey; however, we have provided sufficient references for interested30

readers on the underlying methods discussed here. Moreover, we have in-

cluded additional exposition on some of these methods in the supplementary

material.

Hybrid modeling is first introduced to provide a conceptual framework
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underlying core application areas, namely:235

1. Soft sensing

2. Process control

Process control also includes process optimization. In our survey, we identify

several methodological areas of research: statistical learning and machine

learning, deep learning and its variants, and reinforcement learning. Algo-40

rithms from each of these methodological areas are used to varying degrees

among the core applications. Soft sensing encompasses more statistical and

machine learning methods, with some discussion of deep learning. On the

optimization and control side, we discuss hybrid modeling in tandem with

mathematical programming and reinforcement learning.45

This is by no means an exhaustive survey of the recent research on these

topics. However, we have tried our best to include some of the most crit-

ical developments of ML tools in the process industries. In that vein, we

only discuss methods that have seen industrial use or have received consid-

erable research attention within process systems engineering, either in real50

life or in simulations. Therefore, speculation about the potential use of very

recent developments in the broader ML community, such as ChatGPT or

other large language models, is beyond the scope of this paper. However, we

provide insight into the practical deployment of ML techniques in the process

industries.55

2Tackling the trio of sensing, monitoring, and control in detail is beyond the scope of
this paper. Readers are referred to Ge et al. [4], Bi et al. [12], Sansana et al. [13] for more
details on ML methods for process monitoring.
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This paper surveys a large number of algorithms. Table 1 gives a conve-

nient list to reference across all sections. Throughout this paper, artificial

intelligence is the broadest term for classifying machines that aim to mimic

human intelligence. It is intended to predict, automate, and optimize the

tasks humans have traditionally performed, such as speech recognition, image60

recognition, decision-making, and translation. Machine learning is an area of

artificial intelligence and computer science where algorithms are developed

to extract patterns from data and make predictions. Supervised learning is a

branch of machine learning comprised of algorithms for determining a predic-

tive model based on labeled data with known outcomes. On the other hand,65

unsupervised learning is a branch of machine learning devoted to learning

patterns from unlabeled data.

2. Mathematical modeling approaches

The core applications of this paper are soft sensing and process optimiza-

tion and control. These areas rely on dynamic mathematical models to infer70

measurements, make decisions, and synthesize controllers. Therefore, before

describing the prominent machine learning (ML) techniques in these areas,

it is useful to introduce the foundational assumptions and architectures un-

derlying such models.

2.1. Knowledge-driven, data-driven, and hybrid modeling75

Knowledge-driven (mechanistic or white box) modeling based on first

principles and data-driven (or black box) modeling constitute two opposite

strategies. Developing mechanistic models requires a deep understanding of
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Table 1: Full forms for acronyms. Divided into three sections, top to bottom: 1) statistical
learning, 2) machine learning & deep learning, and 3) reinforcement learning & control
methods.

CCA Canonical correlation analysis LASSO Least absolute shrinkage and
selection operator

FA Factorial analysis LR Logistic regression
GMM Gaussian mixture model PCA Principal component analysis
ICA Independent component

analysis
PLS Partial least squares

LARS Least-angle regression RBC Reconstruction-based
contribution

ANFIS Adaptive network fuzzy
inference system

GRNN General regression neural
network

ANN Artificial neural network MLP Multilayer perceptron
BN Bayesian network RBFNN Radial basis function neural

network
CNN Convolutional neural network RNN Recurrent neural network
DNNE Decorrelated neural network

ensemble
RT Regression tree

DNN Deep neural network RVM Relevance vector machine
ELM Extreme learning machine SFA Slow feature analysis
ESN Echo state network SVM Support vector machine
ENN Elman neural network TL Transfer learning
GPR Gaussian process regression WNN Wavelet neural network

A3C Asynchronous advantage
actor-critic

PI2 Policy improvement with path
integrals

ADP Approximate dynamic
programming

PID Proportional-integral-
derivative

DDPG Deep deterministic policy
gradient

PPO Proximal policy optimization

DQN Deep Q-network RTO Real-time optimization
HJB Hamilton-Jacobi-Bellman SAC Soft actor-critic
MPC Model predictive control TD3 Twin-delayed DDPG
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the processes at play. It is often labor-intensive, but embodying first prin-

ciples may enable extrapolation beyond the conditions under which these80

models are trained. By construction, mechanistic models have a fixed struc-

ture and comprise a fixed number of parameters, often with a physical or

empirical interpretation. For this reason, they may also be classified as para-

metric models.

By contrast, data-driven models require little physical knowledge and are85

fast to deploy or maintain. But a larger dataset is also typically needed for

their construction, and their validity may not extend far beyond the condi-

tions under which they are trained. The structure of a data-driven model

does not need to be dictated by a priori knowledge but may be tailored to the

training data at hand instead. A further distinction is whether a data-driven90

model tries to describe data with a set of parameters of fixed size, regardless

of the size of the training dataset, in which case it is categorized as paramet-

ric, or whether its structure and number of parameters may evolve with the

size of the dataset, commonly referred to as nonparametric [14, 15]. The so-

called nonparametric regression models fall in the second category, whereby95

the predictor does not take a predetermined form, using techniques such as

nearest-neighbor interpolation, local regression, and Gaussian process (GP)

regression. However, the distinction between parametric and nonparametric

models in statistical and ML is not without intricacies. For instance, a lin-

ear SVM is a typical example of a parametric model, having a fixed number100

of parameters—a weight for each input dimension. In contrast, RBF-kernel

SVM may be considered nonparametric since the number of parameters grows

with the size of the training set—a weight for each training point.
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The basic idea behind hybrid models is to combine knowledge-driven and

data-driven models in such a way as to overcome their respective limitations.105

This strategy is also frequently referred to as gray box or block-oriented mod-

eling in the literature. At the same time, the term hybrid semi-parametric

modeling is coined to describe those hybrid models where the data-driven

component is nonparametric [16]. Multi-fidelity modeling has also developed

fast in recent years and is akin to hybrid modeling. The idea is to use a (pos-110

sibly inaccurate) knowledge-driven model as low-fidelity and correct it with

(noisy) process data, considered to be higher fidelity [17]. In particular, this

strategy has been applied in uncertainty propagation, inference, and opti-

mization and is also instrumental in small data problems (see supplementary

material).115

It is worth noting that hybrid modeling has been investigated for over

25 years in chemical and biological process engineering [18, 19, 20, 21]. The

claimed benefits of hybrid modeling in these application domains include

faster prediction capability, better extrapolation capability, better calibration

properties, easier model life-cycle management, and higher benefit/cost ratio120

to solve complex problems; see recent survey papers on the development

and applications of hybrid models by von Stosch et al. [16], Solle et al. [22],

Schuppert and Mrziglod [23], Zendehboudi et al. [24], Ahmad et al. [25],

Bradley et al. [26]. Hybrid models may be used to enable soft sensors (see

Section 3) or model-based optimization and control (see Section 4) in a first125

principles approach.
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Figure 1: Typology of hybrid models (see von Stosch et al. [16]). A and C represent serial
structures: under A, a data-driven model is used as input to a knowledge-driven model; C
is the reverse. B represents a parallel structure in which knowledge-driven predictions are
corrected by data-driven predictions.

2.2. Hybrid modeling paradigms

2.2.1. Traditional serial and parallel hybrid models

The usual classification of hybrid model structures is either as serial or

parallel [27]. In the serial approach, the data-driven model is most commonly130

used as an input to the mechanistic model (see Figure 1A), for instance, a

material balance equation with a kinetic rate expressed using a data-driven

model. This structure is especially suited to situations where precise knowl-

edge about specific underlying mechanisms is lacking, yet sufficient process

data exists to infer the corresponding relationship [18, 21]. However, when135

the mechanistic part of the model presents a structural mismatch, one should

not expect the serial approach to perform better than a purely mechanistic

approach. In the parallel approach, by contrast, the output of the data-driven

model is used to correct the predictions of the mechanistic model [19, 20],

most often in the form of an additive correction (see Figure 1B). This struc-140

ture can significantly improve the prediction accuracy of a mechanistic model

when the data-driven component is trained on the residuals between process

observations and mechanistic model predictions. However, this accuracy may

not be better than the sole mechanistic model when the process conditions

differ drastically from those in the training set.145

10



Historically, the most common data-driven modeling techniques embed-

ded in hybrid models have been multilayer perceptron (MLP) and RBF-based

regression [16]. Recent representative applications include the development

of a serial hybrid model to predict hydraulic fractures created by injecting

fluid into a reservoir that accounts for the leak-off rate of the fracturing fluid150

using an MLP [28] and the development of a serial hybrid model of the thin

film growth process coupling a macroscopic gas phase model described by

partial differential equations to a microscopic thin-film model described by

stochastic partial differential equations via an MLP [29]. Naturally, many

other statistical and ML techniques have also been investigated in this con-155

text. For instance, Ghosh et al. [30] used subspace identification to construct

the data-driven component in a parallel hybrid model and demonstrated the

approach on a batch polymerization reactor. Lopez et al. [31] developed a

serial hybrid model of a lignocellulosic fermentation process, whereby the glu-

cose concentration is estimated from spectroscopic data using a partial least160

squares regression model. GP regression has also attracted attention due

to its ability to estimate the predictor’s variance, for example, in bioprocess

engineering applications [32].

Parallel hybrid models can significantly alleviate the issue of maintaining

a complex mechanistic model since the data-driven component is trained to165

capture model mismatch in the first place, possibly in a nonparametric man-

ner. For dynamic systems in particular, a popular approach entails training

the data-driven model on the residuals between the predicted and observed

states at given time instants [33]. Notice that such a data-driven model could

either comprise algebraic or differential equations. By contrast, serial hybrid170
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models can prove more challenging to design, especially when the outputs

of the data-driven component cannot be observed directly [34]. In such a

case, training and assessing the performance of the data-driven component

requires one to simulate the full serial hybrid model and compare its outputs

to the available observations. Identifying the unknown model parameters175

within such hybrid models has relied on regularized regression techniques,

such as LASSO and LARS [35].

Another challenge shared by serial and parallel hybrid modeling paradigms

is automatically detecting the best structure for the data-driven component.

Generally speaking, minimizing the number of parameters needed to cap-180

ture the underlying mechanisms is desirable, that is, to neither underfit nor

overfit the data. Classical approaches to help discriminate among multiple

nonparametric model structures include the Akaike Information Criterion

and Bayesian Information Criteria. Willis and von Stosch [36] proposed an

approach based on sparse regression and mixed-integer programming to si-185

multaneously decide the structure and identify the parameters for a class

of rational functions embedded into a serial hybrid model. Recently, Zhang

et al. [37] applied hybrid modeling in combination with sparse identifica-

tion of nonlinear dynamics [SINDy; 38] to a photo-production bioprocess,

whereby a sparse quadratic correction of the kinetic model is identified using190

mixed-integer nonlinear programming techniques. More generally, there is

significant scope for extending sparse and symbolic regression techniques to

enable the construction of hybrid models. Notably, the platform ALAMO

[39] can enforce constraints on the response variables to incorporate first

principles knowledge, thereby revealing hidden relationships between regres-195
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sion parameters that may not be directly available to the modeler. One

approach to incorporating such constraints is via semi-infinite programming

[40]. Another promising direction entails using sum-of-squares optimization

techniques to tackle this problem [41, 42].

2.2.2. Emerging trends200

The traditional hybrid modeling approach has put a mechanistic model at

its core. It uses data-driven elements to either describe specific unknown or

poorly understood mechanisms or correct the predictions of the mechanistic

model. Another way of incorporating domain knowledge and mechanistic

models is feature engineering, where the inputs to the data-driven elements205

are augmented by terms that would also appear in mechanistic models; for

instance, think of enthalpy, which is not a measurement but a useful term in

energy balances. Hybrid models whereby the mechanistic model is now used

as an input to the data-driven component have become increasingly popular

in recent years (see Figure 1C). This approach includes physics-informed210

neural networks where the underlying conservation equations are imposed as

extra constraints on the MLP’s parameters [43], like the classical orthogonal

collocation theory on finite elements using piecewise polynomials [44, 45].

Co-Kriging techniques have also been developed where a GP trained using

data from a mechanistic model is combined with a second GP trained using215

process data (or a high-fidelity model) [46]. Such an approach also enables

multi-fidelity modeling using linear or nonlinear autoregressive techniques

[47, 48] and deep GPs [49], and finding applications, for instance, in the

optimization of complex black box simulators and legacy codes. Another

body of research has been concerned with learning a dynamic system by220
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accounting for prior information, for instance, the regression of polynomial

dynamic systems with prior information using sum-of-squares optimization

methods [50].

Since there is no universal framework, a recurring challenge with hybrid

modeling is selecting the appropriate paradigm—for example, physics-driven225

against data-driven backbone, or serial against parallel structure—for a par-

ticular application, such as small vs. large datasets or noisy vs. high-quality

data. This selection process still lacks a solid theoretical basis, although sys-

tematic computational comparisons of various hybridization techniques have

emerged in recent years [26]. Finally, looking beyond current hybrid models,230

Venkatasubramanian [1] argued for the development of hybrid artificial intel-

ligence systems that would combine not only mechanistic with data-driven

models but also causal models-based explanatory systems or domain-specific

knowledge engines. Likewise, the mechanistic model could be replaced by

a graph-theoretical model, such as signed digraphs, or a production system235

model, creating entirely new research fields.

3. Soft sensors in process industries

Soft sensing represents the most fundamental application of machine

learning (ML) techniques in the process industries. By extension, optimiza-

tion and control add complexity to a soft sensing core. As a result, based on240

our analysis and own experience, soft sensing contains the most industrial

penetration of ML applications. We quantitatively analyze which ML meth-

ods have seen practical success and which are currently being researched.

We offer practical considerations and insights for implementing soft sensors
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in practice to balance the apparent industrial-academic disconnect.245

3.1. Motivation for soft sensing

In the process industries, some variables are difficult to measure online

due to technological limitations or the high cost of sensors. These variables

indicate a product’s intermediate or final quality and must be continuously

monitored and controlled. In such circumstances, mathematical models are250

developed using easy-to-measure variables. These models provide a contin-

uous estimate for quality variables in real time. The mathematical models

devoted to the estimation of plant variables are called soft sensors [51, 52].

The process industries, such as refineries, steel plants, polymer industries, or

cement industries, remain the dominant users of soft sensors (see Figure 2).255

Similar to hybrid modeling, soft sensors can be categorized as knowledge-

driven and data-driven. Knowledge-driven soft sensors (or white box mod-

els), such as Kalman filters, are based on first principles models that describe

the physical and chemical laws that govern the process, such as mass and

energy balance equations. In contrast, data-driven soft sensors (or black box260

models) have no information about the process and are based on empirical

observations (historical process data). A third type of soft sensor, called hy-

brid models (or gray box models), uses a data-driven method to estimate the

parameters of a knowledge-driven model. This special combination is closely

related to the general concept of hybrid modeling, as discussed in Section 2.265

For instance, a model may incorporate physics-based simulations and process

measurements.
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Figure 2: Distribution of soft sensor applications.

Figure 3: Research publication in soft sensors from 2015 to 2023.
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3.2. A quantitative overview of soft sensing

Literature was collected by gathering articles published between 2015

and 2023 in relevant journals from publishing houses like Elsevier, Springer,270

Wiley, Taylor and Francis, MDPI, World Scientific, Hindawi, De Gruyter,

AMSE, and IEEE. For the publication search, keywords such as “soft sensor”,

“virtual sensor” or “inferential model” were used. The statistics shown in

Figure 3 were computed based on the collected literature.

These statistics indicate that the research conducted in soft sensing be-275

tween 2015 and 2023 was primarily focused on data-driven models. This is

unsurprising, as data-driven soft sensors can often capture complex and unex-

plained process dynamics more succinctly. In contrast, knowledge-driven soft

sensors require much expert process knowledge, which is not always available.

In addition, knowledge-driven soft sensors are difficult to calibrate, especially280

for complex nonlinear processes. Note that hybrid model-based soft sensors

received the least research attention. Data-driven soft sensors can be further

categorized based on the learning technique used for modeling.

Tables 2 to 3 show the current trends in the data-driven soft sensing.

Table 1 contains the full forms for the acronyms used in Tables 2 to 3.285

The research in soft sensing has dramatically shifted from statistical to ML

methods. Artificial neural networks (ANNs) received the greatest attention

among ML methods. The class of feedforward single hidden layer neural

networks (shallow networks)—encompassing multilayer perceptron (MLP),

GRNN, ELM, radial basis function neural network (RBFNN), wavelet neural290

network (WNN) in Table 1—have more applications in soft sensing than

recurrent neural networks (RNNs) and deep learning. Aside from ANNs,
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support vector machine (SVM) is the second most widely used ML method

for developing inferential models.

Transfer learning is slowly gaining applications in inferential measure-295

ments. Transfer learning alludes to the scenario where knowledge gained

while performing one specific task is exploited to carry out a different but

related task. Especially when data collection becomes difficult in the task of

interest, transfer learning still works by sharing information on relevant data

in other domains [53]. Transfer learning has yet to be applied to the online300

prediction of process variables.

Static (time-invariant) soft sensors are developed using data from a single

operating mode. However, their prediction accuracy degrades over time as

the process shifts to a new operating region. Adaptive soft sensors tackle this

issue by updating their parameters based on new samples.3 Less than one-305

third of soft sensors are adaptive, most of which use a just-in-time strategy

to update model parameters in response to samples arriving in real time

(see Figure 4 and Table 4). Therefore, computationally feasible methods are

required. In particular, partial least squares (PLS) is the preferred algorithm

for local modeling. The training of global soft sensor models is performed310

offline. Then, trained soft sensor models are deployed online to obtain real-

time estimates for key process or quality variables. Although training time is

comparatively very high, most global soft sensors produce estimates quickly

when used online [52, 54]

3One may further distinguish between unimodal and multimodal soft sensors. For
instance, a static soft sensor may be developed for multimodal distributions. In any case,
we are referring to the case of a static soft sensor degrading over time.
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Table 2: Distribution of data-driven methods for soft sensors, split between statistical and
ML methods.

Statistical methods % of publications ML methods % of publications

PLS 11.38 ANN 47.72
PCA 4.54 TL 2.02
FA 0.95 RT 4.59
ICA 1.70 SFA 2.75
LASSO 1.51 RVM 2.57
GMM 2.64 SVM 7.53
- - ANFIS 1.65
- - GPR 5.87
- - BN 2.57

Total 22.73 Total 77.27

Table 3: Distribution of various types of ANNs for soft sensors.

Method % of publications

MLP 14.23
DNNE 0.75
DNN 34.64
ELM 11.92
GRNN 6.92
WNN 2.31
RBFNN 2.68
RNN 21.94
ENN 0.38
ESN 4.23
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Figure 4: Distribution of global and adaptive soft sensors.

In Table 5, publications on each data-driven technique have been grouped315

into three categories: publications based on simulation data, publications

based on industrial data, and publications that reported industrial imple-

mentation. Notice that most soft sensors have been developed and tested on

industrial data. Still, only some of them—PLS, MLP, WNN, SVM, relevance

vector machine (RVM), Gaussian process regression (GPR) and regression320

tree (RT)—have made it into actual industrial implementation. Of course,

there may be a publication bias for academic examples and not all real-world

industrial applications may be reported on.

3.3. Computational cost of soft sensors

The training time refers to the time taken to determine optimal values325

for the parameters of a soft sensor model. Once the developed soft sensor is

implemented online in a distributed control system, it is used to estimate key

20



Table 4: Distribution of statistical and ML methods in local modeling of adaptive soft
sensors.

Method % of publications

PCA 7.05
MLP 3.52
SVR 11.77
GMM 2.35
GPR 15.30
BN 4.70
RVM 2.35
ELM 9.42
FA 3.52
PLS 31.78
LASSO 8.24

process or quality variables at regular sampling intervals. The time required

to get the estimates is called soft sensing time.

Different techniques have various levels of computational complexity, that330

is, model training time. Since principal component analysis (PCA) [55], slow

feature analysis [56], independent component analysis [57], and factorial anal-

ysis [58] can be developed in a single iteration, they require relatively low

computational time compared to LASSO [59], and GMM [60] techniques,

which involve using iterative optimization algorithms to determine the model335

parameters. In general, ML methods need more computational time than sta-

tistical methods [54]. Further, the computational complexity of ML methods

is influenced by the factors listed below [61] :

• Amount of training data.
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Table 5: Breakdown of methods for soft sensors according to the level of industrial appli-
cations.

Method Simulation
data

Industrial
data

Industrial
use

Number of
publications

PCA 8 16 0 24
PLS 12 45 3 60
SFA 4 11 0 15
ICA 7 2 0 9
LR 0 1 0 1
LASSO 1 6 0 7
FA 0 5 0 5
GMM 3 11 0 14
MLP 4 32 1 37
RBFNN 2 5 0 7
WNN 1 4 1 6
RNN 4 53 0 57
GRNN 5 13 0 18
ELM 6 25 0 31
ANFIS 3 6 0 9
DNNE 1 1 0 2
DNN 7 80 0 87
SVM 12 21 4 37
RVM 4 9 1 14
GPR 12 18 2 32
RT 5 19 1 25
BN 0 14 0 14
TL 4 7 0 11
ESN 2 9 0 11
ENN 0 1 0 1

Total 107 414 13 534
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• Number of features or input variables.340

• Type of training algorithm employed.

• Number of layers.

• Number of neurons (size) in layers.

• Type of device used (such as CPU or GPU).

The ELM is considered the fastest ML algorithm because it does not345

have parameters that need to be learned. The second fastest ML method

is the GRNN, which has a single learnable parameter (spread or width

of a radial basis function).4 Then come RTs and decorrelated neural net-

work ensembles, which can be constructed more easily than shallow neural

networks like RBFNN, MLP, WNN, and adaptive network fuzzy inference350

system (ANFIS). As RBFNN uses hybrid learning (not hybrid modeling)—

unsupervised learning for the middle layer and supervised learning (linear

regression) for the last layer—it is usually faster than MLP, ANFIS, and

WNN, which use iterative gradient descent algorithms. SVM is the slowest

of the kernel-based ML methods (SVM, GPR, and RVM). Bayesian networks355

rely on the expectation-maximization algorithm to optimize their parameters,

which takes a little more training time than RTs. Dynamic ML methods,

such as RNNs, involve more operations than their static ML counterparts,

4Soft sensors were developed based on industrial data using the ML algorithms surveyed
in this paper. The soft sensors were tested on an independent validation dataset and the
computation time for each soft sensor was recorded. It turned out that, among all of
the soft sensors, the ELM-based soft sensor took the least computational time to produce
estimates. The GRNN-based soft sensor was the second fastest one.
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so they require more memory and computational power [62, 15]. Similarly,

deep neural networks (DNNs) often include several layers and hence, con-360

tain many parameters. A large amount of training data is necessary to train

DNNs. Therefore, DNNs are recognized as the most computationally expen-

sive methods of all the data-driven techniques.

3.4. Industry implementation of soft sensors

In industries, soft sensors are developed by in-house control engineers365

or third-party contractors (service engineers) from service providers such as

Honeywell or Yokogawa. These service providers use their own software to

build the soft sensors. When the existing technology used by service providers

is inadequate to handle a problem or in-house control engineers have no

knowledge of other soft sensing algorithms, the industries provide research370

funding to universities, research organizations, or startups to develop sophis-

ticated soft sensors to model complex nonlinear processes. The following

steps outline how soft sensors are developed and implemented in industries.

1. After recognizing a need for a soft sensor application, a team consist-

ing of a panel operator, process engineer, control engineer, and project375

manager is formed. The process engineer prepares a charter to define

the core objectives, scope, responsibilities, and timeline of the project.

This outlines the benefits that the soft sensor project can offer. All

the benefits are usually quantified in terms of how much money can be

saved. For example, this cost–benefit analysis typically involves weigh-380

ing the upfront costs—hardware, software, consultants—and continued

costs—software licenses, in-house domain experts to handle support
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and maintenance—against anticipated improved revenue and through-

put, as well as reduced cost of the soft sensor. Once the team is satisfied

with the benefits, the soft sensor project launches.385

2. The next step in executing a soft sensor project involves obtaining

process knowledge or expert experience knowledge to identify input

variables that have a noteworthy influence on output variables [63].

The use of process knowledge or expert experience avoids the inclu-

sion of redundant input variables in soft sensor modeling, leading to390

reduced model complexity and improved accuracy. In the absence of

such knowledge, ML algorithms such as LASSO, hybrid LASSO, and

ridge regression can be used to identify and remove input variables that

have negligible impact on the output variable.

3. The third step entails process data collection and preprocessing. The395

process data are often abundant but poor in information. This is due

to significant disturbances, outliers, and missing values. Soft sensors

developed using these data may provide incorrect estimates for quality

variables. The outliers and missing values from the raw industrial data

should be removed to obtain clean data for developing the soft sensor.400

Although it may not be theoretically rigorous, the usual practice is to

detect and delete samples with outliers [64]. Missing values are treated

in the same fashion. This approach ensures that the clean data are free

of outliers and missing values.

4. The data collection in industrial settings is often associated with multi-405

rate sampling. If the sampling frequency of the input variables is higher
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than that of the output variable, then it is necessary to synchronize

the variables. Down-sampling may be used to deal with the multi-rate

sampling problem. In the down-sampling approach, samples of the

input variables that do not have the respective measurements of the410

output variable are removed [54].

5. After the process data are preprocessed, they are split into training

and validation subsets. The training subset is used to construct a

soft sensor model whereas the validation subset is used to evaluate the

prediction performance of the soft sensor model. This is called offline415

validation. The usual practice is to develop a linear model first. If the

linear model cannot produce accurate estimates, then more complex

statistical or ML algorithms are used.

6. If the soft sensor model delivers satisfactory performance in the offline

validation, it is implemented in a distributed control system. Then the420

performance of the soft sensor is monitored for some time period. If

the soft sensor exhibits poor performance, then modifications are made.

This is online validation. For offline and online validation, metrics such

as the correlation coefficient and root mean squared error are used to

quantify the performance of soft sensors [54]. In addition, qualitative425

analysis is considered to see if soft sensor estimates follow the lab data

trend. If the soft sensor estimates are poor, the input data are first

examined for possible reasons, such as sensor failures, data transmission

problems, outliers, plant shutdowns, and plant upsets. Poor estimates

can be characterized by low correlation to lab data, estimates out of430
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the operational range, or significant deviation from lab data. If the

input data are good, the following strategies are used to get accurate

and reliable estimates:

• Retraining of the soft sensor using the latest data.

• Changing the soft sensor modeling algorithm.435

• Using a different training algorithm.

• Changing the parameter initialization method.

• Using approaches that can avoid or reduce overfitting.

Regardless of the type of soft sensor, practicing engineers usually follow

the above approach to assess the performance of soft sensors.440

7. If the online soft sensor consistently provides reasonable results, the soft

sensor is used as a measuring device in a control loop. After successfully

implementing the soft sensor-based control application, the soft sensor

application is handed over to the panel operator. The human-in-the-

loop aspect described above is crucial in translating research results445

into practical applications.

3.5. Challenges in soft sensor development

Challenges that are often encountered in soft sensor developments are

discussed below.

• Lack of labeled data is the main challenge that must be dealt with450

in order to build good soft sensor models. Quality variables are less

frequently measured than easily measurable process variables, such as
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temperature, pressure, flow rate, and level. A sample of a quality vari-

able is collected once every shift (that is, 8 hours) or 24 hours. Because

of the long sampling interval, an insufficient amount of practical la-455

beled data is available. A soft sensor trained with a limited amount

of labeled data may not be able to capture the underlying relation-

ship between the input variables and the output variable. To deal with

this problem, a virtual sample generation method may be used to ob-

tain estimated output values for the corresponding input data [65]. As460

an alternative, semi-supervised learning may be used to construct the

soft sensor. Unsupervised learning algorithms like PCA, autoencoders,

stacked autoencoders, or deep belief networks can extract features from

unlabeled input data. These features are related to the output variable

by any data-driven linear or nonlinear model [15].465

• Operating conditions of the industrial process may change depending

on the demand for products, prices of raw materials, and so on. A

soft sensor developed using data from one operating condition may not

perform well when the operating condition changes. In this situation,

multimode soft sensors can be used to get accurate estimates [66].470

• Soft sensor maintenance is crucial to continuously attain reasonable

estimates, as the performance of an online soft sensor may degrade

over time. As a result, estimates obtained by a poorly performing soft

sensor do not follow lab data trends. To circumvent this hurdle, the

soft sensor is retrained with recent data, and deployed online. A more475

popular approach to maintain the accuracy of the soft sensor is to adopt
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a bias updating strategy. In the bias updating strategy, the soft sensor

outputs are brought closer to the lab data [67].

4. Data-driven and hybrid modeling approaches for optimization

and control480

We revisit data-driven and hybrid modeling in the context of solving op-

timization and control problems. We further introduce reinforcement learn-

ing as an emerging paradigm for solving challenging control tasks. In the

same way hybrid modeling represents a spectrum between knowledge-based

and data-based modeling, model-based optimization, model predictive con-485

trol, and reinforcement learning all encompass model-based and model-free

methodologies. Naturally, these techniques are also compatible with hybrid

modeling approaches, offering new challenges and research opportunities.

4.1. Model-based optimization

A large number of hybrid modeling applications have been geared towards490

offline process optimization. Here, a hybrid model is appealing because key

operational variables in terms of process performance may be included in the

mechanistic part of the model. This is to retain sufficient extrapolation while

capturing other parts of the process using data-driven techniques, for exam-

ple, to reduce the computational burden. Local (gradient-based) or stochas-495

tic search techniques have traditionally been applied to solve the resulting

model-based optimization problems. But a recent trend has been using com-

plete search techniques to overcome convergence to a local optimum and

guarantee global optimality in problems with trained machine learning mod-

els embedded, such as multilayer perceptron (MLP) [68, 69, 70], Gaussian500
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process (GP) [71], or gradient-boosted trees [72]. Applications in chemical

engineering include the optimization of simple reactor operations and process

flowsheets [68] and optimal catalyst selection [72].

It should be noted that developing a data-driven or hybrid model to speed

up the optimization of a more fundamental model is akin to conducting a505

surrogate-based optimization. The latter constitutes an active research area

in process flowsheeting, computational fluid dynamics, and molecular dy-

namics [73]. They can be broadly classified into local and global approaches.

Global approaches proceed by constructing a surrogate model based on an

ensemble of mechanistic simulations before optimizing it, often within an it-510

eration where the surrogate is progressively refined. Several successful imple-

mentations rely on MLPs [74], GPs [75, 76, 77], or a combination of various

basis functions [40, 78] for the surrogate modeling. Practical applications

have been for rigorous design of distillation columns [76, 77] and flowsheet or

superstructure optimization of chemical processes [75, 74]. By contrast, local515

approaches maintain an accurate surrogate of the mechanistic model within a

trust region, whose position and size are adapted iteratively. This procedure

entails reconstructing the surrogate model as the trust region moves around.

Still, it can offer global convergence guarantees, for example, when the sur-

rogates meet the full linearity property [79]. Applications of this approach520

to chemical process optimization include solved-based CO2 capture [80] and

integrated carbon capture and conversion [81].

4.2. Model predictive control and real-time optimization

The real-time optimization (RTO) and nonlinear/economic model predic-

tive control (MPC) methodologies use a process model at their core. So far,525
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most successful implementations of RTO and MPC have relied on mechanis-

tic models [82, 83, 84]. But there has been interest in data-driven approaches,

which use surrogate models trained on historical data or mechanistic model

simulations to drive the optimization. The type of surrogate models used in

such data-driven MPC includes MLPs [85, 86] and GPs [87, 88]. However,530

comparatively little work has been published on embedding hybrid mod-

els into MPC to reduce data dependency and infuse physical knowledge for

better extrapolation capability [89, 90]. Teixeira et al. [91] applied batch-

to-batch optimization to bioprocesses by relying on hybrid models where an

adjustable mixture of nonparametric and parametric models represented the535

cell population subsystem. In the RTO area, Cubillos et al. [92] investigated

the use of parallel hybrid models with MLP embedded on the Williams bench-

mark plant, but then they had to use stochastic search methods to solve the

resulting optimization problems. Recently, Zhang et al. [90] took the extra

step of using the same hybrid model simultaneously in the RTO and MPC540

layers and demonstrated the benefits for a simulated CSTR and distillation

column. Notice that most of these applications consider serial hybrid models

with embedded MLPs to approximate complex nonlinearities in the system.

Nevertheless, there is a dearth of industrial or experimental implementations

of such technologies to date.545

An RTO methodology that exploits the parallel approach of hybrid semi-

parametric modeling at its core is modifier adaptation [93]. Unlike classi-

cal RTO, modifier adaptation does not adapt the mechanistic model but

adds correction terms—the modifiers—to the cost and constraint functions

in the optimization model. The original work used process measurements550
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to estimate linear (gradient-based) corrections [94]. Gao et al. [95] proposed

combining quadratic regression models trained on available plant data with

a nominal mechanistic model to account for curvature information and fil-

ter out the process noise. Likewise, Singhal et al. [96] investigated data-

driven approaches based on quadratic surrogates as modifiers for the pre-555

dicted cost and constraint functions and devised an online adaptation strat-

egy for the surrogates inspired by trust-region ideas. Implementations of

this RTO methodology for industrial systems include load sharing for gas

compressors [97] and solid-oxide fuel cells [98].

More recently, Ferreira et al. [99] were the first to consider GPs, trained560

from past measurement information, as the cost and constraint modifiers. Us-

ing nonparametric regression models to describe the plant-model mismatch

in RTO applications makes sense insofar as the mismatch is generally struc-

tural. Del Rio Chanona et al. [100, 101] developed this strategy further by

introducing modifier-adaptation schemes that rely on trust regions to cap-565

ture the GPs’ ability to capture the cost and constraint mismatch. Recently,

Petsagkourakis et al. [102] proposed to use co-Kriging to drive the surrogate

modeling, where a first (low-fidelity) GP emulating the mechanistic process

model is integrated within a second (high-fidelity) GP that is trained us-

ing the process measurements. The benefits of using GPs in this context570

lie in their ability to perform real-time uncertainty quantification and allow

chance constraints to be satisfied with high confidence. By and large, these

developments share many common grounds with surrogate-based optimiza-

tion techniques (see Section 4.1), with the added complexity that the process

data are noisy and the process optimum might change over time. Finally, it575
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is worth noting that the potential benefits of this RTO technology have been

mostly investigated through numerical simulation, which cannot substitute

for both experimental and industrial validations and should be the subject

of future research.

4.3. Reinforcement learning580

Reinforcement learning (RL) is a class of numerical methods for the data-

driven sequential decision-making problem [103]. The RL agent (algorithm)

aims to find an optimal policy, or controller, based on industrial process data

collected through interactions with its environment.

Note that RL represents a more general class of techniques from hybrid585

modeling-based optimization. Briefly, RL includes algorithms for synthe-

sizing control policies without explicit reliance on a model of the process

dynamics. The supplementary material contains a more precise background

on RL; readers are also referred to Sutton and Barto [103].

Finding such a policy requires solving the Bellman equation based on590

the principle of optimality. However, the equation is often intractable as

it ends up with a high-dimensional optimization problem [104]. Recent ad-

vances in machine learning (ML) enable feature analysis of raw sensory-level

using deep neural networks (DNNs). The aid of DNNs facilitates efficient

numerical methods for approximately solving the Bellman equation. There-595

fore, the scalability of RL algorithms has been significantly improved. As a

result, so-called deep RL is an emerging technology that has shown remark-

able performance in real-world and simulated applications such as robotics,

autonomous driving, and board games [105, 106, 107].
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Deep RL has naturally gained attention from the process control commu-600

nity. In this section, we survey applications of RL in process control, and we

discuss advances and challenges in RL as they potentially pertain to process

control applications.

4.3.1. Reinforcement learning for process control

With high demands on the performance of process systems, efficient op-605

timization is becoming increasingly essential. The ultimate dream goal of

any process control system is to develop a controller capable of attaining

optimality in large-scale, nonlinear, and hybrid models with constraints, fast

online calculation, and adaptation. This ideal controller should be amenable

to a closed-loop solution and robust to online disturbances.610

Mathematical programming-based control, such as MPC and direct opti-

mization, are popular because they adequately address many of these require-

ments. Sections 4.1 and 4.2 discuss the mathematical programming paradigm

in more detail. RL has been studied in parallel because it has contrasting fea-

tures compared to mathematical programming methods [108]. According to615

the review and perspective studies of Shin et al. [5], Nian et al. [8], Spielberg

et al. [6], Yoo et al. [109], the advantages of RL are that: First, a closed-loop

state feedback policy can be obtained for generic stochastic control problems,

while an open-loop solution is obtained through mathematical programming

approaches. Most of the computation is done offline by learning the policy620

through offline data or simulation. Assuming that the environment used for

offline training is identical to that of the online implementation, the policy

is optimal. Second, the mathematical programming formulation for stochas-

tic control problems often becomes prohibitively large to be solved within
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a decision interval. On the other hand, uncertainties are implicitly or ex-625

plicitly quantified by the value or policy functions in RL approaches. The

trained RL policy can be implemented with minimal online computation re-

quired. Third, RL is flexible to varying levels of system knowledge, including

model-free, partial model-free, and model-based RL. Table 6 summarizes the

comparison between RL and mathematical programming methods.630

Several pioneering pieces of work due to Wilson and Martinez [110],

Kaisare et al. [111], Peroni et al. [112] proposed applying model-free RL

to process control problems over discretized state and action spaces. Q-

learning was implemented for the tracking control of a fed-batch bioreactor

[110] and free-end maximization problem of a fed-batch bioreactor [111, 112].635

Lee et al. [113], Lee and Lee [114] extended the concept of applying model-

free RL to dual adaptive control and scheduling problems. It was shown

that the approximation of the value function could provide robust control

despite the presence of process noise and model changes. RL methods that

guarantee robustness in dynamic optimization were later studied in Nosair640

et al. [115], Yang and Lee [116].

Some recent applications of RL rely on a linear approximator to solve opti-

mal control problems with a continuous state space model [117, 118, 119, 120].

Especially, Zhu et al. [117] applied a model-free RL variant called factorial

fast-food dynamic policy programming to a Vinyl Acetate monomer process.645

The algorithm improves scalability by breaking down the exponential size of

the action space by action space factorization. In the meantime, model-free

deep RL applications have become increasingly studied in the process control

field. Table 7 summarizes some recent work in this area. In the remaining
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Table 6: A comparison of RL and mathematical programming.

Reinforcement
learning

Mathematical
programming
approaches

Model knowledge Flexible Full model
Feedback Trained policy

function
Solution of
optimization problems

Online computation Negligible High
Offline computation High Not required
Robustness Backward propagation

of uncertain scenario
(value-based methods)

Forward propagation
of uncertain scenario

Constraint handling Immature (especially,
state variable
constraints)

Straightforward

Asymptotic stability Ultimate
upper-boundedness

Asymptotically stable

Scalability High Medium
Adaptation Exploitation and

exploration can be
controlled. However,
slow.

Fast. However,
performance depends
on estimators.
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sections, we elaborate on the use of deep RL in process control.650

4.3.2. Practical implementation of reinforcement learning

One promising application of RL is the synthesis of existing control struc-

tures [142, 143, 144, 145, 146]. For example, proportional-integral-derivative

(PID) controllers constitute the lowest level of control structures, and aug-

menting these with RL methods immediately gives practical results. PID655

tuning is a suitable testbed for RL applications, as there exists a suite of

tuning methods and industrial autotuners to benchmark against [137]. PID

controllers are also standard in practice, meaning the base layer control is

not substituted for a more complex strategy, for example, based on DNNs

(see Figure 5).660

Model-free RL was applied to schedule a set of PID gains obtained a priori

[147] or from internal model control [148]. Berger and da Fonseca Neto [149]

used a model-based RL method, called dual heuristic dynamic programming,

to compute PID gains. Nian et al. [8] applied deep Q-network (DQN) to

determine the gains of PID controllers and compared the performance with665

MPC. Lawrence et al. [137] conducted an experimental study on the auto-

tuning of PID controllers using the twin-delayed DDPG (TD3) algorithm.

Figure 5 depicts a feedback diagram in the RL setting: the actor is formulated

as a PID controller for the flow rate to a two-tank system, while the agent

processes data on a PC to update the actor-critic parameters.670

Another application is to construct hierarchical control structures with

RL methods. Shafi et al. [150] introduced a two-layer structure for optimizing

the bitumen recovery rate of a primary separation vessel. A supervisory RL

agent optimizes the recovery rate, while a low-level RL agent computes the
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Table 7: Model-free deep RL applications in process control. Asterisk (*) indicates a
model-based modification to the nominal algorithm. Highlighted rows indicate validation
on a physical system.

RL algorithm Application/process

Pandian and Noel [121] DQN*[122] Quadruple tank system
Wang et al. [123] PPO[124] HVAC control
Ma et al. [125] DDPG[126] Polymerization system
Spielberg et al. [6] DDPG[126] HVAC control
Oh et al. [127] DQN[122] Moving bed process
Petsagkourakis et al. [128] REINFORCE*[129] Fed-batch bioreactor
Bao et al. [130] TD3*[131] Setpoint tracking
Dogru et al. [132] A3C[133] Hybrid three-tank system
Joshi et al. [134] TD3[131] Transesterification process
Mowbray et al. [135] REINFORCE[129] Setpoint tracking
Yoo et al. [136] DDPG[126] Polymerization process
Lawrence et al. [137] TD3[131] PID tuning
Zhu et al. [138] SAC[139] Polyol process
Janjua et al. [140] GVF[141] Water treatment
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ki

kp
st

Environment

at

[kp ki] � [kp ki] + ��J(kp, ki)
Reward-maximizing update

Figure 5: Application of RL for tuning PI controllers in a lab setting. The policy plays the
role of a PI controller and receives updates towards improved performance. J is a general
long-term cost function and kp, ki are controller gains. Adapted from [137].

interface level actuation. Kim et al. [151] proposed a different type of two-675

layer structure for a product maximization problem of a fed-batch bioreactor.

A model-based RL agent solves the high-level optimization problem, and an

MPC tracks the trajectory of the high-level optimizer, rejecting real-time

disturbances.

Several studies make a comparison between RL methods based on prac-680

tical performance criteria. Wang et al. [152] compared 14 model-free and

model-based RL algorithms based on the following criteria: nominal perfor-

mance, sample efficiency (total training time, training time per step), ro-

bustness against noise, and asymptotic performance. Lawrence et al. [137]

proposed nominal performance, stability, perturbation to the system, initial-685

ization, hyperparameters, training duration, practicality, and specialization

as key criteria for evaluating RL methods for process control problems. In
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addition, Dogru et al. [132] used the extent of exploration: the ratio of the

visited over the total operational state and action spaces.

It is worth noting that RL implementations on physical systems are690

sparse. Some works in process control applications are validated on phys-

ical systems [148, 153, 121, 8, 137, 132]. These references tend to focus on

PID tuning or low-dimensional state/action spaces. A cascaded tank system

is also the most common environment. There are several plausible reasons

for the lack of real-world RL applications: The added engineering and soft-695

ware development is not always feasible to accommodate; the algorithmic

complexity of RL algorithms exacerbates the issue; practical and theoretical

problems, such as sample efficiency, convergence, and closed-loop stability,

are pressing concerns. Indeed, most deep RL algorithms can achieve impres-

sive final performance on complex tasks, but at the cost of extensive hyper-700

parameter tuning and significant variation between implementations [154].

In the following section, we highlight a few methods that are geared towards

making RL more reliable and scalable: Synthesis between model-based and

model-free learning; transfer learning and meta-RL; offline RL.

4.3.3. Challenges and advances in deep reinforcement learning705

Applying RL to industrial settings has many practical, technological, and

theoretical challenges. We refer to Shin et al. [5], Nian et al. [8] for further

reading. Here, we mainly focus on the sample efficiency of RL algorithms.

Sample efficiency refers to the amount of data needed to train an RL agent.

The supplementary material contains a more general discussion about ML710

with limited data.

Classical algorithms for value-based methods, such as Q-learning, and
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policy-based methods, such as REINFORCE5, enjoy theoretical convergence.

However, convergence can be slow due to high variance in value estimates

or limited to the tabular setting or linear function approximation [103].715

Nonetheless, these methods provide the foundation for deep RL algorithms.

Deep RL attempts to scale up RL methods to high-dimensional problems

as a synthesis with the deep learning framework. The first notable result is

an extension of Q-learning, named DQNs, introduced by Mnih et al. [122].

DQNs are limited to discrete action spaces but showed impressive results in720

tasks with high-dimensional sensory input data, such as Atari games.

More recent algorithms, such as the deep deterministic policy gradient

(DDPG) algorithm [126], allow for continuous action spaces. Despite the

advances made by DDPG, it is notoriously difficult to use, for example, due to

sensitivity to hyperparameters and overestimation of Q-function values [154].725

This limits the viability of DDPG for real-world applications such as process

control, as a physical system cannot be extensively probed. However, the

concurrent algorithms, TD3 [131] and soft actor-critic [139], built off DDPG

to improve the overall training robustness and sample efficiency. Despite

these advances, model-free RL algorithms alone are not sufficiently data-730

efficient and, therefore, not yet useful in real industrial applications [155]. In

the rest of this section, we identify several areas of RL research aimed at this

issue.

Although formulating a dynamic model can be a bottleneck in the RL al-

gorithm, model-based methods require much fewer interactions with the plant735

5REward Increment = N onnegative Factor ⇥ Offset Reinforcement ⇥ Characteristic
E ligibility
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[155]. Several model-based RL algorithms have been developed, focusing on

solving the continuous-time counterpart of the Bellman equation called the

Hamilton-Jacobi-Bellman (HJB) equation. Since they aim to solve the HJB

equation adaptively, the methods are called approximate dynamic program-

ming (ADP) [156, 157, 158]. ADP algorithms vary with their levels of model740

utilization, ranging from heuristic dynamic programming, dual heuristic pro-

gramming, and globalized dual heuristic programming [159, 160]. Stochastic

optimal control is an extension for handling stochastic differential equations,

a continuous-time description for uncertainty. Policy improvement with path

integrals (PI2) is a sampling approach to solving the stochastic HJB equation745

[161]. PI2 has shown remarkable data efficiency and performance for robot

learning.

Another line of work has focused on unifying model-free and model-based

approaches [162, 163]. The main motivation is that model-free algorithms

often achieve superior final (asymptotic) performance over model-based ap-750

proaches but suffer from relatively weak sample complexity. Bao et al. [130]

utilized ideas from D’Oro and Jaśkowski [162] wherein a dynamics model

is used to improve the action gradient estimation of the critic network.

While integrating dynamic models into traditionally model-free algorithms

has proved promising, these algorithms are designed to train an agent using755

online interactions on a system-by-system basis. More general strategies aim

to reduce the cost of calibrating RL agents to novel environments by utiliz-

ing historical datasets, training over many related systems, or transferring

previously trained agents to new ones.

Offline RL (sometimes called batch RL) aims to learn an optimal policy760
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from historical data alone [164]. Although off-policy algorithms like DDPG

can theoretically learn from historical data, online exploration is critical un-

less constraints are imposed on the learned policy [165]. An offline strategy

for pre-training RL agents with historical process data, followed by online

fine-tuning of the policy, is proposed by Mowbray et al. [135]. On the other765

hand, transfer learning is a framework for speeding up the training of RL

agents. By pre-training a policy, such as in a simulation environment, one

can use this as the initial policy on the true system of interest. This idea

is demonstrated for batch bioprocess optimization [128]. One can efficiently

mitigate plant-model mismatch by fine-tuning the initial policy on the real770

system.

Meta-learning, or learning to learn, is a ML strategy for leveraging prior

training experience to learn a new “task” quickly [166]. Meta-RL is a strat-

egy for training a “meta agent” to synthesize experience from many related

systems to adapt its policy to novel systems rapidly. For example, Finn775

et al. [167] develop a simple and highly influential algorithm for any neu-

ral network architecture that directly optimizes for initial parameters such

that they can quickly be adapted to new tasks with a small amount of data,

showing superior performance over standard transfer learning in classifica-

tion and RL tasks. Duan et al. [168] propose strategies for learning a latent780

context variable as part of the meta-policy architecture, thereby capturing

the “task” structure and enabling the meta-RL agent to adapt its policy with

new process data. This framework is appealing in process control applica-

tions because many systems may have a known structure, making training

over a distribution of related systems feasible. Consequently, this end-to-end785
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framework removes a model identification step during the online implemen-

tation of the RL agent by leveraging prior training experience. Meta-RL has

also seen recent applications to process control [169].

While significant strides have been made to make these algorithms more

sample-efficient, they are not yet practical. Motivated by this challenge, we790

have outlined different ways in which models can be integrated into otherwise

model-free algorithms. Moreover, meta-RL, offline RL, and transfer learning,

while still emerging, are promising avenues for MPC applications. These ar-

eas have tremendous potential for applications that can redefine automation

in the process industries.795

5. Discussion

Soft sensing and process control encompass statistical learning, machine

learning, deep learning, and reinforcement learning to varying degrees. Ta-

ble 8 shows the respective high-level prominence in these two application

areas. Although Table 2 indicates significant interest in the soft sensing lit-800

erature around deep learning, Table 5 shows methods like PLS and SVM have

received the most industrial use. However, the prominent use of industrial

Table 8: Method-application pairs covered in this survey. 3: significant emphasis, 7:
sparse emphasis.

Soft sensing Process control

Statistical learning 3 7
Machine learning 3 3
Deep learning 3 3
Reinforcement learning 7 3
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data is still promising. Meanwhile, our survey of process control indicates

a more significant emphasis on deep learning and reinforcement learning in

the literature. Simulation-based studies are commonplace in this context, as805

discussed in Section 4.3.2.6

Table 8 and the above discussion show a duality between sensing and

control in the context of machine learning methods. To fully capture the

benefits of modern machine learning methods, a unified framework that en-

compasses modeling, sensing, and control is required. Reinforcement learn-810

ing is well-suited to bridge the gap between sensing and control through a

global reward-based objective (rather than treating prediction and control

performance as independent goals). Applications in sensing do not necessar-

ily contradict the model-free nature of reinforcement learning, which is most

appealing. Rather, this characteristic makes it versatile for processing and815

optimizing real system data. To illustrate this point, Xie et al. [172] propose

using reinforcement learning for sensing, even though it has typically been

described in the context of control. Moreover, Esfahani et al. [173] utilize

reinforcement learning for both state estimation and control under a single

closed-loop performance objective.820

On the other hand, Section 4.3 discussed the complexity of reinforce-

ment learning algorithms. More broadly, deep learning and reinforcement

learning algorithms are rife with complexity and hyperparameters, making it

difficult to parse their fundamental inner workings [154, 174]. A promising

6Of course, existing implementations of MPC utilize soft sensors and, therefore, statis-
tical/machine learning methods. It is also commonplace in academic studies to augment
mathematical programming or reinforcement learning with autoencoders or RNNs to learns
a state representation [170, 171].
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avenue toward unifying sensing and control is distilling reinforcement learn-825

ing pipelines and reimagining techniques from other branches of machine

learning. Truly robust and powerful methods will follow from such a critical

rapprochement of the longstanding statistical learning methods in Table 1

and newer concepts in deep learning and reinforcement learning. An instance

of this aspiration in action is by Eysenbach et al. [175], where they show a830

novel use of binary classification and policy iteration is capable of achieving

state-of-the-art performance.

5.1. Conclusions

Recent advances in machine learning give us renewed optimism for achiev-

ing higher levels of automation in the process industries. To distill this broad835

aspiration, we have surveyed soft sensing and process control through a prac-

tical lens. Soft sensing represents the most dominant area regarding indus-

trial applications of statistical and machine learning techniques. On the other

hand, considerable research attention has been given to deep learning appli-

cations, but with limited industrial successes. Through synthesizing research840

trends and industrial requirements, we have strived to enable academics and

practitioners alike to develop sophisticated yet practical methods for building

better models and controllers.
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