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Abstract

Accurate and timely fault diagnosis is a vital task to ensure process safety of modern industrial facilities. Motivated
by the complex variations of process signals and mutual coupling of faults, this paper presents a multi-feature-based
fault diagnosis method based on the weighted timeliness Broad Learning System (BLS). The proposed method fuses
multiple features extracted from the original process data to improve the fault diagnosis performance, and makes the
diagnosis model suitable for dynamic fault diagnosis problems by incorporating the BLS. The major contributions of this
study are twofolds: 1) A systematic multi-feature extraction method is proposed to extract long-term trend features,
short-term trend features, and binary alarm signals, which reflect the direction and amplitude changes of process signals
under faulty conditions; 2) a weighted timeliness BLS structure with multiple fault-sensitive features as the input is
proposed to ensure the dynamic characteristics of the fault diagnosis model. The designed fault diagnosis model can be
updated in an incremental manner, and thus can improve the model updating efficiency while ensuring accuracy. The
effectiveness and superiority of the proposed method is demonstrated by a case study based on the Tennessee Eastman
benchmark process.
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1. Introduction

Safe and reliable process operations are of great impor-
tance to modern industrial facilities, such as oil refiner-
ies, chemical plants, metallurgical factories, and power u-
tilities, as the presence of faults and plant failures may
have widespread negative impact on the production, and
even lead to huge economic losses and catastrophic con-
sequences (Song et al., 2020; Bai and Zhao, 2023). Such
industrial facilities are usually large-scale and include a
number of interconnected equipment, vessels, and devices;
due to the complexity in system dynamics, process con-
nectivity, and production modes, it is a challenging task to
achieve reliable process monitoring and accurate fault di-
agnosis (Liu et al., 2018). Especially, the traditional mod-
el based and statistical methods experience limitations in
handling complex fault diagnosis problems. In the past
decade, increasing attention has been given to data-driven
approaches, especially artificial intelligence and big data
technologies, with applications to fault detection and di-
agnosis (Men et al., 2023; Liu et al., 2022b). Such meth-
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ods utilize fault-sensitive information in historical opera-
tional data to build diagnostic models and improve per-
formance by optimizing model structure and parameter-
s (Chen et al., 2021).

Classical multivariate statistical analysis methods have
been widely used in fault detection. These methods inves-
tigate the relationships among variables by decomposing
the multivariate space into statistical features that can re-
flect spatial variations, and then calculate the correspond-
ing statistical indicators for process monitoring (Ji et al.,
2017; Shang et al., 2018). Typical methods include Prin-
cipal Component Analysis (PCA) (Cao et al., 2020), Inde-
pendent Component Analysis (ICA) (Uddin et al., 2021),
and Partial Least Squares (PLS) (Amin et al., 2021). A
number of variants have been proposed to address the non-
linear characteristics, such as recursive least square (Lu
et al., 2020), solified-PLS (Li et al., 2021a), and improved
PLS related to key performance indicators (Yin et al.,
2015). The main advantage of the above methods lies in
little requirement for prior knowledge, while they may fall
short of accurately identifying fault types.

Recently, various hybrid approaches of fault detection
and diagnosis were proposed and integrated with risk as-
sessment (Liu et al., 2023; Li et al., 2023a). Fault diagno-
sis is a task to diagnose the fault types in a system and
essentially a multi-classification problem, while risk assess-
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ment is a process for evaluating potential risks in a sys-
tem, involving the identification, analysis, and mitigation
of hazards (Cai et al., 2020, 2021; Kong et al., 2022). Risk
assessment can enhance fault diagnosis by prioritizing the
faults that pose higher risks to the system and help with
determination of fault degrees based on the thresholds in
risk assessment. It can also support continuous improve-
ments of fault diagnosis models based on results gained
through risk assessments and thus ensure that the diag-
nostic system remains effective over time. A system risk
analysis method was proposed based on Bayesian network-
s (Zhang et al., 2018). Cheng et al. (2021) proposed a novel
process monitoring framework based on canonical correla-
tion analysis and matter-element model. By integrating
gradient-boosted decision trees and a computational mod-
el, a hybrid approach was proposed for the early detection
of hazardous system deviations (Vairo et al., 2023). Re-
garding the risk investigation, a dynamic risk modeling
method was proposed based on Stochastic Petri net to an-
alyze the urban natural gas pipeline accidents (Li et al.,
2023b). The hybrid approach provides a novel path to en-
sure process safety and reduce the risk of accidents. How-
ever, the above methods are designed for specific risks and
fall short in diagnosing multiple faults.

Faults are often accompanied by abnormal changes in
process signals. Hence, extracting characteristics of abnor-
mal changes is a key step in fault diagnosis. For instance,
Song and He (2023) proposed a fault detection method
based on residual signal computed based on reconstruction
errors. Li et al. (2023c) exploited qualitative trend analy-
sis to qualitatively describe the change direction of fault-
related signals. Chen and Zhao (2021) established a hier-
archical fault diagnostic model to cope with strong non-
linear characteristics. Li et al. (2021b) utilized multi-scale
symbolic diversity entropy to quantify the dynamic com-
plexity of signals. In (Liu et al., 2022a), a dynamic latent
variable prediction method was proposed to capture dy-
namic relations between time-series. In addition to process
signals, the benefits of alarm logs and alarm settings for
fault diagnosis were demonstrated in Lucke et al. (2020a).
Low and high alarm thresholds were defined according to
the alarm position (Lucke et al., 2020b). A quantitative
representation method for alarms was proposed based on
the quantity and time-series distribution (Zhang et al.,
2023). As a single feature can only reflect partial infor-
mation from a certain perspective, multi-feature has been
considered in the design of fault diagnosis methods. For
instance, multi-scale features were extracted based on ex-
pert knowledge to diagnose faults in Li et al. (2020). Such
multi-feature-based diagnostic methods were designed for
specific processes, and thus were difficult to be applied to
other processes.

Based on the extracted fault-related features, machine
learning and neural networks have been widely exploited
in the construction of fault diagnosis models. Especially,
deep learning approaches have received extensive studies.
Deep learning utilizes a large amount of data under various

operating conditions to establish a mapping relationship
between data and working conditions. In Xie et al. (2022),
a novel intelligent diagnosis method was proposed based
on Convolutional Neural Networks (CNN). An intelligent
fault diagnosis method for rotating components was devel-
oped based on multi-feature and CNN (Arunthavanathan
et al., 2021). An early fault detection method was pro-
posed based on CNN-LSTM by examining the fault symp-
toms (Cheng et al., 2019). Although the above-mentioned
CNN, RNN, and LSTM methods achieved good diagnosis
performance, the complex model training and updating
processes limited their industrial implementation.

In view of the extensive training and updating efforts
of deep neural networks, an effective incremental learn-
ing system called Broad Learning System (BLS) was pro-
posed (Chen and Liu, 2018). The BLS can be in an incre-
mental way without relying on a deep network structure
and exhibits excellent performance on multi-classification
problems (Yu and Zhao, 2020; Gao et al., 2021). Benefit-
ing from these distinct advantages, the BLS has been intro-
duced to design data-driven fault diagnosis models. For in-
stance, a single-layer feedforward network-based BLS was
proposed for the rotating machinery fault diagnosis (Yang
et al., 2023). Considering the difficulty of obtaining al-
l faulty data at once, an improved BLS was proposed to
develop a lifelong learning fault diagnosis model (Fu et al.,
2023). Further, the sequential order of training data was
integrated to develop an online semi-supervised BLS struc-
ture for fault diagnosis (Pu and Li, 2021). Even though
much effort to deal with model architecture and update
mechanisms has been made to provide reliable diagnosis
results, current BLS structures fall short in handling the
multiple features associated with industrial faults.

The above studies provide comprehensive and effective
solutions for fault diagnosis based on multivariate statis-
tical analysis and neural networks. However, there still
exist many unsolved open problems. Especially, there are
two critical limitations: 1) Most existing fault diagnosis
methods rely on extensive continuous-valued process data
or single types of features, making the fault-related char-
acteristics not fully used and thus compromising the fault
diagnosis performance. Thus, how to extract and fuse mul-
tiple features in the training of fault diagnosis model is the
first problem to be investigated in this work. 2) Many deep
learning based fault diagnosis models are complex in struc-
ture and computationally burdensome in model training,
and they are also difficult to get updated with the presence
of new unknown faults. By contrast, the BLS based mod-
els can overcome such limitations. How to handle the time
dependencies of process signals and corresponding features
in the model training and updating is another problem to
be addressed in this work.

Motivated by the above discussions, this paper propos-
es a multi-feature-based fault diagnosis method based on
the weighted timeliness Broad Learning System (BLS).
The proposed method fuses multiple features extracted
from the original process data to improve the fault diagno-
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sis performance, and makes the diagnosis model suitable
for dynamic fault diagnosis problems by incorporating the
BLS. The major contributions of this work are as follows:

• A systematic multi-feature extraction method is pro-
posed to extract long-term trend features, short-term
trend features, and binary alarm signals, which reflect
the direction and amplitude changes of process signals
under faulty conditions.

• A weighted timeliness BLS structure with multiple
features as the input is proposed to ensure the dy-
namic characteristics of the fault diagnosis model.

To demonstrate the effectiveness and superiority of the
proposed method, a case study based on Tennessee East-
man benchmark process is presented and comparisons with
other state-of-the-art methods are given.

The remainder of this paper is structured as follows:
Section 2 describes the fault diagnosis problem. Section
3 presents the framework and method for multi-feature
extraction. In Section 4, the systematic method for fault
diagnosis based on the broad learning system is proposed.
The effectiveness of the proposed method is demonstrated
by a case study in Section 5, followed by conclusions in
the final section.

2. Problem Description

In complex industrial processes, the transition from nor-
mal state to a faulty state is usually accompanied by sig-
nificant changes in the amplitudes or trends of process
signals (Wu and Zhao, 2018). Capturing these changes
can facilitate the acquisition of fault-related information
and thus is beneficial for accurate fault diagnosis. Typi-
cal changes in process signals are various, such as sudden
increases over the threshold, slow decline over a period of
time, and alternating upward and downward trends.

For instance, Fig. 1 shows the time series plots of two
process variables, namely, E feed and stripper pressure of
the benchmark Tennessee Eastman (TE) process (Ricker,
1996) under different states. The blue curve in t ∈ [0, 500]
corresponds to the normal state; the red and orange curves
in t ∈ [501, 980] denote the signals under faults 1 and 2, re-
spectively. It can be observed from Fig. 1(a) that the E
feed signal in the presence of fault 1 increased slightly and
then decreased drastically, followed by oscillating changes.
In Fig. 1(b), fault 1 made the stripper pressure increase
sharply first and then decrease, followed by damped oscil-
lations. Table 1 summarizes the trend changes of process
signals under faulty states in a time window highlighted
by the green rectangle in Fig. 1, where ↗ denotes the in-
creasing trend and ↘ indicates the decreasing trend. Be-
sides, the table also presents the short-term trends of the
two process variables under different faulty conditions; the
stripper pressure exhibits slow fluctuations while high fluc-
tuations can be observed in other scenarios.
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Figure 1: Time series plots of (a) the E feed and (b) the stripper
pressure under different states of the Tennessee Eastman process.

Table 1: Trend changes of process variables under faults 1 and 2,
respectively

Variable Fault type Long-term trend Short-term trend

E feed
fault 1 ↗ ↗ ↗ High fluctuations
fault 2 ↘↘↘ High fluctuations

Stripper
pressure

fault 1 ↗↘ ↗ Low fluctuations
fault 2 ↘↘↘ High fluctuations

Long-term and short-term trends reflect the variational
directions of process signals. In addition to that, the am-
plitude changes of process signals can be represented by
alarm signals, which are obtained by comparing the pro-
cess signals with the corresponding alarm thresholds. In
Fig. 1, there are two black lines denoting the upper and
lower thresholds of the process signals in the normal state,
respectively. It can be found that the time series denoted
by orange and red curves exceeded the normal ranges rep-
resented by the black lines under the two different faults.
Hereby, alarm signals were generated to denote whether
process signals exceed the normal operating ranges. As
alarm signals are directly associated with faults, they can
also key information to achieve accurate fault diagnosis.

This study aims to design a multi-feature-based fault
diagnosis method for complex industrial processes to de-
termine the type of faults accurately and promptly. As
analyzed above, the key issues are to capture abnormal
signal amplitude and trend changes under faulty condi-
tions and fully using these features to build a diagnosis
model. In this work, a multi-feature extraction method
is designed to extract long-term and short-term trend fea-
tures from process signals, as well as the corresponding
alarm signals. Then, a weighted timeliness BLS structure
is developed to process multi-features and train a fault di-
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agnosis model. Moreover, a dynamic strategy to update
fault diagnosis model parameters is designed to improve
the adaptability of the method, so as to achieve good di-
agnostic performance.

3. Multi-Feature Extraction

This section presents the multi-feature extraction
method to obtain trend features in different time scales
and binary-valued alarm signals, which are key features
imported by the BLS model.

3.1. Data De-Noising and Normalization

Process data collected in real industrial systems is usu-
ally contaminated by noises. To distill the trend features
and alarm signals that are highly associated with faults,
a foremost step is to improve the data quality. Here, an
original signal x(t) is represented by

x(t) = s (t) + ρe (t) , t = 1, 2, . . . , N (1)

where s (t) is the real signal, e (t) denotes the Gaussian
noise, ρ indicates noise level factor, t represents the time
instant, and N is the number of samples. Considering that
at the occurrence of a fault, process signals may exhibit
obvious non-statioanry changes, the wavelet analysis as a
commonly used data de-noising method applicable to non-
stationary signals is exploited here to reduce noises and
smooth the data (Pan et al., 1999). Denote the original
time series as x(1 : N) = [x(1), x(2), . . . , x(N)], and then
the de-noised time series is represented by x̃(1 : N) =
[x̃(1), x̃(2), . . . , x̃(N)].

To avoid influence of amplitude ranges of process signals
on feature extraction, the time series should be normalized
into the same scale. Here, the min-max normalization is
used. Given the de-noised signal x̃(t), the normalized sig-
nal is obtained as

x1(t) =
x̃(t)−min(x̃)

max(x̃)−min(x̃)
, (2)

where max(x̃) and min(x̃) are the maximum and mini-
mum values of x̃(1 : N), respectively. Then, the de-noised
and normalized time series is obtained as x1(1 : N) =
[x1(1), x1(2), . . . , x1(N)]. For multiple process variables,
the data matrix is denoted as X1 of dimension N ×M ,
where N and M denote the numbers of samples and vari-
ables, respectively.

3.2. Short-Term Trend Extraction

In the presence of faults, some process signals, such as
flow rates, may exhibit fast variations in high frequencies.
Thus, it is common to extract short-term variational trend-
s. In the short time scale, a sequence of short-term vari-
ational trends can be extracted based on the qualitative
trend analysis. Given a preprocessed time series x1(1 : N)
showing short-term trends, the trend features are taken

from one-step differences in a sliding window. The mean
values of the previous period x1(t− τ) and the next period
x1(t+ τ) are calculated as (Li et al., 2020)

x1(t− τ) =

∑τ
i=1 x1(t− i)

τ
, (3)

x1(t+ τ) =

∑τ
i=1 x1(t+ i)

τ
, (4)

where τ represents the window length, which is set as sev-
eral sampling cycles, and t denotes the time instant. Then,
the differences between the mean values of two adjacent
windows are calculated in two ways as

4xf (t) = x1 (t)− x1(t− τ), (5)

4xb (t) = x1(t+ τ)− x1 (t) , (6)

where4xf (t) and4xb (t) represent the forward and back-
ward one-step differences, respectively.

Then, the short-term trends 4xf (t) and 4xb (t) are
defined as three states, namely, decreasing (-), unchanged
(0), and increasing (+), i.e.,

sf (t) =

 −, 4 xf (t) < −λ,
0, −λ ≤ 4xf (t) ≤ λ,
+, 4 xf (t) > λ,

(7)

sb (t) =

 −, 4 xb (t) < −λ,
0, −λ ≤ 4xb (t) ≤ λ,
+, 4 xb (t) > λ,

(8)

where λ is a user-defined threshold; ideally, λ should be
smaller than 1 and close to 0, so as to treat nonsignificant
changes as the unchanged trend.

According to the short-term trends4xf (t) and4xb (t),
a short-term qualitative state sq(t) is defined by two sym-
bols in Fig. 2, namely, (-,-), (-,0), (-,+), (0,-), (0,0), (0,+),
(+,-), (+,0), (+,+). Further, a short-term trend s (t) is
defined as

s (t) =


H, sq(t) = VII or VI,
M, sq(t) = IV or IX,
L, sq(t) = I or III or V or VIII,
Z, sq(t) = II,

(9)

where H, M, L, and Z represent high-fluctuation, medium-
fluctuation, low-fluctuation, and non-fluctuation, respec-
tively.

Given N samples corresponding to MS variables with
short-term trends, the corresponding short-term trend ma-
trix is denoted by XS , i.e.,

XS = [s1(1 : N)T , s2(1 : N)T , · · · , sMs(1 : N)T ]N×MS
,

(10)
It should be noted that MS ≤ M , since not all process
variables have corresponding short-term features.
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Figure 2: Definition of short-term trend signal.

3.3. Long-Term Trend Extraction

The short-term trend reflects volatility changes over a
short period. However, some process signals, such as tem-
peratures, may change slowly such that short-term trend
extraction cannot capture their true variational trends. In
this subsection, the long-time scale is considered in the
extraction of trend features for slowly changing variables.

The time series is divided into several short lines by
piece-wise linear representation (Wang et al., 2019; Hu
et al., 2022). Suppose x1(1 : N) is split into K segments
connected end-to-end. The ith segment is represented by
x1(ti, ti+1 − 1), where ti and ti+1 − 1 are the first and last
sampling points, respectively. Each segment is assumed to
be a linear regression model expressed as

y(t) = âi + k̂it, t ∈ {ti, ti + 1, · · · , ti+1 − 1}, (11)

where âi and k̂i denote the estimated intercept and slope
parameters of the ith segment, respectively. They can be
obtained by the least square method (Abdi et al., 2007).

Then, the slope k(t) corresponding to x1(t) is obtained
by fitting the data of each segment. The long-term trend
is defined as

l (t) =


2, k(t) ≥ 1,
1, ς < k(t) < 1,
0, −ς < k(t) < ς,
−1, −1 < k(t) < −ς,
−2, k(t) ≤ −1.

(12)

where 2, 1, 0, -1, and -2 represent fast-increasing, slow-
increasing, unchanged state, slow-decreasing, and fast-
decreasing, respectively; ς ∈ (0, 1) is a threshold deter-
mined through experience.

In the above segmentation, it is necessary to determine
the number of segments K, namely, how many segments
a time series should be divided into (Wang et al., 2019).
Given a group of samples y(ti : ti+1−1) in the time period
[ti, ti+1−1], the convex hull composed by these samples is

formed as Ai. Then, an index ηi representing the percent-
age of overlapped area in Bi is given by

ηi =
|Ai ∩Bi|
|Ai|

, (13)

where the symbol | · | denotes the area of a 2-dimensional
operand space. An index function η(K) is defined as the
weighted average of the indices η1, η2, · · · , ηK , i.e.,

η(K) =

K∑
i=1

ti+1 − ti
N

ηi, (14)

where (ti+1 − ti) is equal to the number of data points in
the ith segment. The number of segments is eventually
obtained as

K̂ = arg max
K

η(K). (15)

In this way, the confidence interval includes as many data
points as possible while minimizing the fitting error.

For variables with long-term trend features, the corre-
sponding long-term trend matrix is denoted by XL, i.e.,

XL = [l1(1 : N)T , l2(1 : N)T , · · · , lML(1 : N)T ]N×ML
,

(16)
where ML represents the number of long-term feature vari-
ables and satisfies ML ≤M .

3.4. Alarm Sequence Extraction

Either long-term trends or short-term trends only
present the variational directions of process signals in the
presence of a fault. Thus, it should extract features reflect-
ing the change amplitudes of process signals. In modern
industrial facilities, alarm limits are commonly configured,
such that alarm events are generated to notify plant op-
erators whenever the corresponding process signal exceeds
its alarm limit. Compared to the original process signal-
s and the trend features, alarms are directly associated
with faults. Thus, it is natural to extract alarms from the
original data and use it in fault diagnosis.

For each process variable, higher and lower alarm limits
are configured. Given a signal conforming to the Gaus-
sian distribution, its alarm limits can be simply calculat-
ed based on the historical data using the 3-sigma rule.
For non-Gaussian distributed process data, kernel densi-
ty estimation can be used to calculate the alarm limit-
s (Wȩglarczyk, 2018). Then, the binary-valued alarm sig-
nal xa(t) is obtained by comparing the process signal with
the alarm limits, i.e.,

a (t) =

{
0, TL ≤ x1 (t) ≤ TH ,
1, otherwise.

(17)

where TH and TL denote the higher and lower alarm limits,
respectively.

Similar to the long-term and short-term trend features,
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XA denotes the obtained alarm matrix, which is given by

XA = [a1(1 : N)T , a2(1 : N)T , · · · , aMA(1 : N)T ]N×MA
,

(18)
where MA represents the number of alarm variables and
satisfies MA ≤M .

3.5. Window Length Determination Based on Weighted
Time-Cumulative Distribution

For online fault diagnosis applications, the three types
features are extracted from the process signals in a slid-
ing window. Here, the window length is an important
parameter for online feature extraction. As the length of
the sliding window increases, the trend feature information
contained in the window become more abundant, but the
computational time also increase. Thus, it is necessary to
balance the accuracy and time consumption by determin-
ing an optimal value Pwl for the window length.

After piecewise linearization during the off-line fea-
ture extraction, the cumulative distribution probability Pc
varying with online window length L is obtained, i.e.,

Pc(L) = P (l ≤ L) (19)

where L ∈ [1, 2, · · · , Lmax], and Lmax denotes the maxi-
mum window length of the long-term trend. The probabil-
ity Pc increases as the window length increases, but it also
prolongs the online feature extraction time. To balance
the accuracy and time delay, a weighted time-cumulative
distribution Wtp index is defined for the window length L
as follows

Wtp(L) = αtpPc(L)− (1− αtp) ∆t(L) (20)

∆t(L) =
t(L− 1)− t(L)

t(L− 1)
(21)

where αtp indicates the window length weight factor. Here,
the range of αtp is [0,1]. The closer αtp is to 1, the more
important accuracy is in the fault diagnosis model. Con-
versely, the computational time is prioritized. On balance,
αtp is chosen as 0.5. Then, the optimal window length Pwl
is estimated by maximizing Wtp as

Pwl = arg max
L∈[1,Lmax]

Wtp(L). (22)

4. Broad Learning System Based Fault Diagnosis
with Weighted Timeliness

This section presents the proposed dynamic fault di-
agnosis method based on the weighted timeliness Broad
Learning System (BLS). Fig. 3 shows the flowchart of the
method. There are three major steps: First, a feature com-
binator is designed to combine multiple features, which are
extracted using the approaches in Section 3. Then, BLS-
based fault diagnosis subsystems are developed by incor-
porating multiple weighted parameters based on multiple

features, so as to improve the online model updating per-
formance. Last, a decision-weighted fusion level is con-
structed to obtain the final fault diagnosis result by incor-
porating the outputs from multiple subsystems.

Input data X1
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Fault diagnosis

sub-system  

Fault diagnosis

sub-system  

Fault diagnosis
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2 i 1 2 i 1 2 i 1 2 i
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Decision

fusion

Fault 
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1

Feature 

extraction

Feature Combiner

Combination Combination  Combination C1 C2 Cn
...

...

...

Figure 3: The flowchart of the fault diagnosis with weighted timeli-
ness Broad Learning System.

4.1. Feature Combiner Based on Weighted Time-Accurate
Fault Diagnosis Subsystem

Considering that multiple features contain different
fault-related information, this subsection aims to design a
fault diagnosis sub-system incorporating multiple features
while ensuring the online diagnosis performance. First, the
three feature matrices XA, XS , and XL and the original
matrix X1 are fed into the feature combiner to obtain the
feature combination. Table 2 shows the 15 combinations
of the 4 types of features. Then, multiple combinations
are input to the fault diagnosis sub-systems to compare
the performance of the different initial combinations.

Fig. 4 shows the structure of a fault sub-system module.
In each fault sub-system module, the fault diagnosis per-
formance is improved by multi-layer BLS overlay; and the
weighted time parameter is designed to ensure the dynam-
ics of fast update of the model in online fault diagnosis.
The sub-system structure with n sub-system BLS blocks
u1, u2, · · · , un is described below.

Given the feature combination C ∈ RNc×Mc as the in-
put, the associated labels y ∈ RNc×1 is the output label,
where Nc and Mc indicate the number of samples and
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Table 2: List of multi-feature tag, which corresponds to different
combinations of features.

Tag Feature Tag Feature Tag Feature
C1 X1 C6 X1, XS C11 X1, XA, XS

C2 XS C7 X1, XL C12 X1, XS , XL

C3 XL C8 XA, XS C13 X1, XA, XL

C4 XA C9 XA, XL C14 XA, XS , XL

C5 X1, XA C10 XS , XL C15 X1, XA, XS , XL
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Figure 4: The flowchart of fault diagnosis subsystem of BLS with
n-layer structure.

features, respectively. Assuming that the network is con-
structed by r feature mapping with m nodes per set, the
ith group of mapped features Zi is

Zi = Φ(CWEi + βEi), i = 1, 2, . . . , r (23)

where WEi and βi are the weights and offsets that are
randomly generated; Φ(·) is a linear activation function.

Denote the concatenation of all the r groups of mapped
features as Zr = [Z1,Z2, . . .Zr]. Then, the mth group of
enhancement nodes is

Hm = ζ(ZrWHm + βHm), (24)

where WHm and βHm are the weights and bias that are
randomly generated; ζ(·) is a tanh activation function.

The concatenation of all the first m groups of enhance-
ment nodes are denoted as Hm = [H1,H2, . . .Hm]. The
input matrix A = [Zr |Hm ] is composed of Zr and the
enhancement node Hm. Hence, the broad model is repre-
sented as

Y = AWB
a

= [Zr,Hm]WB
a

= [Z1,Z2, . . .Zr,H1,H2, . . .Hm]WB
a

(25)

where WB
a = A+Y denotes the ath connecting weights

for the broad structure, and A+ is the pseudo inverse of
A and calculated by ridge regression (Chen and Liu, 2018).

At the first level of the subsystem, on the basis of the
connection weight WB

1 , and the output u1 of the first BLS
block is calculated as

u1 = CWB
1 , (26)

where C denotes the input feature combination. Then,
the residual difference between the actual output and the
expected output y is calculated as

d1 = y − u1. (27)

The residual d1 is taken as the target output of the
second layer. Extending from a single-layer structure to
a multi-layer structure, the final residuals of an a-layer
network can be defined as

da = y −
a∑
k=1

uk. (28)

The time required for training a fault diagnosis subsys-
tem with a layers is

t̂blsa =

a∑
k=1

tblsk (29)

where tblsk denotes the time to train the kth layer.

As the number of layers increases, the final residuals
would decrease and better performance of the fault di-
agnosis subsystem can be achieved. However, the time
consumption for offline training and online fault diagnosis
increases exponentially. This makes it difficult to balance
online fault diagnosis performance with model updating
efficiency. Accordingly, a weighted time-accuracy evalua-
tion index is proposed and defined as

Wta(a) = αta ∗∆d(a)− (1− αta) ∗∆tblsa (30)

∆d(a) =
1

Nc

Nc∑
i=1

√
(
∣∣∣d(i)
a−1

∣∣∣− ∣∣∣d(i)
a

∣∣∣)2 (31)

7



∆tblsa =
tblsa
t̂blsa−1

=
tblsa∑a−1
k=1 t

bls
k

(32)

where ∆d(a) denotes the residual gain rate of the a-layer
BLS block; ∆tblsa represents the time consuming gain rate
of the BLS block; αta indicates the weight factor.

If Wta(a) > 0, it takes ua as the input and da as the
desired output of the a+ 1th BLS block, i.e.,

da = uaW
B
a+1 (33)

Otherwise, the BLS block is eliminated, the offline training
phase is completed, and the total number of layers of the
final BLS block is finalized. Eventually, the actual output
yout is approximated by the sum of all outputs of the n
BLS blocks as

yout =

n∑
k=1

uk. (34)

According to the above calculations, the training proce-
dure of a fault diagnosis sub-system is summarized in Al-
gorithm 1.

Algorithm 1 Training procedure of a fault diagnosis sub-

system.

Input: Feature combination C; target y; parameter αta

Output: Parameter matrix WB ;

1: i← 2, dv0 = y, u1 = CWB
1 , Wta(i) = 1

2: while Wta(i) > 0 do

3: i← i+ 1

4: WB
i by WB

a = A+Y

5: ui = ui−1W
B
i

6: di = y −
∑i
k=1 uk

7: ∆di = |di−1| − |di|
8: ∆tblsi =

tbls
i

t̂bls
i−1

=
tbls
i∑i−1

k=1 t
bls
k

9: Wta(i) = αta ∗∆dvi − (1− αta) ∗∆tblsi
10: end while

11: WB = (WB
1 ,W

B
2 , . . . ,W

B
i )

return WB ;

To evaluate the comprehensive performance of the sub-
system, the accuracy of the sub-system is calculated as

Acc =
find(yout | y)

Nc
(35)

where the function find(·) obtains the number of two-
column vectors that are identical in the same posi-
tion. All feature combinations C1, C2, . . . , C15 are tak-
en as the input for the training process, and the corre-
sponding results of multiple sub-systems are calculated as
Acc1,Acc2, . . . ,Acc15. Here, a selection parameter $ is
defined; if Acci ≥ $, i ∈ [1, ..., 15], the subsystem can be
taken for online fault diagnosis. To find the best combi-

nation of fault diagnosis subsystems, the fault diagnosis
subsystems are added successively according to the accu-
racy from highest to lowest.

4.2. Decision Weighted Fusion for Fault Determination

Considering that the fault-related information is reflect-
ed by multiple features, a decision-weighted fusion ap-
proach is developed to determine the final fault diagnosis
results. The results of multiple fault diagnosis subsystem-
s are combined with the historical rule base obtained by
the feature combiner, and weighted fusion is performed to
obtain the final diagnosis results.

Suppose that there are m fault diagnosis subsystem-
s and e fault types, and the result of each subsystem is
y1, y2, . . . , ym. The one-hot coding representation of the
classification labels of the ith subsystem di, i = 1, 2, · · · ,m
is denoted by

di =
[
0, . . . , 0, 1, 0 . . . , 0

]T
e×1 (36)

with the jth element given by

dji =

{
1, yi = j
0, otherwise.

(37)

According to the performance evaluation results of each
fault diagnosis subsystem in Section 4.1, the weights
w1, w2, . . . , wi of each model are assigned as

wi =
Acci∑m
i=1 Acci

. (38)

Then, the weighted average of the results is obtained as

D = dmax |(w1 ∗ d1)⊕ (w2 ∗ d2)⊕ · · · ⊕ (wm ∗ dm)|
(39)

where dmax |·| takes the category with the highest proba-
bility of the fusion classification result and converts it into
a category label; ⊕ denotes the operation of multiplying
values by column vectors.

4.3. Procedures and Discussions

The proposed dynamic fault diagnosis method consist-
s of two calculation phases, namely the offline training
and online testing. In the training phase, the main steps
include offline feature extraction and dynamic fault diag-
nosis model training. The major procedures of the offline
training are summarized as follows:

(1) Offline feature extraction: The preprocessed data X1

and three features XS , XL, and XA are prepared and
labeled with normal or fault categories; the optimal
sliding window length Pwl for online feature extraction
is selected.

(2) Dynamic fault diagnosis model training: The model is
trained to get multiple multi-layer weight parameters
WB(1),WB(2), . . . ,WB(m) and corresponding weight
parameters WP of the fault diagnosis model of the
corresponding combination.
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In the online fault diagnosis stage, the main steps in-
clude online feature extraction and dynamic fault diagno-
sis model training, which are summarized as follows:

(1) Online feature extraction: The online pre-processed
data XOL

1 are obtained and analyzed to extract mul-
tiple features (XOL

S , XOL
L , XOL

A ) within a sliding win-
dow of length Pwl.

(2) Online fault diagnosis: The data and features XOL
1 ,

XOL
S , XOL

L , XOL
A are firstly imported to the fault

diagnosis model to obtain multiple feature combi-
nation C1, C2, . . . , Cm, which are then taken by the
corresponding fault diagnosis subsystems to obtain
m fault diagnosis classification results Y1, Y2, . . . , Ym,
where Yi = CiW

B(i), i = 1, 2, . . . ,m. Then,
Y1, Y2, . . . , Ym are converted to the one-hot form D =
D1, D2, . . . , Dm, combined with the off-line weight pa-
rameter WP to obtain the final fault diagnosis result
D of decision weighted fusion by eqn. (39). When
there is a new fault type, the fault diagnosis model
can be quickly updated by incrementally learning the
parameters in the fault diagnosis subsystem and BLS.

To evaluate the fault diagnosis performance, four met-
rics, namely, Accuracy, Macro-Precision, Macro-Recall
and Macro-F1 are exploited. They are given by

Accuracy =
NTP

NAll
. (40)

Macro-Precision =
NTP

NTP +NFP
, (41)

Macro-Recall =
NTP

NTP +NFN
, (42)

Macro-F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
, (43)

where the true-negative NTN and true-positive NTP rep-
resent the numbers of correctly classified observations, the
false-negative NFN and false-positive NFP represent the
numbers of misclassifications, and NAll denotes the total
number of samples (Hoang and Kang, 2019).
Remark 1. This study is motivated by process signals
showing different variation characteristics in faulty condi-
tions. Compared with the existing work, the main high-
light of the method is in the following aspects: 1) The pro-
posed method extracts multiple features include long-term
trend features, short-term trend features, and binary alar-
m signals, whereas most existing fault diagnosis methods
rely on extensive continuous-valued process data or single
types of features (Li et al., 2023c; Lucke et al., 2020b); 2)
the proposed fault diagnosis model considers the time de-
pendencies of process signals and corresponding features
in the model training and updating phases, whereas many
other models were designed only for process signals or fea-
tures (Zhang et al., 2023); 3) a weighted timeliness BLS
structure is devised to balance the timeliness and accura-
cy, whereas current BLS structures fall short in handling

the multiple features associated with industrial faults and
computationally burdensome in model training (Chen and
Liu, 2018; Gao et al., 2021).

5. Case Study

This section evaluates the performance of the proposed
fault diagnosis method based on the data generated by the
benchmark Tennessee Eastman (TE) process. TE process
is widely used to test various fault diagnosis algorithms by
simulating industrial processes with dynamic characteris-
tics (Ricker, 1996). It includes 12 manipulated variables,
22 measured variables, and 18 component measurement
variables. In the TE model, 21 different faults (16 known
and 5 unknown faults) and normal states are considered.
The 21 faults are divided into groups based on process sig-
nal trend features, such as step change, random change,
slow shift, and valve stickiness. The basic information of
the faults are shown in Table 3. Simulated data is col-
lected for the normal state and all 21 faults. The training
dataset contains 500 normal state samples and 480 sam-
ples for each type of fault. For the test set, there are 960
samples for each state.

Table 3: Fault types of the TE process.

Label Description Types
1 A/C feed ratio step change
2 component B step change
3 feed D temperature step change
4 RCW inlet temperature step change
5 CCW inlet temperature step change
6 feed A loss step change
7 C header pressure loss step change
8 feed A-C components random variation
9 feed D temperature random variation
10 feed C temperature random variation
11 RCW inlet temperature random variation
12 CCW inlet temperature random variation
13 reaction kinetics slow drift
14 RCW valve sticking
15 CCW valve sticking
16 unknown unknown
17 unknown unknown
18 unknown unknown
19 unknown unknown
20 unknown unknown
21 unknown constant

5.1. Multi-Feature Extraction

This section sets the default parameters of the model,
completes the offline feature extraction, and selects the
sliding window length Pwl. Table. 4 shows the model pa-
rameters selected in this case study.
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Table 4: Parameter setting for the case study

Parameter λ ς αtp αta min(Pc) $
Default set 0.03 0.01 0.50 0.80 0.95 0.70

Fig. 5(a) shows the distribution of optimal segment
length for the long-term trend, where the red area rep-
resents the density histogram. Fig. 5(b) shows the cu-
mulative probability function and time consumption cor-
responding to different window lengths. As the window
length increased, the blue and orange curves rose. This
indicates that the sliding window contained more infor-
mation while the time consumption increased. As shown
in Fig. 5(c), the blue curve denotes the relationship be-
tween the indicator WTP and different window lengths.
At the point (44, 0.6012) marked by the red circle, WTP

reached its peak, indicating that l = 44 corresponded to
the best performance of the weighted time-cumulative dis-
tribution. Therefore, the off-line training optimal window
length Pwl = 44 is selected for online feature extraction.

To illustrate the feature extraction, visualization results
are shown below based on the time series of the Separator
Water (SW) temperature under the normal state, fault 1,
and fault 2. Fig. 6 gives the time series plots for the nor-
malized SW temperature in the 3 states, where subfigures
(a), (b), and (c) correspond to the normal state, fault 1,
and fault 2, respectively. It can be found that the tem-
poral dependence of the SW temperature signal differed
significantly in the above states.

The short-term trend extraction result is shown in
Fig. 7, where H, M, L, and Z denote high-fluctuation,
medium-fluctuation, low-fluctuation, and non-fluctuation,
respectively. In the normal state, H is the major short-
term trend that occurs most frequently; in fault 1, L is the
more frequent short-term trend; in fault 2, the SW tem-
perature had more H and L short-term trends. To better
visualize the relations between short-term trends and dif-
ferent operating states, Fig. 8 presents the results of the
variation of the short-term trend features across all the
different states. The short-time trends under fault 6 and
fault 18 were mostly concentrated in the Z zone, which is
quite different from the other faults. It visualizes the dif-
ferences between short-term features in different states and
demonstrates that short-term trend features can provide
helpful information about faults.

Fig. 9 shows the long-term trend extraction results by
providing the variance of the same variable in different
operating states. The red lines represent the long-term
trends corresponding to different operating states. In the
normal state, the trend of the signal was concentrated at
0, and there was no significant trend change; In fault 1, the
long-term trend oscillated between 0, 1, 2, and -2; in fault
2, the long-term trend changed from 0 to 1, indicating the
signal increased slowly.
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Figure 5: Sliding window length selection in online fault diagnosis,
(a) Distribution of optimal segment length for long-term trend; (b)
Cumulative probability function and time consumption correspond-
ing to different window lengths; (c) Change curve of WTP under
different window lengths.

To evaluate the impact of the extracted multiple features
on the fault diagnosis results, a comparative experiment
was designed to demonstrate the effectiveness of Multi-
Feature Extraction (MFE) for obtaining fault-related in-
formation. Other classical feature extraction methods,
including PCA, Dynamic PCA (DPCA) (Dong and Qin,
2018), and Dynamic LDA (DLDA) (Yang and Gu, 2019),
were adopted to extract features. Two classifiers were
used, including the Support Vector Machine (SVM) and
the Broad Learning System (BLS). Several faults, includ-
ing faults 1, 2, 6, 7, and 8, were used in the test. Table 5
shows the fault diagnosis results of the two classifiers based
on different feature extractors. It can be seen that in the
two cases with SVM and BLS as the classifiers, highest ac-
curacies were achieved when the proposed Multi-Feature
Extraction method was applied. This demonstrates the
superiority of the method in extracting fault-related fea-
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Figure 6: Time series of the separator water temperature under dif-
ferent states; (a) (b), and (c) correspond to the normal state, fault
1, and fault 2, respectively.
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Figure 7: Short-term trends of the separator water temperature un-
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Figure 8: Statistical plot of short-term trends under all operating
states.

tures.

Table 5: Performance evaluation and comparison results based on
different methods.

Feature extractor Classifier Accuracy (%)
PCA

SVM

89.5
DPCA 93.9
DLDA 96.5
MFE 98.7
PCA

BLS

91.2
DPCA 92.6
DLDA 84.3
MFE 98.9
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Figure 9: Long-term trends of of the separator water temperature
under (a) the normal state, (b) fault 1, and (c) fault 2, respectively.

5.2. Fault Diagnosis Results and Comparisons

Given the above extracted features obtained using the
MFE method, this subsection investigates the performance
of the fault diagnosis subsystem corresponding to differen-
t combinations of features, evaluates the overall perfor-
mance of the proposed method, and presents comparison
results with the state-of-the-art methods.

Figs. 10 and 11 show the fault diagnosis results cor-
responding to different feature combinations listed in Ta-
ble 2. The horizontal axis presents the feature combination
tags, namely, C1, C2, · · · , C15, and the vertical axis de-
notes the fault diagnosis accuracy. Fig. 11 shows the fault
diagnosis results of different feature combinations, where
the other three evaluation indicators are considered. It can
be found that the feature combinations C5, C10, C11, C12,
C13, and C15 led to much higher accuracies compared to
other feature combinations, and thus the 6 feature combi-
nations were exploited in the designed subsystems. Table 6
shows the feature combination parameters of the offline
rule base, including the selected feature combinations, the
number of layers of fault diagnosis sub-system, and the
calculated weight parameters. For instance, C15 results
in a higher accuracy compared to the other combinations,
and thus a higher weight is assigned to C15.
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Figure 10: Fault diagnosis accuracy under different feature combi-
nations.
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Table 6: Feature combination parameters of the offline rule base.

Combination Layers Accuracy (%) Weight (%)
C5 11 71.2 15.9
C10 9 73.3 16.4
C11 7 70.9 15.8
C12 8 77.2 17.2
C13 6 71.8 16.0
C15 5 83.8 18.7

With the above selected six feature combinations, the
decision-weighted fusion results are obtained and shown in
Fig. 13. It can be seen that the overall accuracy of the pro-
posed method after decision fusion was much higher than
that of each single fault diagnosis sub-system with one fea-
ture combination. The result of the decision weighted fu-
sion method reached 92.6%, which was increased by 8.8%
compared to the highest accuracy of 83.8% without fusion.
The above results prove that the constructed fault diag-
nosis structure and the decision-weighted fusion strategy
can effectively improve the fault diagnosis performance.

Fig. 14 shows the confusion matrix of fault diagnosis
results of the proposed method. The rows of the matrix
represent the actual labels, the columns represent the pre-
dicted labels, and the diagonal elements correspond to the
classification performance for each category. The fault di-
agnosis performance was evaluated in terms of the accura-
cy. Most diagonal elements were over 0.90 except for fault
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Figure 13: Decision weighted fusion results.

3 (0.73), fault 9 (0.73), fault 15 (0.69), and the normal
state (0.81). In the presence of faults 3, 9, and 15, the
trend changes of the process signals were not significant,
which made it relatively more challenging to identify such
fault types accurately.
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Figure 14: Confusion matrix using the proposed fault diagnosis
method.

To demonstrate the superiority of the proposed method,
Table 7 shows the performance comparison results with t-
wo recent deep learning based methods, including the Deep
Learning Multi-model Fusion (DLMF) (Wang et al., 2020),
the Deep Convolutional Neural Network (DCNN) (Wu and
Zhao, 2018), Target Transformer (TT) (Wei et al., 2022),
and Improved Long short-term memory Generative adver-
sarial network (ILG) (Du et al., 2023). The performance
was evaluated in terms of Precision, Recall, Macro-F1,
training time, and test time. The first three indexes of
the proposed method, DCNN, and TT exceeded 90% and
were higher than those of the DLMF and ILG methods.
The precision and macro-F1 score were 93.7% and 93.1%,
which were higher than those of DCNN and TT. Moreover,
the proposed was much computationally faster than DCN-
N, TT and ILG methods as demonstrated by the training
and test time. Such an advantage is owing to the flat struc-
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ture of the BLS, while in DCNN, a deep structure leads
to a larger number of parameters and more complex com-
putation to reach high performance. More detailed results
for all different operating states using the three method-
s are given in Table 8. It is obvious that the proposed
method showed better fault diagnosis performance com-
pared to those of the other four deep learning models in
most states. Hence, the proposed method performed well
in fault diagnosis and met the requirements of online di-
agnosis and model updating. This also demonstrates the
adaptability of the method for multiple classes of faults.

Since fault diagnosis is a dynamic process, exploring the
diagnostic performance in the presence of unknown faults
is necessary. A comparison test was designed to include
unknown faults. In this experiment, the system was in a
normal state in the first 3 hours, and then an unknown
fault was injected in during the period from the 3rd hour
to the 4th hour. The system returned to normal after the
4th hour. Table 9 provides a comparison of results using
the five methods in simulating online fault diagnosis. In
the first 3 hours, the accuracy of all methods was over
85% except for TT, showing good performance. In the
period of 3-4 h under the unknown fault condition, the
proposed method showed higher accuracy than the oth-
er four methods. This proves that the proposed method
is more effective in detecting unknown faults than other
methods. The results also prove the good adaptability of
the proposed method to unknown faults.

6. Conclusion

This study proposed a new data-driven fault diagnosis
method based on the multi-feature fusion and weighted
timeliness Broad Learning System (BLS). First, the fault-
related multi-features, including short-term trends, long-
term trends, and binary alarm signals, were extracted from
the original process data. Then, a fault diagnosis model
was established by importing the multi-features into the
modified BLS, where weighted parameters were designed
to balance the timeliness and accuracy of the diagnostic
subsystem. The effectiveness and superiority of the pro-
posed method were demonstrated based on the benchmark
Tennessee Eastman (TE) process. According to the result-
s, the proposed method obtained fault-related features ef-
fectively, and outperformed the existing approaches for on-
line and unknown fault diagnosis. The effective identifica-
tion of multiple faults and the detection of unknown faults
demonstrate the adaptability of the proposed method. In
conclusion, the proposed method provides an effective dy-
namic online fault diagnosis method for complex industrial
processes by capturing multiple features and establishing
the BLS based diagnostic model.

The proposed method can be applied to fault diagnosis
in petroleum, chemical, and metallurgical processes. By
embedding the diagnosis algorithm into industrial personal
computers or distributed control systems, the online fault
diagnosis results can alert operators to deal with faults as

early as possible to avoid accidents. A future direction
will be concentrated on improving the sensitivity of the
fault diagnosis algorithm to unknown faults. A potential
solution would be to introduce transfer learning methods
to learn faulty features from other similar processes.
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