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Abstract

Data-driven methods have attracted much attention in capacity estimation and re-

maining useful life (RUL) prediction of Lithium-ion batteries. However, existing studies

rely on complex machine learning models (e.g., Gaussian Process Regression, Neural

Networks, etc) that are applicable to specific observed operating conditions, and the

prediction accuracy can be affected by different usage scenarios. This paper proposes to

adopt a linear and robust machine learning technique, partial least squares regression,

for battery capacity estimation and RUL prediction based on the partial incremental

capacity curve. The features can be easily obtained by interpolation of the measured
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charging profiles without data smoothing, and the bootstrapping technique is used to

give confidence intervals of predictions, which helps to evaluate the robustness and reli-

ability of the model. The proposed method is validated on three battery datasets with

different operating conditions provided by NASA. We train the model on one battery

and test its performance on the other two batteries without changing the model weights.

Experimental results show that the suggested classical method exhibits greater gener-

alizability, compared to complex and sophisticated methods proposed in the literature.

1. Introduction

Lithium-ion batteries, with their superior high-energy and high-power density characteristics,

have been widely used in many fields such as electric vehicles, portable electronic devices,

and power grids, and are widely considered to be the best energy storage solution.1 However,

the inevitable degradation poses a challenge that cannot be overlooked.2 This degradation

becomes increasingly evident over time, manifesting as a decrease in battery performance,

which could potentially lead to increased operational costs. To ensure the efficient and safe

usage of Lithium-ion batteries, establishing accurate models to estimate the battery’s State

of Health (SOH) and predict its remaining useful life (RUL) has become crucial.

Battery capacity is an important indicator of SOH, which can be obtained experimen-

tally through the integration of the discharging current with respect to time over a complete

discharging process. However, measuring capacity is challenging in practical applications

as a complete discharging curve is seldom available for battery health monitoring due to

uncertainties in operational conditions.3 Over the past decades, extensive research has been

dedicated to capacity estimation using measurements from the voltage and current. These

methods fundamentally rely on the relationship between the electricity charged or discharged

by the battery and the voltage variations during these processes.4 Broadly, these techniques

are categorized into two main types, namely model-based methods and data-driven methods.

A prevalent model in the model-based capacity estimation methods is the equivalent circuit
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model (ECM),5 which simulates the behavior of a battery using basic electronic components

like resistors and capacitors. After formulating the battery’s state-space equations through

ECM, several recursive adaptive filters such as the extended Kalman filter (EKF)6,7 and par-

ticle filter (PF)8 are adopted. These filters facilitate the identification of model parameters

and subsequently update the battery’s capacity. For instance, Plett et al.6,9 constructed a

battery cell model in a discrete-time state-space form, considering the quickly varying state

quantities like the State of Charge (SOC), and slowly changing time-varying parameters of

the system such as capacity. Then, they proposed the utilization of a dual EKF for the joint

estimation of states and parameters. The experimental results confirm that this approach

allows the capacity estimation to converge to accurate values, maintaining minor variations

over time, even under a complex Urban Dynamometer Driving Schedule (UDDS) cycle. How-

ever, despite the high accuracy achieved by the model-based capacity estimation methods,

it involves substantial computational processes, making it less suitable for practical online

applications.

In recent years, data-driven methods have become popular in the research field of batteries

with the development of machine learning and artificial intelligence, which can reflect the

intrinsic correlation between the measurements and the battery capacity without expert

knowledge of aging mechanisms. Extracting valuable features from measurements is the first

step to build a data-driven model, and much attention has been focused on extracting health

features from charging curves since the charging process of a battery is expected to occur

regularly. Specifically, considering the state-of-the-art literature, there are typically three

sources of features. These include features from the Constant Current-Constant Voltage

(CC-CV) charging curves,10,11 features from the relaxation process curves after the charging

process,3,12 and features from the CC charging curves.13–15 Yang et al.10 adopted Gaussian

Process Regression (GPR) for capacity estimation with four specific features extracted from

the CC-CV charge curve, including the time of CC model duration, the time of CV mode

duration, the slope of the curve at the end of CC charge mode and the vertical slope at the
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corner of the cc charge curve. Guo et al.11 extracted 14 health features from the charging

process and then proposed to employ the Relevance Vector Machine (RVM) for capacity

estimation. While these methods have achieved high accuracy, they require the use of a

whole charging curve to obtain health features, which is not guaranteed during the vehicle

operation. Zhu et al.3 proposed using statistical features of the relaxation voltage curve after

the charging process for capacity estimation, while Baghdadi et al.12 utilized the open-circuit

voltage after a 30-minute rest as a feature. These methods have shown good results, but

ensuring adequate rest after a full charging process in actual battery usage is challenging. As

for the CC charging curve, incremental capacity (IC) analysis is a common-used technique

for feature extraction, and Pei et al.13 proposed to use the partial charged capacity from

the threshold (IC = 2 Ah/10mV) till to the end of the charge as the feature. However, one

limitation of this method is that the entire CC curve is required to smooth the IC curve

and calculate the partial charge capacity. Considering that partial charging is more common

in practical applications, methods based on feature extraction from partial charging curves

have attracted significant interest in the field of battery capacity estimation. Robert et al.14

proposed a GPR with a Matérn (5/2) kernel function for battery capacity estimation based

on the time vectors extracted from the partial constant current (CC) charging curve, while

Yi et al.15 used random forest regression (RFR) with the relative capacity values from the

partial CC charging curve for accurate capacity estimation. However, the complex structure

of these models often makes them suitable only for specific observed operating conditions,

and a large amount of experimental data under various conditions is required to train the

model, which can be time-consuming to collect in practice. Therefore, there is a need to

develop a generalizable regression model for accurate capacity estimation.

Besides capacity estimation, another critical task in battery health monitoring is to pre-

dict the RUL, which is the number of charging/discharging cycles that a cell can undergo

before the capacity decays to a specific value Typically, there are two approaches for RUL

prediction. One is to predict the capacity degradation trajectory and count the number of
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cycles to the end of life as RUL, and the other is to directly predict the value of RUL. Many

previous studies have used different machine learning techniques such as Support Vector

Machine (SVM),16–18 GPR,19–21 and NNs,22–24 to predict future values of capacity and RUL

based on previous capacity trajectory. However, one disadvantage of these models is that

they require nearly half of the capacity trajectory to obtain an accurate RUL prediction and

can not be used in the early-cycle stage of the battery. In recent years, Kristen et al.25 and

Yu et al.26 proposed to use the features from the discharging curves of the first 100 cycles to

directly predict RUL, and the results showed high accuracy. One weakness of these methods

is that they can only give one RUL prediction for each cell, i.e., the cycle life of a new cell,

and can not dynamically update the RUL prediction at different aging stages. Furthermore,

the complete discharge curves for multiple cycles are not guaranteed in practice. Zhang et

al.27 introduced an RUL prediction method by combining the electrochemical impedance

spectroscopy (EIS) spectrum with GPR, and it can predict the RUL of a battery at each

cycle. However, the real-time acquisition of the EIS spectrum is still a challenge in a real-life

usage scenario of electric vehicles. It is vital to develop a model to predict RUL based on

readily measurable variables, such as voltage, current, etc.

This paper proposes to use a linear and robust machine learning technique, partial least

squares regression (PLSR), for capacity estimation and RUL prediction based on the partial

incremental capacity (IC) curve. The proposed method is realized and tested on a dataset

of three battery cells (#5, #7, #18) provided by NASA. Experimental results show that the

model trained on 80% of the data samples of cell #5 can not only give accurate capacity

estimation and RUL prediction for the remaining 20% data of cell #5, but also achieve good

performance in capacity estimation and RUL prediction for both cell #7 and cell #18 without

changing the model weights. The principal contributions of this study can be summarized

as follows:

• The proposed method can estimate capacity and predict RUL based on the same

features.
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• The features used in the model can be easily measured without the need for additional

devices or information from the full cycle.

• The proposed model demonstrates good generalizability under different operating con-

ditions where the battery exhibits various cycling characteristics.

• Confidence intervals for the predictions are provided using the bootstrapping technique,

which can be used to evaluate the robustness and reliability of the model.

The remainder of the paper is organized as follows. The cycling dataset utilized in this

study is presented in Section 2, followed by the presentation of the proposed methodology in

Section 3. The results of capacity estimation and RUL prediction are thoroughly discussed

in Section 4 and finally, Section 5 closes this work with some conclusions.

2. Cycling Dataset

To assess the performance of the proposed method in terms of capacity estimation and RUL

prediction, this study utilizes the cycling dataset from the Prognostics Center of Excel-

lence(PCoE) at Ames Research Center, NASA.28 The dataset consists of three commercial

18650-size Lithium-ion batteries from the same material system, specifically cells number

#5, #7, #18. It should be noted that we did not use cell #6 from the same group be-

cause its capacity range differs from the other three batteries. The selected batteries were

subjected to three separate operational procedures: charging, discharging, and impedance

measurement, all conducted at a constant room temperature of 24 ◦C.

Throughout the charging phase, a CC mode was first employed, charging the batteries

at 1.5A until achieving a voltage of 4.2V, succeeded by a constant voltage (CV) charging

phase maintained at 4.2V until the current reduced to 20mA. For the discharging phase, a CC

mode was utilized, operating at 2A until the battery voltage declined to 2.7V, 2.2V, and 2.5V

for cells #5, #7, and #18, respectively. Battery capacity was obtained by integrating the
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discharge current starting from a fully charged state to the state where the battery voltage

dropped to 2.7V. An EIS frequency sweep ranging from 0.1Hz to 5kHz was conducted for

impedance measurements, which can provide insight into the battery’s internal parameters.

The repeated cycling of the charging and discharging processes expedited battery aging. The

experiment was stopped once the capacity dropped to the end-of-life threshold, marked by

a 30% reduction in nominal capacity (from 2Ah to 1.4Ah).

Figure 1 illustrates in detail how the capacity of the three battery cells in the experiment

changes with the number of cycles. It is evident that as the cycle number increases, the

battery capacity gradually diminishes, revealing irreversible physical and chemical changes

occurring internally during the continuous charging and discharging processes. Moreover,

each battery cell exhibits distinct degradation characteristics and performances throughout

the process. It is noteworthy that slight fluctuations in battery capacity have been observed,

possibly due to measurement errors encountered during the experiment. Additionally, dif-

ferent cells display varied capacity values under identical cycling numbers, indicating that

relying solely on the number of cycles to evaluate battery capacity is neither accurate nor

practical. For a more precise estimation of battery capacity and prediction of RUL, more

other relevant cycling information needs to be taken into account, such as voltage and current

measurements collected during the charging process.
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Figure 1: Capacity change of three experimental batteries. Reproduced or adapted with
permission from.29 Copyright 2022, IEEE.

3. Methodology

3.1 Partial Incremental Capacity Curve for Feature Extraction

Incremental capacity (IC) analysis is a valuable technique for investigating the degradation

mechanism of lithium-ion batteries. It involves differentiating the change in battery capacity

over the change in terminal voltage, with each peak of the IC curve representing a distinct

electrochemical reaction occurring within the cell. A multitude of previous studies have ef-

fectively utilized the peak position30 and peak intensity31 of IC curves as features to estimate

battery capacity. However, the practical application of IC analysis is inherently vulnerable to

data perturbations, leading to elusive peaks due to pervasive measurement noises. Conven-

tional approaches often necessitate the application of suitable data smoothing methods, such
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as the Gaussian filter, to acquire a more streamlined IC curve, but its application in real-

time is challenging due to the current battery management system (BMS) having restricted

computational capabilities. To overcome this obstacle, this paper proposes a novel approach

aimed at estimating the battery capacity and predicting the RUL by directly leveraging the

IC values for a specific voltage region, effectively bypassing the need for data smoothing

processes.

In reality, BMS samples current and voltage at equal time intervals, resulting in varying

lengths of sampling points at different charging times. In other words, there is no guarantee

of having the same sampling points for a specific voltage region over all cycles. In order to

have fixed-length input features for the model, an interpolation-based IC curve acquisition

algorithm is proposed in this paper. Primarily, taking into consideration the CC charging

profile shown in Figure 2 (a), it can be denoted as D = {(ti, Ii, Vi), i = 1, 2, · · · , n}, where

Ii and Vi are the measured current and voltage at the sampling time point ti, and n is the

total number of sampling points. Then, focusing on a specific voltage region from Vl to Vh,

a process of discretization is applied with intervals of ∆V to get the desired voltage vector

V̂ = {Vl, Vl +∆V, · · · , Vh} = {V̂i, i = 1, 2, · · · , k}, whereˆrepresents discrete values and the

number of discrete points k can be calculated by k = ⌊(Vh − Vl)/∆V + 1⌋. Subsequent to

this, the time t̂i to attain the desired V̂i can be obtained by interpolating the two nearest

voltage measurements Vi and Vi+1 in D, depicted by:

V̂i − Vi

Vi+1 − Vi

=
t̂i − ti
ti+1 − ti

(1)

t̂i =
V̂i − Vi

Vi+1 − Vi

(ti+1 − ti) + ti (2)

In a manner akin to the above, Îi is computed as per the following expression:

Îi =
V̂i − Vi

Vi+1 − Vi

(Ii+1 − Ii) + Ii (3)
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Upon deriving the desired current vector Î = {Îi, i = 1, 2, · · · , k} and time vector T̂ =

{t̂i, i = 1, 2, · · · , k}, IC at V̂i can be approximated by

dQ

dV

∣∣∣∣
V̂i

≈ ∆Q

∆V

∣∣∣∣
V̂i

=
Îi(t̂i+1 − t̂i)

∆V
(4)

Figure 2 (b) shows the IC curves for cycle 1 and cycle 100 of cell #5 when ∆V is 0.002V. As

shown in the figure, it can be noticed that the IC values at cycle 1 are generally higher than

those at cycle 100, and the curves show substantial variation in the voltage range from 3.8V

to 4.2V, indicating the possibility of using IC values to estimate the capacity and predict

RUL. We will discuss on how to select the specific voltage range in detail later.
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Figure 2: Illustration of feature extraction: (a) Constant current charging profile for cycle 1
of cell #5. (b) Incremental capacity curves for cycle 1 and 100 of cell #5.
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3.2 Partial Least Squares Regression

PLSR32 serves as an advanced extrapolation of the conventional multiple linear regression

(MLR), exhibiting excellent performance particularly when dealing with a multitude of vari-

ables and few observations or significant collinearity amongst variables. A detailed descrip-

tion of PLSR, with MLR as the basis, is presented in this section.

In addressing a regression problem, considering that we are given a feature matrix X

comprised of elements xij, along with a target y constituted of elements yi, where i ranging

from 1 to n denotes the index of samples, and j ranging from 1 to p represents different

features, MLR helps to create a linear connection between these features and the target,

denoted by

y = Xb+ e (5)

where b is the regression coefficient to be estimated, and e is the residual. Employing the

classical least squares method, one can get b by

b = (XTX)−1XTy (6)

This equation effectively derives an unbiased estimation of b under the conditions of the

Gauss–Markov theorem. However, in a setting with limited samples and substantial collinear-

ity, deriving a credible estimation of b remains challenging. PLSR emerges as a remedy,

projecting X and y into a realm of reduced dimensionality to facilitate the execution of

regression.

The procedure of PLSR begins with the identification of the first component c1 of X with

c1 = Xw1. The solution is achieved by maximizing Cov(c1, y), leading to

w1 =
XTy

||XTy||
, c1 = Xw1 =

XXTy

||XTy||
(7)
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Regression is subsequently enacted separately upon X and y relative to c1, yielding


X = c1p

T
1 +X1

y = c1r1 + y1

(8)

where the coefficients are


p1 =

XT c1
||c1||2

r1 =
yT c1
||c1||2

(9)

In addition, X1 and y1 are the residuals unexplained by the first component. By substi-

tuting X and y with X1 and y1, and iteratively applying the preceding procedure, subsequent

components ci along with their weights wi, pi and rican be acquired, where i = 2, · · · ,m

and m is the number of components.

Considering that

ci = Xi−1wi = Xi−2(E − wi−1p
T
i−1)wi

= X
i−1∏
k=1

(E − wkp
T
k )wi

(10)

we can let

w∗
i =

i−1∏
k=1

(E − wkp
T
k )wi (11)

then we can have ci = Xw∗
i and

y = c1r1 + c2r2 + · · ·+ cmrm + ym

= Xw∗
1r1 +Xw∗

2r2 + · · ·+Xw∗
mrm + ym

= X

(
m∑
i=1

w∗
i ri

)
+ ym = Xb+ ym

(12)
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where b =
m∑
i=1

w∗
i ri is the coefficient of PLSR.

3.3 Cross-Validation

In machine learning, it is common to train a model on a training set and then test its

performance on an independent validation set to select the hyperparameters of the model.

However, this method carries the risk of overfitting when only a limited amount of data is

available for training. Cross-validation (CV)33 addresses this issue by splitting the data into

different subsets and training and testing the model on different subsets in each iteration.

Specifically, as shown in Figure 3, the dataset is first randomly divided into K equal subsets

(also called folds), and in each iteration, one of the subsets is selected as the validation set,

while the remaining K-1 subsets form the training set. The model is trained on the training

set and then tested on the validation set to evaluate its performance. This process is repeated

K times, with each subset used for testing exactly once. The results from each iteration are

averaged to provide an accurate estimate of the model’s performance.
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Figure 3: Illustration of K-fold cross-validation.

3.4 Bootstrapping

Although the proposed PLSR can provide the estimation of capacity and the prediction of

RUL, it cannot give the confidence interval (CI) for predictions, and we cannot evaluate

the robustness of the model. Bootstrapping34 is a statistical method used to estimate the

performance distribution of a machine learning model by resampling with replacement from

a given dataset, without depending on data distribution assumptions. Concretely, numerous

random samples (known as bootstrap samples) are drawn with replacements from the original

dataset to form the bootstrap dataset. A model is trained on each of these bootstrap datasets,

and the performance of these models on the independent testing dataset is used to estimate

the error distribution of the proposed model structure.

In this work, we employ bootstrapping to provide CIs for capacity estimation and RUL
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prediction. By creating CIs, we can get a range of the model’s prediction results and un-

derstand their uncertainty better. To be more specific, we randomly sample 80% of the

training dataset each time to form the bootstrap dataset for training the model and record

the prediction error on the testing dataset. This process is repeated 3000 times to obtain

an error matrix with 3000 elements. The mean error is then calculated using all elements in

the error matrix to give an estimation of the model’s average performance. Additionally, the

values from the 2.5th percentile to the 97.5th percentile of the error matrix give the 95% CI

of the model, and one can expect the model’s performance to fluctuate within this range.

4. Results and Discussions

4.1 Metrics

To evaluate the predictive performance of the proposed model, Root-Mean-Squared-Error

(RMSE) is used in the paper, and it is given by

RMSE =

√√√√ 1

N

N∑
i=1

(Yi − Ŷi)2 (13)

In our paper, 2 different RMSEs are proposed to describe the accuracy of capacity esti-

mation and RUL prediction, respectively:

1) RMSE of capacity estimation (RMSE-Q) is used to evaluate the performance of the

proposed model on estimating the capacity. Here, Ŷi is the predicted capacity given by the

model, Yi is the corresponding measured capacity, and N is the total number of testing

samples. Also, please note that for the ease of understanding the results, the capacity values

have been normalized with respect to the nominal capacity, so the RMSE-Q is a percentage

and has no units.

2) RMSE of RUL prediction (RMSE-RUL) is used to evaluate the performance of the

proposed model on predicting RUL. Here, Ŷi is the predicted RUL from the model, Yi is the
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observed RUL from the experimental data, and N is the total number of testing samples.

In this study, the observed RUL is obtained as the difference between the cycle life and the

current cycle number, and its unit is cycle, so the unit of RMSE-RUL is also cycle.

4.2 Influence of Voltage Range and the Number of Components

In this work, partial IC curve is used for battery capacity estimation and RUL prediction.

The specific voltage range chosen for feature extraction significantly affects the model ac-

curacy, since different voltage ranges contain different amounts of information. In addition,

the hyperparameter of proposed PLSR, the number of components, determines how much

information is used for model prediction. Choosing an appropriate number of components

can significantly improve the model’s prediction performance. To investigate the influence

of the voltage range for feature extraction and the number of components of PLSR on model

accuracy, we utilized the 5-fold CV to determine the optimal voltage range for feature ex-

traction and the number of components in the PLSR. The candidate voltage ranges contain

3.8V-4.0V, 3.9V-4.1V, and 4.0V-4.2V, and the candidate number of principal components

ranges from 1 to 10, resulting in a total of 30 different combinations. For each possible

combination of the voltage range and the number of components, the 5-fold CV process is

applied and the average error is calculated across all 5 iterations.

Figure 4 shows the 5-fold CV results for RMSE-Q and RMSE-RUL under the 30 com-

binations mentioned in section 3.3, respectively. Here we use the randomly selected 80% of

the cycling data of cell #5 as the training/validation dataset. Since we use the same length

of voltage range (0.2V) and the same voltage discretization interval ∆V (0.002V), the input

features of the model are 100 IC values for any cycle and the output is the corresponding

capacity and RUL for that cycle.

As shown in Figure 4 (a), it is clear that using features extracted from the voltage range

of 4.0V-4.2V leads to high RMSE-Q, with almost all results exceeding 2.5%, indicating that

the IC curve from 4.0V to 4.2V provides very little information for capacity estimation. In
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contrast, most of RMSE-Q for the voltage ranges of 3.8V-4.0V and 3.9V-4.1V are below 1%,

and it is generally observed that the accuracy of the voltage range of 3.8V-4.0V is slightly

better than that of 3.9V-4.1V. In addition, it can be noticed from the blue curve for the

voltage range of 3.8V-4.0V that RMSE-Q first demonstrates a downward trend, followed

by an upward trend as the number of components increases. This is reasonable as too few

components can cause a large amount of information to be lost and thus reduce the model

performance, while too many components can make the model more prone to overfitting.

Overall, the proposed PLSR performs best on capacity estimation when using the features

extracted from the voltage range of 3.8V-4.0V and 4 components, with an RMSE-Q of 0.69%.

Figure 4 (b) presents a similar trend to Figure 4 (a), where the highest accuracy for RUL

prediction is achieved using IC curves in the voltage range of the 3.8V-4.0V, followed by 3.9V-

4.1V and the worst for 4.0V-4.2V. The best model performance is obtained at the voltage

range of 3.8V-4.0V and 4 components, with an RMSE-RUL of 6.87 cycles. Therefore, the

specific voltage range is selected to be 3.8V-4.0V and the number of components is chosen

to be 4 in the following discussion.
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Figure 4: Performance comparison of PLSR with different combinations of the voltage range
and the number of components for (a) capacity estimation and (b) RUL prediction.

4.3 Performance of Capacity Estimation

The effectiveness of the proposed PLSR model on battery capacity estimation is benchmarked

with the other four commonly used machine learning models, including MLR,35 Support Vec-
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tor Regression (SVR),36 RFR,37 and Long Short-Term Memory Network (LSTM network).38

MLR is used to model the relationship between two or more independent variables (features)

and a dependent variable (output). In MLR, the output is modeled as a linear combination

of features, as well as a constant term known as the intercept. SVR is a special case of

SVM in regression, which was designed to find the hyperplane that minimizes the distance

between the predicted values and the true values. In this work, we introduce the rbf kernel

to make the SVR handle nonlinear relationships between the input features and the output.

RFR is an ensemble learning method that combines multiple decision trees to make predic-

tions and then averages the results of all decision trees to get the output. Each decision

tree in the forest is trained on a subset of the data and a subset of the features to reduce

overfitting. As suggested in Li’s work,15 we use an RFR with 500 decision trees for capacity

estimation, and the number of random features for each decision tree is 1/3 of the number

of all features. LSTM network is a special case of the recurrent neural network, which are

designed to process sequential data. All models are trained on a randomly selected 80% of

the cycling data of cell #5 and then are tested on the remaining 20% of the data. Moreover,

to verify the generalizability of the proposed models, the models trained by data of cell #5

are also tested on data from cell #7 and cell #18 without changing model weights. Here,

one cycle is one sample for capacity estimation, and the input features to models are the 100

IC values over a voltage range of 3.8V to 4.0V, and the output is the corresponding capacity.

The correlation analysis is an essential first step in building a data-driven model because

collinearity among features can severely affect the performance of the model. Figure 5

displays the Pearson correlation coefficient obtained by using the training data. It can

be noted that these features are highly correlated, with correlation coefficients all above

0.6 and most reaching 0.9, implying severe collinearity among the features. It is easy to

understand as features are time-series IC values. However, such strong collinearity can hinder

some models from finding the correct regression coefficients, thereby reducing the prediction

performance of the models, especially for MLR. Therefore, we proposed using Principal
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Component Analysis (PCA)39 and Kernel PCA (KPCA)40 to reduce the correlation among

the features for MLR, SVR, RFR, and the LSTM network. PCA is a statistical technique

for reducing the dimensionality of a high-dimensional dataset. It involves transforming the

original variables into a new set of uncorrelated variables, known as principal components,

which are ordered by the amount of variance they explain in the data. KPCA is an extension

of the conventional PCA, allowing for the exploration of non-linear data structures through

the use of the kernel trick. In our study, we applied KPCA with the "rbf" kernel, aiding in

the uncovering of the intricate non-linear patterns present within the dataset.

Figure 5: The result of correlation analysis between features.

The number of principal components in PCA and KPCA is crucial for the accuracy of

the model. To determine the appropriate number of principal components, a 5-fold CV is

applied for MLR to the training dataset. Table 1 presents a performance comparison with

varying numbers of principal components. As illustrated in the table, RMSE-Q for both
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PCA and KPCA initially exhibits a decreasing trend as the number of principal components

increases but subsequently begins to slightly rise, which is consistent with the influence of the

number of components on PLSR. Based on the results in the table, for the task of capacity

estimation, we retained 6 principal components for PCA and 9 principal components for

KPCA in our following discussions.

Table 1: Comparison of PCA and KPCA with different number of principal components

Number of RMSE-Q (%) RMSE-RUL(cycle)
principal components PCA KPCA PCA KPCA

1 1.12 2.17 8.68 14.89
2 0.97 2.23 8.59 15.14
3 0.97 1.53 8.59 8.84
4 0.94 1.18 8.47 8.22
5 0.91 1.21 7.83 8.24
6 0.89 0.75 7.68 6.50
7 0.89 0.76 7.69 6.57
8 0.90 0.76 7.80 6.72
9 0.93 0.73 7.82 6.81
10 0.94 0.74 7.91 6.99

Table 2 compares the performance of different models on capacity estimation. We can

notice that all models perform well in estimating capacity of cell #5, in which PLSR has the

better performance with an RMSE-Q of 0.59% and 95% CI of [0.51%, 0.69%] compared to

other benchmark models, and RFR with PCA has the worst performance with an RMSE-Q

of 1.92% and 95% CI of [1.49%, 2.52%], suggesting that the IC values are good features for

capacity estimation. Meanwhile, a comparison of the performance of the benchmark models

with and without PCA shows that PCA significantly improves the performance of the MLR

and the LSTM network, but has no improvement or even decreases the accuracy of the SVR

and RFR. One potential reason is that MLR is very sensitive to collinearity, while SVR and

RFR, as nonlinear models, can handle collinearity to some extent, and the information loss

caused by PCA can make these models perform worse. For the LSTM network, dimension-

ality reduction through PCA can significantly simplify the model structure, which aids in
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reducing the risk of the model being overfitted. It can also be observed that KPCA enhances

the accuracy of MLR. However, its performance is inferior to that of PCA, suggesting the

existence of underlying linear relationships between the features and the capacity.

When testing the generalizability of models to other cells, it is found in the table that the

SVR, RFR and the LSTM network can estimate the capacity of cell #7 well, but failed to

estimate the capacity of cell #18, especially the LSTM network has an RMSE-Q of 4.82%.

In contrast, MLR shows good accuracy on both cell #7 and cell #18, but still performed

worse than the proposed PLSR with an RMSE-Q of 1.16% and 1.66%, respectively. Overall,

the proposed PLSR shows the best performance across 3 test cells. Additionally, it is found

that both PCA and KPCA do not improve the capacity estimation accuracy of the MLR on

cell #7 and cell #18. One possible reason is that the distribution of features of cell #5 is

different from that of other cells, and hence the PCA and KPCA transformation obtained

from training datasets on cell #5 may lose some information that is helpful for capacity

estimation. Finally, it is worth noting that the accuracy of the MLR reported here is much

higher than in our previous conference paper.29 This is because we have 100 features but only

98 training samples, and the number of features exceeds the number of samples making MLR

severely overfitted and very sensitive to the samples. Our previous work only conducted the

simulation once, which produced biased results, but bootstrapping in this work can provide

a more reliable evaluation of the model.

To further illustrate the effectiveness of the proposed model, we also compare the method

proposed in Richardson’s work,41 which also uses partial charging curves for capacity esti-

mation. To be specific, they discretized the charging curve at the same interval in a specific

voltage range and identified the values of time at equispaced voltage points to time vectors,

which were used as features for capacity estimation. Subsequently, they proposed to use

GPR with a Matérn (5/2) kernel function to map the time vector and capacity and achieved

a high estimation accuracy. In this study, we use the same voltage range as PLSR to ensure

that the results are comparable, and Table 1 shows the performance of GPR on the NASA
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dataset. It can be observed that GPR demonstrates the best capacity estimation result on

cell #5 with an RMSE-Q of 0.50% and 95% CI of [0.32%, 0.86%], but the accuracy on cell

#7 is worse than PLSR, and its performance on cell #18 is the worst of all models with

an RMSE-Q of 5.09%, indicating that the complex structure of GPR makes it prone to

overfitting.

Table 2: Comparison of RMSE-Q (%) of different models

Model Cell #5 Cell #7 Cell #18
Mean 95% CI Mean 95% CI Mean 95% CI

MLR 1.07 [0.68, 1.69] 1.40 [1.04, 1.98] 1.94 [1.48, 2.90]
MLR-PCA 0.71 [0.60, 0.82] 1.47 [1.39, 1.56] 2.20 [1.91, 2.64]

MLR-KPCA 0.75 [0.68, 0.85] 1.48 [1.34, 1.61] 3.25 [3.01, 3.42]
SVR 0.71 [0.57, 0.89] 1.41 [1.24, 1.67] 2.25 [2.04, 2.49]

SVR-PCA 1.59 [1.33, 2.07] 2.38 [2.13, 2.72] 6.83 [6.46, 7.17]
SVR-KPCA 0.75 [0.66, 0.89] 1.57 [1.44, 1.75] 3.38 [3.20, 3.62]

RFR 0.82 [0.64, 1.02] 1.82 [1.68, 1.98] 4.56 [3.87, 5.37]
RFR-PCA 1.92 [1.49, 2.52] 2.72 [2.39, 3.14] 4.35 [3.16, 5.76]

RFR-KPCA 1.70 [1.22, 2.38] 2.40 [2.07, 2.89] 3.90 [3.46, 4.48]
LSTM network 1.04 [0.59, 3.23] 1.85 [1.34, 4.24] 4.82 [2.84, 11.21]

LSTM network-PCA 0.60 [0.44, 0.88] 1.28 [1.12, 1.46] 3.40 [2.79, 4.10]
LSTM network-KPCA 1.17 [0.97, 1.43] 2.02 [1.83, 2.25] 5.52 [5.08, 6.03]

PLSR 0.59 [0.51, 0.69] 1.16 [1.00, 1.36] 1.66 [1.38, 2.37]
GPR41 0.50 [0.32, 0.86] 1.75 [1.27, 2.38] 5.09 [2.54, 7.82]

Figure 6 presents a comprehensive comparison between measured and estimated capacity

values, including the 95% CI, across various testing samples, as well as the errors as a func-

tion of cycle number. It is noteworthy that the estimated values are obtained by averaging

the predictions of 3000 bootstrap models. In Figure 6 (a), the testing results for cell #5 are

depicted, where the proposed PLSR model appears highly accurate in estimating capacity,

evidenced by the alignment of most measured capacities within the 95% CI of the predictions.

Figure 6 (b) illustrates how errors fluctuate with cycle numbers, showing all errors remain

within 1%. Figure 6 (c) and (d) present testing results for cell #7, revealing some limita-

tions in the model’s performance on capacity estimation in the early cycles due to differing
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cycling characteristics compared to cell #5. Despite this, the PLSR model effectively tracks

capacity changes over the battery’s lifespan, with most estimated values closely aligning with

actual measurements. This is further supported in Figure 6 (d), which shows the model’s

enhanced capacity estimation accuracy in mid-cycles compared to early cycles. Additionally,

as observed in Figure 6 (c), many observations fall outside the 95% CI. The results are still

meaningful, as our primary objective with the 95% CI is to demonstrate the robustness and

uncertainty in the model’s predictions. If we have a very wide CI, we may be lucky to get a

prediction that is very close to the observed value, but in many cases, the predictions may all

be poor and unreliable, depending on the data samples used for training. Conversely, a nar-

row and close-to-truth interval like the one in Figure 6 (c) implies that even if observations

are not within the 95% CI, the predictions from any individual bootstrap model are likely to

be acceptable, regardless of the specific training samples chosen. This aspect enhances the

model’s practicality for real-world applications. Lastly, Figure 6 (e) displays testing results

for cell #18, indicating accurate capacity estimations for most samples. Compared to the

other two cells, the widest 95% CI for cell #18 suggests that it has the largest variance in

the predictions, implying notable differences in data distribution compared to cell #5, which

is aligned with the subpar performance of other benchmark models on cell #18. Figure 6 (f)

emphasizes PLSR’s competency, maintaining a capacity error below 2% across most cycles.

However, it performs poorly when the capacity suddenly increases, with the maximum error

even reaching close to 8%, indicating the impact of abnormal fluctuations in the data on

model accuracy.
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Figure 6: Testing results of PLSR with 4 components on capacity estimation: estimated
capacity (a) and error (b) for cell #5, estimated capacity (c) and error (d) for cell #7,
estimated capacity (e) and error (f) for cell #18.

4.4 Performance of RUL Prediction

Similarly to capacity estimation, the effectiveness of PLSR on RUL prediction is bench-

marked with MLR, SVR, RFR, and the LSTM network, and PCA and KPCA are used to

reduce the correlation among the features. We maintain the same data split for training and
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testing as in the capacity estimation to ensure consistency of the results. The input features

to models are still the 100 IC values over a voltage range of 3.8V to 4.0V, but the output

is the corresponding RUL. Here, RUL is calculated by subtracting the current cycle number

from the battery’s cycle life. For instance, the cycle life of cell #5 is 123 cycles, so the RUL

at the 10th cycle is 113 cycles.

We first conduct a 5-fold CV for MLR on the training dataset to select the number of

principal components for both PCA and KPCA in the task of RUL prediction, and results

are displayed in Table 1. Similar to RMSE-Q, RMSE-RUL noticeably decreases at first as the

number of principal components increases, and then slightly ascends afterward. The optimal

results for both PCA and KPCA are achieved with 6 principal components. Therefore, we

retain 6 principal components for the subsequent discussions.

Table 3 compares the performance of different models on RUL prediction. We can see

that all models except SVR can accurately predict the RUL of testing samples from cell #5,

in which PLSR has the best performance with an RMSE-RUL of 5.97 cycles and 95% CI of

[4.77, 7.51] cycles, indicating that IC values are helpful for RUL prediction. Meanwhile, it can

be noticed that PCA and KPCA significantly improve the RUL prediction performance of

MLR and the LSTM network, but reduce the accuracy of SVR and RFR, which is consistent

with our findings in capacity estimation. Notably, the LSTM network with PCA achieves

an RMSE-RUL of 5.91 cycles, demonstrating a precision comparable to that of PLSR, with

a broader 95% CI of [3.26, 9.37] cycles.

Further, all models are tested on the other two cells to evaluate their generalizability.

As shown in Table 3, PLSR exhibited the best RUL prediction accuracy for cell #7 with an

RMSE-RUL of 26.58 cycles, followed by the LSTM network with an RMSE-RUL of 27.83

cycles and MLR with an RMSE-RUL of 27.91 cycles, while SVR performs the worst with

an RMSE-RUL of 42.74 cycles. However, an interesting finding is that SVR shows the

best RUL prediction performance for cell #18 with an RMSE-RUL of 19.11 cycles. The

inconsistent results suggest that SVR is not a stable model for RUL prediction. When PCA
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and KPCA are utilized for feature reduction, it is observed that PCA slightly enhances the

prediction accuracy of MLR on cell #7, but reduces the accuracy for other models. For cell

#18, both PCA and KPCA significantly improve the performance of the LSTM network,

achieving an RMSE-RUL of 13.33 cycles and 16.08 cycles, respectively, outperforming PLSR

with an RMSE-RUL of 21.06 cycles. However, considering the capacity estimation and RUL

prediction for the three cells, PLSR emerges as the best model.

Table 3: Comparison of RMSE-RUL (cycle) of different models

Model Cell #5 Cell #7 Cell #18
Mean 95% CI Mean 95% CI Mean 95% CI

MLR 9.05 [6.00, 12.97] 27.91 [23.45, 32.84] 20.63 [13.75, 30.20]
MLR-PCA 6.72 [5.86, 8.19] 27.08 [24.97, 28.96] 19.68 [15.49, 25.50]

MLR-KPCA 7.01 [6.18, 8.24] 28.52 [26.79, 30.15] 19.22 [17.53, 21.32]
SVR 23.22 [20.85, 24.62] 42.74 [38.67, 44.30] 19.11 [17.49, 21.26]

SVR-PCA 32.44 [31.29, 34.53] 48.30 [44.79, 53.18] 30.40 [27.03, 35.19]
SVR-KPCA 32.51 [31.80, 33.98] 48.61 [45.81, 52.47] 27.73 [24.81, 32.09]

RFR 6.11 [5.01, 8.13] 29.57 [28.08, 31.26] 26.85 [21.77, 31.64]
RFR-PCA 11.00 [8.31, 14.61] 33.39 [30.73, 36.52] 29.39 [19.65, 35.49]

RFR-KPCA 9.18 [6.44, 13.58] 31.17 [28.81, 34.06] 20.02 [17.99, 22.37]
LSTM network 6.48 [5.03, 8.63] 27.83 [25.83, 29.98] 25.91 [13.03, 36.65]

LSTM network-PCA 5.91 [3.26, 9.37] 29.85 [26.58, 33.47] 13.33 [10.93, 17.72]
LSTM network-KPCA 8.40 [6.58, 11.50] 29.84 [26.95, 32.68] 16.08 [13.57, 22.25]

PLSR 5.97 [4.77, 7.51] 26.58 [24.97, 28.22] 21.06 [15.26, 27.12]
EM42 34.70 [4.81, 71.35] 15.60 [0.53, 45.23] 61.14 [30.82, 97.63]

We also compare the proposed PLSR with the empirical model (EM) proposed in Wang’s

work.42 EM is an empirical mathematical formulation obtained by fitting accelerated aging

experimental data to describe the battery capacity fade, usually composed of simple function

combinations such as polynomial functions and exponential functions. A general EM for

capacity fade can be expressed as

Qloss = α · xβ
cyc (14)

where Qloss is the capacity fade between the initial capacity and the current capacity,
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xcyc is the number of cycles the cell has undergone, α and β are coefficients that describe

the rate of capacity loss by various factors such as current, temperature, etc. Here, since cell

#5, #7, and #18 have the same charging/discharging current and cycling temperature, we

assume that they have the same α and β.

To perform RUL prediction using EM, we first need to fit (14) with the training data

and obtain α and β. Then, we can simulate the capacity fade curves of the three cells based

on their initial capacities, which allows us to calculate the cycle life and RUL at a specific

cycle. Table 3 shows the performance of EM in terms of RUL prediction. Although EM

performs best for cell #7 with an RMSE-RUL of 15.60 cycles, it does not perform as well

as the proposed PLSR for both cell #5 and cell #18. More importantly, 95% CI of EM

is very wide for these three cells, indicating the instability of the empirical model in RUL

prediction.

Figure 7 displays the comparison between the measured RUL and the predicted RUL

with 95% CI for the testing samples, alongside error changes relative to cycle number. From

Figure 7 (a) and (b), we can see that the proposed model can accurately predict the RUL

for samples from cell #5 and all of the errors are within 15 cycles. Figure 7 (c) demonstrates

that the predicted RUL for cell #7 from PLSR is less than the measured RUL, while Figure

7 (e) shows that the predicted RUL for cell #18 is greater than the measured RUL. This

is due to the different cycling characteristics of the three cells, and we only use data from

cell #5 to train the model. Our findings from Figure 7 (c) and (e) are consistent with the

battery degradation patterns shown in Figure 1. Additionally, as illustrated in Figure 7 (d),

the error significantly diminishes as the number of cycles increases, suggesting that cell #7

exhibits a similar degradation mode to cell #5 in the later cycles. The largest errors are

observed in the early cycles, aligning with our findings presented in Figure 6 (d). Regarding

cell #18, Figure 7 (f) depicts the error fluctuating as the cycle number changes. The most

substantial prediction errors emerge between the 40th and 60th cycles, corresponding to the

unexpected surge in capacity observed in the capacity curve.
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Figure 7: Testing results of PLSR with 4 components on RUL prediction: predicted RUL
(a) and error (b) for cell #5, predicted RUL (c) and error (d) for cell #7, predicted RUL (e)
and error (f) for cell #18.

5. Conclusions

This paper introduces a method using the PLSR model to perform battery capacity estima-

tion and RUL prediction through partial IC curves. Firstly, an interpolation-based approach
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is developed to acquire the IC curve, allowing for the approximation of the IC values from

the charging curves within a 3.8-4.0V voltage range. Subsequently, a PLSR model with 4

components is trained to learn the relationship between IC values and the outputs such as

capacity and RUL. By using the bootstrapping technique, the proposed model can provide

CIs for capacity estimation and RUL prediction, allowing us to evaluate the robustness and

reliability of the model. A dataset of three battery cells (#5, #7, #18) from NASA is used

to validate the proposed method. Experimental results show that the PLSR model with 4

components trained on 80% data samples of cell #5 can achieve an RMSE-Q of 0.59% and

95% CI of [0.51%, 0.69%] for capacity estimation and an RMSE-RUL of 5.97 cycles and 95%

CI of [4.77, 7.51] cycles for RUL prediction for the remaining 20% data samples. Moreover,

the trained model obtains an RMSE-Q of 1.16% and an RMSE-RUL of 26.58 cycles for

data samples of cell #7 and an RMSE-Q of 1.66% and an RMSE-RUL of 21.06 cycles for

data samples of cell #18 without changing the model weights. The success of this work has

advanced the development of battery capacity estimation and RUL prediction using linear

models.
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