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Abstract

We propose a framework for the design of feedback controllers that combines the optimization-driven and model-
free advantages of deep reinforcement learning with the stability guarantees provided by using the Youla-Kučera
parameterization to define the search domain. Recent advances in behavioral systems allow us to construct a data-driven
internal model; this enables an alternative realization of the Youla-Kučera parameterization based entirely on input-
output exploration data. Perhaps of independent interest, we formulate and analyze the stability of such data-driven
models in the presence of noise. The Youla-Kučera approach requires a stable “parameter” for controller design. For
the training of reinforcement learning agents, the set of all stable linear operators is given explicitly through a matrix
factorization approach. Moreover, a nonlinear extension is given using a neural network to express a parameterized set
of stable operators, which enables seamless integration with standard deep learning libraries. Finally, we show how
these ideas can also be applied to tune fixed-structure controllers.

Keywords: Reinforcement learning, data-driven control, Youla-Kučera parameterization, neural networks, stability,
process control

1. Introduction

Closed-loop stability is a basic requirement in controller design. However, many learning-based control schemes
do not address it explicitly [1]. This is somewhat understandable. First, the “model-free” setup assumed in such
algorithms, compounded by the complexity of the methods and their underlying data structures, makes stability difficult
to reason about. Second, especially in the case of reinforcement learning (RL), many of the striking recent success
stories pertain to simulated tasks or game-playing environments in which catastrophic failure has no real-world impact.
When a feedback controller is to be learned directly with RL, system stability during exploration (along with learning
performance) is influenced by the discount factor, reward function, and numerous other hyperparameters [1]. Figure 1
illustrates this point. These issues provide a counterpoint to the generality and expressive capacity of modern RL
algorithms, which have nonetheless attracted immense interest for control tasks [2].

1.1. Contributions

We propose a stability-preserving framework for RL-based controller design. Our inspiration is the Youla-Kučera
(YK) parameterization [3], which characterizes all stabilizing controllers for a given system. We formulate a “model-
free” realization of the YK parameterization from exploration data, enabling an RL agent to optimize over all stable
closed-loop behavior in an unconstrained fashion. Specifically, we leverage tools from the behavioral systems literature
[4]: a Hankel matrix of input-output data serves as an internal model through a dynamic variation of Willems’
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Figure 1: Cumulative reward over two PI-tuning experiments: one using the proposed stabilizing framework and the other using standard RL. The
stability-agnostic agent often destabilizes the system and struggles to recover.

fundamental lemma. Under this regime, an RL agent is able to directly manipulate the closed-loop dynamics through a
learnable stable operator. We show how this stable operator can be deployed in an unconstrained and seamless fashion
for both linear and nonlinear control strategies.

Perhaps of independent interest, we formulate a data-driven stability criterion in terms of the Hankel matrix structure
commonly used in data-driven control. Output noise complicates the situation when working with Hankel matrices. We
provide probabilistic analysis for the stability of such models as well.

In sum, we disentangle three key components of RL-based control system design: Algorithms, function approxima-
tors, and dynamic models. Moreover, our framework supports a modular approach to learning stabilizing policies, in
which advances in any single category can be applied to improve overall results.

1.2. Related work
Buşoniu et al. [1] provide a survey of RL techniques from a control-theoretic perspective, emphasizing the need

for stability-aware RL algorithms. Since one of the appeals of RL is model-free policy optimization, methods for
incorporating stability vary widely based on prior assumptions about the underlying dynamics. As such, a wide variety
of approaches have been proposed. Relatively early methods for incorporating stability into RL are based on integral
quadratic constraints (IQCs) to capture nonlinearities or time-varying components in the environment or policy structure
[5, 6]. In the context of RL, nonlinearities in the environment or the nonlinear activation functions used to construct a
policy neural network can be characterized using IQCs. This is also the basis for more recent approaches [7, 8, 9, 10].
Lyapunov theory is another popular framework in the RL literature [11, 12, 13, 14, 15, 16, 17]. The principal idea is to
learn a policy that satisfies the decrease condition for a suitable Lyapunov function. Similarly, the linear quadratic
regulator is a fruitful testbed for benchmarking and analyzing RL algorithms; several works develop stability guarantees
when the system dynamics are not available to the RL agent [18, 19, 20].

The YK parameterization is seemingly an under-utilized technique for incorporating stability into RL algorithms,
with some examples due to Roberts et al. [21], Friedrich and Buss [22]. Roberts et al. [21] propose its use after
evaluating the performance of RL with several different controller parameterizations for a simulated ball-catching task.
Subsequently, Friedrich and Buss [22] employ the YK parameterization through the use of a crude plant model; RL is
used to optimize the tracking performance of a physical two degrees of freedom robot in a safe fashion while accounting
for unmodeled nonlinearities. Recently, a recurrent neural network architecture based on IQCs was developed [8].
Since this architecture satisfies stability conditions by design, it can be used for control in a nonlinear version of the
YK parameterization [10].

While we also use the YK parameterization, our approach has several novel aspects. We propose to produce
stable operators using a non-recurrent neural network structure; this makes the implementation and integration with
off-the-shelf RL algorithms relatively straightforward, for both on-policy and off-policy learning. This contrasts with
IQC or Lyapunov-based approaches, such as Jin and Lavaei [7], Zhang et al. [11], Modares et al. [12], that place strong
structural hypotheses on the network architectures and update schemes. We also formulate a data-driven realization of
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the YK parameterization based on Willems’ fundamental lemma, essentially removing the need for prior modeling,
whereas the cited works based on the YK parameterization assume that a parameterized model is given. Moreover,
we establish the stability of such data-based models, a principal hypothesis in the YK parameterization. Finally, we
show how the techniques presented here can be applied to a fixed-structure controller, an aspect not covered in other
YK-based approaches.

1.3. Notation

Given a matrix M ∈ Rm×n, we write ‖M‖F =
(∑

i, j m2
i, j

) 1
2 for the Frobenius norm and ‖M‖ for the spectral norm, that

is, the largest singular value. M+ denotes the Moore-Penrose pseudoinverse. (Often m ≤ n and M has full rank, in which
case M+ = M

> (
MM

>)−1
.) When m = n, we indicate the spectral radius by ρ(M) = max

{|λ| : λ is an eigenvalue of M
}
.

If M = M>, we write M > 0 (or M ≥ 0) instead of saying M is positive-definite (resp. semi-definite).

2. Background

We consider a nominal linear time-invariant (LTI) system whose state x evolves in Rn:

P


xt+1 = Axt + But

yt = Cxt, t = 0, 1, 2, . . . .
(1)

The corresponding transfer function is P(z) = C(zI − A)−1B. We treat the constant matrices A, B,C as unknown, and
lay the foundation for Willems’ fundamental lemma and the YK parameterization with the following mild assumptions.

Assumption 2.1. An upper bound of the state dimension n is available.

Assumption 2.2. The matrix pair (A, B) is controllable, and the pair (A,C) is observable.

Assumption 2.3. The nominal system is stable and single-input, single-output (SISO), that is, ρ(A) < 1, B ∈ Rn×1, and
C ∈ R1×n.

2.1. A dynamic Willems’ lemma as an internal model
Given an N-element sequence {zt}N−1

t=0 of vectors in Rm and an integer L, 1 ≤ L ≤ N, the Hankel matrix of order L is
the mL × (N − L + 1) array with the constant skew-diagonal structure

HL(z) =



z0 z1 . . . zN−L

z1 z2 . . . zN−L+1
...

...
. . .

...
zL−1 zL . . . zN−1


.

Situations where this matrix has linearly independent rows are of particular interest.

Definition 2.4. The sequence {zt}N−1
t=0 ⊂ Rm is persistently exciting of order L if rank(HL(z)) = mL.

Definition 2.5. An input-output sequence {ut, yt}N−1
t=0 is a trajectory of an LTI system (A, B,C) if there exists a state

sequence {xt}N−1
t=0 such that Eq. (1) holds.

The following theorem is the state-space version of Willems’ fundamental lemma [23, 4]. It provides an alternative
characterization of an LTI system based entirely on input-output data.

Theorem 2.6 (See van Waarde et al. [24]). Let {ut, yt}N−1
t=0 be a trajectory of an LTI system (A, B,C) where u is

persistently exciting of order L + n. Then {ut, yt}L−1
t=0 is a trajectory of (A, B,C) if and only if there exists α ∈ RN−L+1

such that
[
HL(u)
HL(y)

]
α =

[
u
y

]
. (2)

Here the right-hand side is the block-structured column vector formed from u = [u0 . . . uL−1]> and y =
[
y0 . . . yL−1

]>.
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In applications, one uses measured input-output data to construct the left-hand side in Eq. (2). Then, to test whether
a candidate input-output sequence of length L is indeed a system trajectory, one uses it as the right-hand side and
attempts to solve for α [4, 24, 25].

We now formulate a dynamic variant of Theorem 2.6, enabling one to advance a trajectory in time. Given N and
vectors z0, . . . , zN , let z = {zt}N−1

t=0 and z′ = {zt}Nt=1. Then let

H′L(z) = HL(z′).

Note that H′L(z) has the same shape as HL(z).
Given a system trajectory {ut, yt}L−1

t=0 on the right-hand side of Eq. (2) with L ≥ n, we note that the next output yL is
uniquely determined by these available data. Intuitively, a time-shifted Hankel matrix advances the internal, unknown
state of the system forward resulting in yL.

Corollary 2.7. Let {ut, yt}Nt=0 be a trajectory of a strictly proper LTI system (A, B,C) where u is persistently exciting of
order L + 1 + n. Then for each trajectory {ut, yt}L−1

t=0 of (A, B,C), there exists α ∈ RN−L+1 such that

y′ = H′L(y)α. (3)

Remark 2.8. The hypotheses are to ensure both
[

HL(u)
HL(y)

]
and

[ H′L(u)
H′L(y)

]
satisfy the requirements in Theorem 2.6. /

Proof. By Theorem 2.6, the trajectory {ut, yt}L−1
t=0 satisfies

[
HL(u)
HL(y)

]
α =

[
u
y

]

for some α ∈ RN−L+1. Moreover, by Definition 2.5 there exists a sequence of states {xt}L−1
t=0 that corresponds to the

input-output trajectory {ut, yt}L−1
t=0 . This sequence induces the state xL. We have

N−L∑

i=0

αiyL+i =

N−L∑

i=0

αiC (AxL−1+i + BuL−1+i)

= C

A
N−L∑

i=0

αixL−1+i + B
N−L∑

i=0

αiuL−1+i



= C (AxL−1 + BuL−1)

= CxL

= yL

as desired.

Algorithm 1 shows how to use this scheme in Corollary 2.7 for closed-loop simulation. Moreover, this idea is
particularly useful for aligning the true system with an internal Hankel representation.

Algorithm 1: Data-driven simulation

Input: Data {uk, yk}Nk=0 with persistently exciting input of order L + 1 + n; Initial trajectory {uk, yk}L−1
k=0

1 for each time step do
2 Solve for α:

[
HL(u)
HL(y)

]
α =

[
u
y

]

3 Compute the next element y′ = H′L(y)α
4 Generate the next control input uL

5 Update trajectory: {uk, yk}L−1
k=0 ← {uk, yk}Lk=1
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2.2. Data-driven realization of the Youla-Kučera parameterization

We consider the standard four sensitivity functions associated with a plant P and controller K:
PK

1+PK ,
P

1+PK ,
K

1+PK ,
1

1+PK . The YK parameterization produces the set of all stabilizing controllers through a combi-
nation of an internal system model and a stable operator. The trick is to parameterize the aforementioned closed-loop
transfer functions, then recover a controller. For example, the response of the transfer function PK

1+PK from the reference
r to output y is determined by the transfer function K

1+PK . By introducing a stable design variable Q, we can then
directly shape the stable behavior of the system through the transfer function PQ. By asserting Q = K

1+PK and solving
for K, we arrive at the YK parameterization [3]:

Kstable =

{
Q

1 − QP
: Q is stable

}
. (4)

Indeed, for a stable plant P, all four sensitivity functions are stable for any K in Kstable. Moreover, when P is linear, one
may use a nonlinear operator Q to parameterize nonlinear controllers [3, 10].

In Algorithm 2, we translate the mathematical ideas above into a direct sequential process. In particular, we utilize
Corollary 2.7 in conjunction with the feedback connections in Eq. (4) to produce stabilizing actions. Theorem 2.10
provides details of the correspondence.

Algorithm 2: Data-driven stabilizing controller

Input: Stable parameter Q; Data {uk, yk}Nk=0 with persistently exciting input of order L + 1 + n; Initial trajectory
{uk, yk}L−1

k=0
1 for each time step t do
2 Set ut−1 ← uL−1
3 Observe the tracking error et = rt − yt from the system
4 Compute yL from Eq. (3)
5 Apply the input r̂ = et + yL to the Q parameter and return control action uL; for example, step forward in

time of an LTI representation of Q
6 Update the trajectory: {uk, yk}L−1

k=0 ← {uk, yk}Lk=1

Remark 2.9. Notice in Line 5 that Q ideally parameterizes the input-output dynamics between the reference r and
controls u. In practice, Q takes into account discrepancies between the true plant output yt (Line 3) and the internal
prediction yL (Line 4). /

Theorem 2.10. Assume P is a stable and strictly proper LTI system. Let Q be a stable and proper LTI parameter. Given
an upper bound L of the order of P, Algorithm 2 produces the same control signal {ut}∞t=0 as the YK parameterization.

Proof. We use qt, pt to denote the impulse responses of Q and P, respectively. Similarly, respective minimal state-space
matrices are denoted (Aq, Bq,Cq,Dq) and (Ap, Bp,Cp).

By the YK parameterization, we have U = KE for the controller K ∈ Kstable given by

K(z) =
Q(z)

1 − Q(z)P(z)
∀z ∈ C

⇐⇒ (1 − Q(z)P(z)) U(z) = Q(z)E(z)
⇐⇒ ut = qt ∗ (et + pt ∗ ut) ∀t ∈ N0

=

t−1∑

j=0

CqAt−1− j
q Bq̂r j + Dq̂rt, (5)

where r̂ j = e j +
∑ j−1

i=0 CpA j−1−i
p Bpui and ∗ is the convolution operator; we have also assumed, without loss of generality,

that P and Q have zero initial state.
Next we relate Eq. (5) to Algorithm 2. Let {ek}∞k=0 be an arbitrary sequence. (Such a sequence is dynamically

generated in Algorithm 2.) Without loss of generality, let the initial trajectory be {uk, yk}L−1
k=0 = {0, 0}L−1

k=0 . For each time
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t ∈ N0 we compute α(t) and yt = yL from Eq. (3). Since L is an upper bound on the order of P, yt is the unique next
output from the trajectory {uk, yk}L−1

k=0 . Therefore, we have r̂t = et +
∑N−L

i=0 α(t)
i yL+i. Then ut =

∑t−1
j=0 CqAt−1− j

q Bq̂r j + Dq̂rt

gives the next control input.
By updating the trajectory between time steps—{uk, yk}L−1

k=0 ← {uk, yk}Lk=1—we dynamically generate a sequence
{α(t)}∞t=0 that produces the control inputs {ut}∞t=0 satisfying the discrete integral equation in Eq. (5).

3. On the stability of noisy Hankel matrices

Theorem 2.10 assumes the underlying system is open-loop stable, in which case one may utilize Algorithm 2 to
produce stabilizing control actions. However, the long-term predictions generated by Corollary 2.7 will be influenced
by the noise in the data and singular values of the resulting stacked Hankel matrices. Stopping the data collection
process early can result in unstable predictions even for an open-loop stable plant; see the initial spectral radius values
in Fig. 2.

3.1. Data-driven stability test
We formulate the stability of a Hankel matrix system representation by delving deeper into the recursive nature of

infinite trajectories generated by Algorithm 1. This involves deriving a special matrix structure that relates successive
solutions αt, αt+1, . . . from Eq. (2).

Start with the equation from Theorem 2.6: let α0 denote the minimum-norm solution of
[
HL(u)
HL(y)

]
α0 =

[
u
y

]
.

(Henceforth we assume minimum-norm solutions; any solution may be used, but the minimum-norm solution will lead
to a clean formulation.) By Corollary 2.7 we then have that the successive output trajectory is given by y′ = H′(y)α0.

By extension, the next trajectory is given by
[

u′
y′
]

=
[ H′L(u)

H′L(y)

]
α0.

Starting from
[

u′
y′
]
, we repeat the process to arrive at the recursion

[
HL(u)
HL(y)

]

︸  ︷︷  ︸
H

αt+1 =

[
H′L(u)
H′L(y)

]

︸  ︷︷  ︸
H′

αt, t = 0, 1, 2, . . . . (6)

This can be seen as the “free response” of the αt dynamics inferred from the collected data and produced by Algorithm 1.1

Therefore, by checking the eigenvalues of H+H′ we determine if the matrix transformation from a system’s Hankel
matrix to its time-shifted counterpart is internally “contractive”; under the assumption of minimum-norm solutions,
this implies that the behavior

[
u
y

]
is bounded and

[
u
y

]
→ 0 as t → ∞. In the ensuing sections, we formalize and prove

properties about this special matrix structure in the presence of noise.

3.2. Random Hankel matrices
Randomness complicates the notion of stability. Going forward, we assume the outputs have the form yt + ωt

where ωt is normally distributed. In order to characterize the eigenvalues of H+H′ under measurement noise, we first
isolate the underlying random Hankel matrix in the term HL(y) + HL(ω). We will then be able to relate properties of the
random matrix HL(ω) to the overall structure. Therefore, this subsection focuses on Hankel matrices of purely random
signals as N → ∞, and then the latter section re-introduces the input-output dynamics.

Given a sequence of independent random variables ω0, ω1, . . ., we consider the doubly-infinite array

H =



ω0 ω1 ω2 · · ·
ω1 ω2 ω3 · · ·
ω2 ω3 ω4 · · ·
...

...
...

. . .


. (7)

1To evaluate the free response of the dynamics in Eq. (1) in Hankel form, one may add the constraint H′L(u)αt = 0 to Eq. (6).
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Proposition 3.3. Suppose each of the independent random vari-
ables !i has a standard normal distribution. Then for each fixed
L � 1, there is a sequence r0, r1, . . ., with rN ! 1 as N ! 1,
such that

lim
N!1

P
�
�min

�
HL,N

�
> rN

 
= 1.

Here �min(·) returns the smallest singular value of its matrix
argument.

Recall the matrixH in Eq. (7); for any fixed positive integers
L and N, we consider the top left submatrix of shape L⇥ (N + 1),
namely, HL,N = HL,N+1, and extract two L⇥N chunks of interest.
These are the “standard” Hankel matrix H = HL,N discussed
above, formed by removing the last column, and the “time-
shifted” Hankel matrix H0 = H0L,N , formed by dropping the first
column instead. We are now ready to tackle the special matrix
structure discussed in Section 3.1, specifically, the eigenvalues
of the random matrix H+H0 = H>(HH>)�1H0 for large N.

These constructions can be expressed as matrix products as
follows:

H = HW, H0 = HW 0, where W =
"
I
0

#
, W 0 =

"
0
I

#
.

Since cyclic permutations of matrix products preserve the
spectral radius, we have

⇢
�
H+H0

�
= ⇢

✓
W 0W>H

> ⇣
HH>

⌘�1
H

◆
.

We estimate the right side using the general matrix relations

⇢(M)  kMk = �max(M) =
p
⇢(M>M) .

Thus we have

⇢
�
H+H0

�2  ⇢
✓
H
> ⇣

HH>
⌘�1

H
◆
. (8)

We recognize the inverse matrix filling the sandwich on the right
side from Proposition 3.3; the symmetry and nested structure in
Eq. (8) supports the following result. (See Appendix B for the
proof.)

Theorem 3.4. Suppose each of the independent random vari-
ables !i has a standard normal distribution. Then for each fixed
L � 1, there is a sequence ✏0, ✏1, . . ., with ✏N ! 0 as N ! 1,
such that

lim
N!1

P
n
⇢

⇣
H+L,N H0L,N

⌘
< 1 + ✏N

o
= 1.

3.3. Hankel models with additive noise

We are now ready to re-introduce the system dynamics and
establish the stability of the resulting Hankel-based models fol-
lowing Eq. (6). To provide intuition for the concept, Fig. 2
illustrates Corollary 3.5 and Theorem 3.4 by visualizing the
recursion in Eq. (6).
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Figure 2: 100 time steps of input-output data are collected using a standard
normal probing signal. The recursion in Eq. (6) is used to continue the rollout.
This is done several times for di↵erent samples of output noise. The bottom
figure is the evolution of the spectral radii for the noisy and noise-free matrices
H+H0.

Corollary 3.5 (Stable Hankel dynamics models). Assume the
system in Eq. (1) is a stable, minimal LTI system. Assume the
outputs yt have additive Gaussian noise !t. Assume the probing
signal u is bounded for all time and satisfies:

�min

⇣
HL(u)HL(u)>

⌘
! 1.

Denote H to be the principal matrix in Eq. (2). Then the result
of Theorem 3.4 still holds.

Remark 3.6. A truncated Gaussian probing signal satisfies the
hypotheses by Proposition 3.3. /

Proof. The proof of Theorem 3.4 features a general inequality
that applies in the present setting (see Eq. (B.4)):

⇢(H+H0)  �max
�
H+H0

� 
s

1 +
k!0k2

�min (HH>)
. (9)

Therefore, we must balance the input, output, and noise signals
such that the right-hand side converges to 1. We have

�min

⇣
HH>

⌘
= �L

⇣
H>H

⌘

= �L

⇣
HL(u)>HL(u)

+
⇥
HL(y) + HL(!)

⇤> ⇥
HL(y) + HL(!)

⇤⌘(10)

� �L

⇣
HL(u)>HL(u)

⌘
(11)

= �min

⇣
HL(u)HL(u)>

⌘
,

which tends to infinity. However, this is insu�cient for Eq. (9)
to converge to 1. Let z0 be the last column of H0:

z0 =
⇥
uN�L . . . uN�1, yN�L + !N�L . . . yN�1 + !N�1

⇤> .
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Figure 2: 100 time steps of input-output data are collected using a standard normal probing signal. The recursion in Eq. (6) is used to continue the
rollout. This is done several times for different samples of output noise. The bottom figure is the evolution of the spectral radii for the noisy and
noise-free matrices H+H′.

Our focus is on short wide submatrices anchored at the top left corner. Specifically, for any fixed positive integers L
and N, we write HL,N for the top left L × N submatrix ofH .

Equation (8) is a fundamental concentration inequality that drives our analysis of random Hankel matrices.
Corollary 3.2 is a useful special case.

Lemma 3.1 (Hanson-Wright inequality, adapted from [26]). There exists a constant c > 0 such that, for every n × n
matrix M, any random vector X = (X0, . . . , Xn−1) ∈ Rn with independent standard normal components Xi obeys

P
{∣∣∣∣X>MX − E

[
X>MX

]∣∣∣∣ > t
}
≤ 2 exp

−c min


t2

‖M‖2F
,

t
‖M‖


 , t ≥ 0. (8)

Corollary 3.2. Let X0, X1, . . . be a sequence of standard normal random variables. Then there exist constants c0, c1 > 0
such that for any n ∈ N and any α ∈ (0, 1), one has both

(a) P


∣∣∣∣∣∣∣

n−1∑

k=0

X2
k − n

∣∣∣∣∣∣∣
< αn

 ≥ 1 − 2 exp
(
−c0α

2n
)
, and

(b) P


∣∣∣∣∣∣∣

n−1∑

k=0

XkXσ(k)

∣∣∣∣∣∣∣
< αn

 ≥ 1 − 2 exp
(
−c1α

2n
)
,

for any σ : N→ N such that σ(k) , k for all k.

Proof. Both parts follow from taking t = αn in Eq. (8), and using 0 < α < 1 to simplify min
{
α2n, αn

}
= α2n. In part (a),

one uses the n× n identity matrix for M: clearly ‖I‖2F = n and ‖I‖ = 1. In part (b), one defines K = max{σ(1), . . . , σ(n)}
and forms M as a K × K matrix in which every entry is 0 except for the n entries at positions (k, σ(k)), each of which
equals 1. Again ‖M‖2F = n and ‖M‖ = 1.

Proposition 3.3 analyzes the limiting behavior of the singular values of random Hankel matrices as the number of
samples tends to infinity. Its proof, shown in Appendix B, is a key step toward a spectral analysis of an interesting
combination of related matrices.
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Proposition 3.3. Suppose each of the independent random variables ωi has a standard normal distribution. Then for
each fixed L ≥ 1, there is a sequence r0, r1, . . ., with rN → ∞ as N → ∞, such that

lim
N→∞

P
{
σmin

(
HL,N

)
> rN

}
= 1.

Here σmin(·) returns the smallest singular value of its matrix argument.

Recall the matrixH in Eq. (7); for any fixed positive integers L and N, we consider the top left submatrix of shape
L × (N + 1), namely, HL,N = HL,N+1, and extract two L × N chunks of interest. These are the “standard” Hankel matrix
H = HL,N discussed above, formed by removing the last column, and the “time-shifted” Hankel matrix H′ = H′L,N ,
formed by dropping the first column instead. We are now ready to tackle the special matrix structure discussed in
Section 3.1, specifically, the eigenvalues of the random matrix H+H′ = H>(HH>)−1H′ for large N.

These constructions can be expressed as matrix products as follows:

H = HW, H′ = HW ′, where W =

[
I
0

]
, W ′ =

[
0
I

]
.

Since cyclic permutations of matrix products preserve the spectral radius, we have

ρ
(
H+H′

)
= ρ

(
W ′W>H

> (
HH>

)−1
H

)
.

We estimate the right side using the general matrix relations

ρ(M) ≤ ‖M‖ = σmax(M) =
√
ρ(M>M) .

Thus we have

ρ
(
H+H′

)2 ≤ ρ
(
H
> (

HH>
)−1

H
)
. (9)

We recognize the inverse matrix filling the sandwich on the right side from Proposition 3.3; the symmetry and nested
structure in Eq. (9) supports the following result. (See Appendix B for the proof.)

Theorem 3.4. Suppose each of the independent random variables ωi has a standard normal distribution. Then for
each fixed L ≥ 1, there is a sequence ε0, ε1, . . ., with εN → 0 as N → ∞, such that

lim
N→∞

P
{
ρ
(
H+

L,N H′L,N
)
< 1 + εN

}
= 1.

3.3. Hankel models with additive noise

We are now ready to re-introduce the system dynamics and establish the stability of the resulting Hankel-based
models following Eq. (6). To provide intuition for the concept, Fig. 2 illustrates Corollary 3.5 and Theorem 3.4 by
visualizing the recursion in Eq. (6).

Corollary 3.5 (Stable Hankel dynamics models). In addition to Assumptions 2.1 to 2.3, take L ≥ n and assume the
outputs yt have additive Gaussian noise ωt. Assume the probing signal u is bounded for all time and satisfies:

λmin

(
HL(u)HL(u)>

)
→ ∞.

Denote H to be the principal matrix in Eq. (2). Then the result of Theorem 3.4 still holds.

Remark 3.6. A truncated Gaussian probing signal satisfies the hypotheses by Proposition 3.3. /
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Proof. Let z′ be the last column of H′:

z′ =
[
uN−L . . . uN−1, yN−L + ωN−L . . . yN−1 + ωN−1

]> .

Using the relation H+ = limδ↓0 H>
(
HH> + δI

)−1 to modify Eq. (B.4) in Theorem 3.4, we arrive at the general inequality

ρ(H+H′) ≤ σmax
(
H+H′

) ≤
√

1 + ‖z′‖ 2 ‖H+‖ 2 . (10)

We are interested in the top L + n singular values of H. Following Proposition 3.3 and Coulson et al. [27], it can be
shown that σL+n(H)→ ∞, meaning ‖H+‖ → 0. However, this is insufficient for Eq. (10) to converge to 1. Since the
system of interest is bounded-input, bounded-output stable, we have

∥∥∥z′
∥∥∥ 2 ≤ 2LC +

∥∥∥ω′
∥∥∥ 2,

where C is a constant and ω′ is the L-dimensional vector of noise terms in z′. The result then follows.

Remark 3.7. If the system is unstable, then we expect an exponential increase in the magnitude of z′, blowing up our
spectral radius estimate in Eq. (10). /

4. Stabilizing reinforcement learning control

The YK parameterization in Eq. (4) features two ingredients for the set of stabilizing controllers: the dynamics P
and the stable operator Q. The previous two sections showed how to incorporate Willems’ lemma to characterize P.
This leaves Q as the “learnable” component for an RL agent. The advantage of learning Q over a standard feedback
policy is it enables an RL agent to update its policy in an unconstrained fashion without risking instability during
training.

4.1. Learning stable operators

The Q parameter is a dynamical system. Therefore, Q is characterized by inputs, outputs, and some stable internal
transition. We demonstrate two approaches for modeling stable internal dynamics amenable to deep learning and
optimization frameworks: one for the linear case, then an extension to the nonlinear setting. In both cases, we make use
of Lyapunov’s second method: the main idea is to embed a trainable Lyapunov function inside the dynamic model.

Let us recall the definition of a Lyapunov candidate function V : Rn → R: 1) V is continuous; 2) V(z) > 0 for
all z , 0, and V(0) = 0; 3) There exists a continuous, strictly increasing function ϕ : [0,∞) → [0,∞) such that
V(z) ≥ ϕ(‖z‖) for all z ∈ Rn; 4) V(z)→ ∞ as ‖z‖ → ∞.

(Linear operators) We consider stable linear operators of the form

Q


zt+1 = Aqzt + Bq(et + yL)
ut = Cqzt + Dq(et + yL)

(11)

where yL is the latest internal prediction, for example, from Algorithm 2. Therefore, the parameterization of Q is
tied to the representation of stable matrices Aq. However, the explicit representation of stable matrices is unwieldy:
Sn = {Aq ∈ Rn×n : ρ(Aq) < 1}. Indeed, Sn is non-convex and neither open nor closed.

Fix an arbitrary square matrix M̂ ∈ Rn×n and a lower triangular matrix L ∈ Rn×n with positive diagonal entries.
Consider the transformation M ← Utanh(D)V>, based on the singular value decomposition M̂ = UDV>, where tanh
is applied componentwise. Then the matrix Aq = L−1ML directly parameterizes the Lyapunov decrease condition
AqL−1L−>A>q − L−1L−> < 0 under the quadratic function V(z) = z>L−1L−>z. Therefore, we have the following result:

Sn = {L−1UDV>L ∈ Rn×n : L > 0 lower triangular,U and V orthogonal, D diagonal and ‖D‖ < 1}. (12)

This is a corollary based on Gillis et al. [28].
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(Nonlinear operators) For the problem of learning stable nonlinear operators, we adapt the method of Lawrence
et al. [29]: the idea is to construct stable autonomous systems of the form zt+1 = fθ(zt) “by design” through the use of
trainable Lyapunov functions. (θ represents a set of trainable weights.)

In the present setup, fθ models the internal dynamics of a nonlinear Q parameter. For example, a control-affine
model may be used with stable transition dynamics fθ [30]. The interpretation of a nonlinear Q parameter is the same
as the original motivation for Kstable in Eq. (4). The underlying interconnections remain the same, except now Q
characterizes nonlinear controllers.

Two neural networks work in tandem to form a single model that satisfies the decrease condition central to
Lyapunov’s second method: a smooth neural network f̂θ, and a convex Lyapunov neural network Vθ. Set ẑ′ = f̂θ(z)
where z is the current “state” and ẑ′ is the proposed next state. Two cases are possible: either ẑ′ decreased the value of
V or it did not. We can write out a correction to the dynamics in closed form by exploiting the convexity of V:

zt+1 = fθ(zt)

≡


f̂θ(zt), if V( f̂θ(zt)) ≤ βV(zt)

f̂θ(zt)
(
βV(zt)

V( f̂θ(zt))

)
, otherwise

= γ f̂θ(zt), where

γ = γ(zt) =
βV(zt) − ReLU(βV(zt) − V( f̂θ(zt))

V( f̂θ(zt))
.

(13)

(Recall ReLU(x) = max{0, x}.) Since Eq. (13) composes the model fθ, both f̂θ and Vθ are trained in unison towards
whatever goal is required of the sequential states zt, zt+1, . . ., such as supervised learning tasks. Moreover, although the
model fθ is constrained to be stable, it is unconstrained in parameter space, making its implementation and training
fairly straightforward with deep learning libraries.

4.2. Unconstrained reinforcement learning over stable operators
The YK parameterization is appealing for learning-based control schemes such as RL because the closed-loop

system is stable for every choice of the Q parameter. Therefore, stability does not rely on hyperparameter selection or
optimality. This is in contrast to simply selecting a feedback controller without enforcing stability; see Fig. 1. Since
any practical objective will require closed-loop stability, it is reasonable to allow an RL agent to manipulate the Q
parameter directly. A brief overview of deep RL will serve to unify this paper, however, a thorough introduction is
beyond its scope.

RL is an optimization-driven framework for learning “policies” simply through interactions with an environment
[1, 2]. The states s and actions a belong to the state and action sets S,A, respectively. At each time step t, the state st

influences the sampling of an action at ∼ π(· | st) from the “policy” π. Given the action at, the environment produces a
successor state st+1, which induces a conditional density function st+1 ∼ p(· | st, at) for any initial distribution s0 ∼ p0(·).
The desirability of a given action is quantified by a “reward” rt = r(st, at) associated with each step in the process above.
This cycle produces one step in a Markov decision process. As time marches forward under a policy π, a “rollout”
emerges, denoted h = (s0, a0, r0, s1, a1, r1, . . .). Each fixed policy π induces a probability density pπ(·) on the set of
rollouts.

With these pieces in place, the overall goal of the agent is to determine a policy that maximizes the cumulative
discounted reward. That is, given some constant γ ∈ (0, 1), the agent seeks π to

maximize J(π) = Eh∼pπ


∞∑

t=0

γtr(st, at)



over all policies π : S → P(A),

(14)

where P(A) denotes the set of probability measures onA.
In the space of all possible policies, the optimization is performed over a subset parameterized by some vector θ. In

this work, the policy is the Q parameter outlined in Section 4.1. Therefore, Eq. (14) automatically satisfies an internal
stability constraint over the whole weight space θ. We are then able to use any RL algorithm to solve the problem.
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The broad subject of RL concerns iterative methods for choosing a desirable policy π (this is the “learning”), guided
in some fundamental way by the agent’s observations of the rewards from past state-action pairs (this provides the
“reinforcement”). A standard approach to solving Problem (14) uses gradient ascent

θ ← θ + η∇J(θ), (15)

where η > 0 is a step-size parameter. Analytic expressions for ∇J(θ) exist for both stochastic and deterministic policies
[31]. However, ∇J(θ) cannot be evaluated precisely, as it depends on the dynamics, policy, and chosen time horizon, not
to mention the noise. Therefore, RL algorithms differ based on how they approximate the update scheme in Eq. (15).

Since our framework decouples stability from the learning process, one may employ any off-the-shelf RL algorithm.
Therefore, as the field of deep RL matures, this stabilizing framework will remain relevant. The only requirement is an
appropriate policy representation. Both the linear and nonlinear cases discussed in Section 4.1 can be implemented in a
standard RL library: one must store the internal state zt and input et + yL, then employ automatic differentiation to
update the Aq, Bq,Cq,Dq matrices in Eq. (11) or, in the nonlinear case, fθ in a control-affine setup. Further details are
provided in Appendix A.

5. Simulation studies

We now demonstrate the proposed stabilizing framework in a series of simulation studies. We give an industrial
example, showing how one can layer the stabilizing strategy on top of existing controllers. Then, we show how the
ideas presented above can be adapted to directly modify fixed-structure controllers while ensuring stability. In all the
examples, we use the TD3 algorithm [32]. This choice is primarily to illustrate the applicability of the framework to
general algorithms. Note that the choice of RL algorithm is essentially a hyperparameter layered on top of the stable
behavior it modifies. Code is available here: https://github.com/NPLawrence/StableBehavior.jl

5.1. An industrial example

The authors’ industrial partner built a hardware platform to use for testing various control methods. The equipment
involves a tank holding water, positioned above a second tank used as a reservoir. Water drains from the upper tank into
the reservoir through an outflow pipe, while being replenished by water pumped up from the reservoir. The problem is
to control the water level in the upper tank.

Two proportional-integral-derivative (PID) controllers are in operation. First, a “level controller” measures the
actual water level outputs the desired inflow rate. Second, a “flow controller” uses the desired and actual inflow rates to
determine the pump speed. For our purposes, both these controllers are fixed and a part of the environment.

We have reliable numerical models for all aspects of the equipment described above. The flow dynamics, based
on Bernoulli’s equation and conservation of fluid, are nonlinear. Low-pass filtering leads to a stream of four scalar
signals: the water level, drainage flow rate, pump speed, and incoming flow rate. A full account of the apparatus and
the differential equations we use to model it appears in [33]. For the results presented here, we used the simulator
rather than the laboratory system. This involved discretizing the continuous dynamics cited above with time steps of
0.5 seconds and adding Gaussian measurement noise with variance 0.015.

We use the proposed stabilizing framework to generate additive corrections to the command produced by the
given level PID controller. Since the environment includes a PID controller, we modify the control scheme to be in
incremental form ut = ut−1 + ∆ut, where ∆ut is the sum of the nonlinear YK parameter from Section 4.1 and PID
controller outputs:

∆ut = ∆u(q)
t + ∆u(PID)

t

Although the control system contains several cascaded filter terms, the full flow setpoint to measured level dynamics
is approximately a first-order plus dead time system [33]. Recall Willems’ lemma only requires an upper bound of the
system order. We take L = 11 to ensure input–output trajectories are sufficiently long to capture the current dynamics
in the presence of output noise. We ran 20 training sessions, each of 100 episodes. Figure 3 illustrates the cumulative
rewards observed. The median over the 20 sessions provides the solid line; the interquartile ranges delimit the shaded
region. We note that the median reward curve is much closer to the upper limit of the shaded region than the lower,
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Figure 3: Cumulative reward curve over 20 training sessions. The solid line is the median and the shaded region shows the interquartile range. The
dashed line and its shaded region are the final results of training without the stability constraint.

indicating that the majority of experiments fall within that tight region. Although there is significant change in the first
few episodes, due to the random policy initialization, the training sessions exhibit consistent convergence. The reward
curves tend to plateau after around 40 episodes. Figure 4 shows a single rollout from one of the experiments.

5.2. Direct tuning of fixed-structure controllers
In the introduction, we highlighted the potentially dangerous dependence of closed-loop stability on hyperparameter

settings. So far we have decoupled stability and learning algorithms through a data-driven control scheme. However,
one may wish to enforce a fixed-structure control law. We show how our framework can also deal with this case through
a data-driven constraint.

Theorem 5.1 (SISO case of Furieri et al. [34]). Consider the set of scalar-valued transfer functions X,Y,W satisfying
the linear relation

X + PY = I

W − PX = 0.
(16)

Then

Kstable =
{
YX−1 : Eq. (16) holds and X,Y,W are stable

}
. (17)

Remark 5.2. By identifying X = 1
1+PK ,Y = K

1+PK ,W = P
1+PK , we see that Eq. (17) implicitly parameterizes all stable

sensitivity functions in Section 2.2. /

In contrast to the YK parameterization in Eq. (4), Theorem 5.1 characterizes the set of stabilizing controllers
through the affine constraint in Eq. (16). This alternative representation is useful for imposing a desired controller
structure through the variables X,Y while enforcing closed-loop stability by insisting X,Y,W be stable. We use the
linear parameterization from Eq. (12).

In the behavioral setting, we propose to traverse Eq. (17) through the use of Algorithm 1 and the set of stable
parameters in Eq. (11). Concretely, we generate the left-hand side of Eq. (16) by taking the outputs of X,Y,W as inputs
to the Hankel-based model in Algorithm 1. We minimize the residual from the right-hand side to generate a stabilizing
controller. Note this approach can be used to find an initial stabilizing controller, to be deployed in combination with
the control scheme shown in Section 5.1.

(Training) Consider a plant whose continuous-time transfer function is

P(s) =
1 − s

(s + 1)3 .
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Figure 4: A sample input-output rollout by the trained RL agent for one of the training sessions. Dashed lines are setpoints; solid lines are measured
values.

Like the previous example, we discretize in time and take the resulting system as the true dynamics.
We illustrate the data-driven stability constraint on a proportional-integral (PI) tuning task. The deterministic policy

has the form

πPI,kp,ki (st) = kp(et − et−1) + kiet∆t + ut−1,

where the constants kp, ki are parameters that we will use RL to determine. We adopt a PI controller structure for two
reasons: such configurations are widely used in practice, and even this simple structure can illustrate the challenges
associated with stability while achieving excellent performance in RL tasks.

We run two RL-based experiments: one with no stability constraint and one where stability is enforced by a
projection-based update scheme. For the second, we project the parameter vector θ̂ = [kp, ki] proposed by the RL
algorithm by solving the optimization problem below:

minimize
θ

∥∥∥∥θ − θ̂
∥∥∥∥

subject to πPI,θ ∈ Kstable.
(18)

Figure 1 illustrates the training performance of the two experiments. We implemented a sparse reward function
by defining r(st) = 1 if |et | < δ and 0 otherwise, where δ is a small constant. Moreover, we ran the RL algorithm
10 times for each experiment using the default hyperparameters. We actually tweaked the actor learning rate for the
unconstrained experiment to make the results more competitive. Although it is possible to improve the unconstrained
results through trial and error, this underscores the importance of stability-based methods. Imposing the minimal
intervention in Eq. (18) avoids the dangerous, low-reward regions altogether.

Figure 5 accompanies the constrained experiment that produced Fig. 1. It shows the distribution of PI parameters
over the 10 training sessions. Specifically, we depict pre-projection (red) and post-projection (blue) values. (We
removed parameter values that did not move substantially to avoid mixing the red and blue regions.) The grey curve
shows the stability boundary for the underlying system. We avoided overlapping the blue region with the boundary by
constraining the maximum eigenvalue of the optimization variables X,Y,W in Eq. (17). In contrast, the parameters
corresponding to the unconstrained experiments in Fig. 1 (not the red values in Fig. 5) can leave the interior, then either
recover automatically or not at all.

6. Discussion and conclusions

6.1. Extension to MIMO and unstable systems
The ingredients put forth here can, in principle, handle multiple-input, multiple-output (MIMO) and unstable

systems. Willems’ fundamental lemma applies for LTI systems, regardless of dimension, and makes no claims about
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Figure 5: Heatmap of projected PI parameters strictly inside the stability boundary.

stability. The YK parameterization, as presented in Section 2.2, also applies to MIMO systems. However, the intuitive
derivation given there does not apply to unstable systems. Nonetheless, the most straightforward approach is to apply
the constraint-based characterization of stabilizing controllers due to Furieri et al. [34] utilized in Section 5.2. (This is
in contrast to the “classical” YK approach of factorizing the plant P.) Such an approach does not require the plant to be
stable, but the controller is no longer characterized in closed form using a single free parameter Q.

The constraint-based approach can be used to obtain an initial stabilizing controller. This controller can then be
refined using RL, then follow the projection strategy detailed in Section 5.2. Alternatively, one may opt for a data-driven
control strategy. To apply the YK parameterization in an analogous way to that in Section 2.2, one may then augment
the output of the initial stabilizing controller by adding the Q parameter, such as in Section 5.1. One confounding factor
in both of these approaches is collecting appropriate data from an unstable system and reliably generating rollouts from
the Hankel-based model. This requires extending the results in Section 3 and is a promising avenue for future work.

6.2. Conclusion

The YK parameterization is well-known in control theory but seemingly under-utilized in RL. Taking it as a starting
point, we have adapted advances in deep learning and behavioral systems to develop an end-to-end framework for
learning stabilizing policies with general RL algorithms. These core ingredients invite a modular approach to learning
stabilizing controllers in which past, present, and future components are cross-compatible. For example, the nonlinear
Q parameterization in Section 4.1 is functional, rather than structural: as long as smoothness and the Lyapunov
hypotheses are satisfied, one has freedom in terms of activations, layers, or architecture altogether. Alternatively,
one may also elect to use “classical” approaches—simpler learning algorithms, restricted sets of linear operators, or
observer-based control instead of employing Willems’ lemma as an internal model—in combination with newer ones.

There are many further avenues to explore. These include the use of stochastic policies, extensions to unstable
systems, and balancing the persistence of excitation assumption during training and steady-state operations. We believe
this is a fruitful area to investigate further as deep RL gains traction in process systems engineering.
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Appendix A. Implementation details

Numerical experiments were carried out in the Julia programming language. We utilized
ReinforcementLearning.jl [35], ControlSystems.jl [36], and NLOpt.jl [37].

As discussed in Section 4, any RL algorithm may be employed as long as the user provides an appropriate Q
parameterization to represent the policy. For approaches based on random search or direct methods, one may simply
generate rollouts via Algorithm 2 inside an optimization program. However, this strong dependence between rollouts and
policy parameters can break when using policy gradient-based methods. We take the LTI case in Eq. (11) as an example.
If one stores zt and et +yL as the RL state, then training the policy—that is, the Q parameter—as π(st) = Cqzt +Dq(et +yL)
will not result in updates to the Aq and Bq matrices. Therefore, even though the environment can be rolled out with
Eq. (11), the policy requires zt to explicitly be a function of Aq and Bq, namely, by unrolling Eq. (11) for one time
step. Once the policy is written in an appropriate fashion, policy gradient-based RL implementations can automatically
compute each gradient component ∂π

∂θi
with θ being a vector of all components in Aq, Bq,Cq,Dq.

Appendix B. Further details on random Hankel matrices

Proposition 3.3. Suppose each of the independent random variables ωi has a standard normal distribution. Then for
each fixed L ≥ 1, there is a sequence r0, r1, . . ., with rN → ∞ as N → ∞, such that

lim
N→∞

P
{
σmin

(
HL,N

)
> rN

}
= 1.

Here σmin(·) returns the smallest singular value of its matrix argument.

Proof. First consider some realization of H and specific values of L,N, with N ≥ L. Simplify notation by writing
H = HL,N for the specific L × N Hankel matrix of interest, and let its rows define the N-component vectors

ωi =
[
ωi ωi+1 · · · ωi+N−1

]
, i = 0, 2, . . . , L − 1. (B.1)

Then σmin(H)2 is the smallest eigenvalue of the L × L matrix HH>.
To estimate this minimum eigenvalue, we split the matrix of interest as HH> = D + R, where D is the diagonal and

R = HH> − D is the remainder. (It is helpful to write down these matrices in terms of Eq. (B.1) for reference.) HH> is
symmetric, so the variational characterization of eigenvalues gives

λmin(HH>) = λmin(D + R) ≥ λmin(D) + λmin(R).

We expect that λmin(D) is “large”, and |λmin(R)| is “small”. Let us quantify these intuitions under two preliminary
conditions. Assume first that some fixed real parameter θ dominates the magnitude of every entry in R, that is,

∣∣∣∣
〈
ωi, ω j

〉∣∣∣∣ ≤ θN, ∀i, j ∈ [0, L − 1] with i , j. (B.2)

Next, assume that some α ∈ (0, 1) obeys

ω2
L−1 + . . . + ω2

N−1 ≥ α(N − L + 1). (B.3)

For the matrix R, Gershgorin’s Circle Theorem implies

λmin(R) ≥ min
i

−
∑

j,i

∣∣∣∣
〈
ωi, ω j

〉∣∣∣∣
 ≥ −Nθ(L − 1).
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For the matrix D, each diagonal entry is a sum of N squares. Every such sum includes the N − L + 1 terms on the
left side of Eq. (B.3). Thus Eq. (B.3) provides a lower bound for every diagonal entry in D, and of course one of those
diagonal entries is the smallest. We deduce that

λmin(D) ≥ ω2
L−1 + . . . + ω2

N−1 ≥ α(N − L + 1).

We conclude that

λmin(HH>) ≥ α(N − L + 1) − Nθ(L − 1).

With the specific choices

θ =
1

L + 1
, α =

L
L + 1

,

we have both α, θ ∈ (0, 1) and α = Lθ, leading to

λmin(HH>) ≥ Nθ − θL(L − 1) =
N

L + 1
− L(L − 1)

L + 1
.

Define rN > 0 by matching r2
N with the right side here. Then σmin(H) ≥ rN .

Continuing with fixed N and L, let us now estimate the probabilities of the prerequisite inequalities above. In
condition Eq. (B.2), the inner product fits the pattern in Corollary 3.2(b), and we have

P
{∣∣∣∣
〈
ωi, ω j

〉∣∣∣∣ ≤ Nθ
}
≥ 1 − 2 exp

(
−c1θ

2N
)
.

For condition Eq. (B.3), Corollary 3.2(a) gives

P
{
ω2

L−1 + . . . + ω2
N−1 ≥ α(N − L + 1)

}

≥ 1 − 2 exp
(
−c0α

2(N − L + 1)
)
.

As N → ∞, the L(L − 1)/2 events in Eq. (B.2) and the further condition in Eq. (B.3) have probabilities that converge to
1 exponentially quickly. The same must be true of their intersection, and we have shown that this covers the situation
where σmin(H) ≥ rN . This completes the proof.

Theorem 3.4. Suppose each of the independent random variables ωi has a standard normal distribution. Then for
each fixed L ≥ 1, there is a sequence ε0, ε1, . . ., with εN → 0 as N → ∞, such that

lim
N→∞

P
{
ρ
(
H+

L,N H′L,N
)
< 1 + εN

}
= 1.

Proof. Let us write ω′ = (ωN−L, . . . , ωN−1) for the last column in H, to create the block-structured expression
H = [H ω′]. Then, using cyclic permutation and the upper bound in Eq. (9),

ρ
(
H+H′

)2 ≤ ρ
(
H
> (

HH>
)−1

H
)

= ρ
((

HH>
)−1

H H
>)

= 1 + ρ
((

HH>
)−1

ω′ω′>
)
.

Here the final equation holds because the matrix added to I in the line above is positive semi-definite, being the product
of two factors that are each positive semi-definite and symmetric. Indeed, these same two properties support the
following estimate:
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ρ
((

HH>
)−1

ω′ω′>
)
≤

∥∥∥∥
(
HH>

)−1∥∥∥∥
∥∥∥ω′ω′>

∥∥∥

=
ρ(ω′ω′>)

minx,0
‖HH>x‖
‖x‖

=
ω′>ω′

λmin (HH>)
.

We arrive at the intermediate result

ρ(H+H′) ≤ σmax
(
H+H′

) ≤
√

1 +
‖ω′‖2

λmin (HH>)
. (B.4)

Here Proposition 3.3 is relevant. Let {rN} be a sequence with rN → ∞ for which

P
{
λmin(HH>) ≥ rN

}
→ 1. (B.5)

Invent any sequence δN with δN → 0 such that rNδN → ∞. Manipulate random events as follows:
{ ‖ω′‖2
λmin(HH>)

> δN

}
=

{ ‖ω′‖2
λmin(HH>)

> δN

}
∩

({
λmin(HH>) ≤ rN

}
∪

{
λmin(HH>) > rN

})

⊆
{
λmin(HH>) ≤ rN

}
∪

{ ‖ω′‖2
rN

> δN

}
.

The first event on the right is controlled by Eq. (B.5), while Markov’s inequality gives

P
{‖ω′‖2

rN
> δN

}
≤ E‖ω′‖2

δNrN
=

L2

δNrN
→ 0.

In view of Eq. (B.4), we have

P
{
σmax

(
H+H′

)
>

√
1 + δN

}
→ 0 as N → ∞.

The stated result is an elementary reformulation of this.
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