
 1 

A Performance Neural Network Model for Conventional Solar Stills via 

Transfer Learning 

 

Hashim H. Migaybil a,b, Bhushan Gopaluni b 
 

 

a Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 

21589, Saudi Arabia 

b Department of Chemical and Biological Engineering, Faculty of Applied Science, The University of British 

Columbia, Vancouver, BC V6T1Z3, Canada  

a Corresponding author, Hashim H. Migaybil (e-mail: hmigaybil@kau.edu.sa). 

Abstract 

Predictive solar-desalination models are becoming more widespread using ML 

and AI. However, forecasting solar still water productivity based on numerous 

designs still needs to be improved. Herein, we used transfer learning to create 

precise supervised predictive ANN regression models for water productivity 

(L/m2.day) predictions based on literature findings. Such observation datasets 

from single-basin solar stills were utilized to build the random initialization 

ANN model. The transfer learning method was applied to the latter model by 

taking the learned network (weights) for fine-tuning the hyperparameters from 

the earlier developed novel hybrid solar still known as the source (pre-trained) 

ANN model, to predict the target ANN model. Based on most minor statistical 

errors, the pre-trained model with 5-64-64-1 architecture and ReLU activation 

function was the most appropriate for water productivity prediction. All created 

ANN models were compared to the MLR model. The results revealed that the 

generated target ANN model outperformed the ANN RI and MLR with OI 

values of 0.872, 0.834, and 0.803, respectively, in all modeling stages. The target 

ANN model's accuracy and generalization were sufficient. The target ANN 

model had residuals of forecasted distillate values of around 1%. This work 

discusses the significance of transfer learning to generate accurate target ANN 

models for predicting freshwater outputs in single-slope solar stills, which can 

be integrated with established theoretically tuned parameters to enhance 

performance and maximize distillate water yields.  
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1. Introduction 

Globally, water scarcity is a significant challenge and entails thoroughly exploring all available 

possibilities for maintaining present water supplies while investigating new alternative sources. 

The abundance of saline water inspires substantial prospects for recovering vast amounts of water 

that demand treatment from this water source [1]. There is an urgent and severe necessity to acquire 

fresh water from the saline/brackish or polluted water on or within the earth owing to the stability 

of accessible fresh water, estimated to be about 1%. Its demand is increasing daily due to the 

rapidly expanding industry and population growth increase [2] [3].  

 

Desalination processes are feasible and of interest for potable water consumption; thus, they raise 

distillate water production, resulting in lower water consumption. The overproduction of industrial 

wastewater has never been as high as it is now owing to the rising demand for consumer goods 

and technology from various industrial and water-related manufacturing processes [4]. Hence, 

finding alternative approaches to pricy and energy-intensive separation methods such as: (multi-

stage flash, multiple effects, solvent extraction, membrane filters, and reverse osmosis via 

emerging solar distillation may, therefore, contribute to fulfilling the world's increasing need for 

pumping purified and industrial water to the desired location [5] [6].  

 

According to Cuce et al. [7], solar distillation systems can be classified into two groups: (i) direct 

systems, which use directly absorbed solar radiation energy like in solar stills. In addition, (ii) 

indirect systems use energy converted from solar to thermal or photovoltaic systems, such as 

thermal and membrane systems. The intriguing water distillation technique known as "solar stills" 

was found to have promise as a less costly substitute for the high-priced membrane technology 

[8]. This technology had been discovered in the late 19th century and had just recently entered the 

market for manufacturing and delivering water. Leveraging an environmentally friendly solar 

desalination process, offered by solar intensity energy, is a breakthrough since no wastes/emissions 

are created. Also, no additional energy is required, potentially lowering the costs of employing 

solar stills for desalination [9] [10]. Water solar distillation replicates the natural manner of "rain" 

through water's recurring evaporation/ condensation process [11]. The distilled and treated water 

produced is typically potable and of valuable high-quality owing to the complete removal of 

inorganic and organic pollutants and total dissolved solids (TDS) [12].  

 

In terms of solar distillation unit design aspect, direct passive solar stills are common practice due 

to their simplicity and capacity to improve water production in single slope solar stills via solar 

radiation absorption, basin thermal insulation, and energy storage medium [12] [13] [14]. 

Similarly, for the optimization of solar still freshwater productivity, some critical factors that must 

be taken into consideration comprise but are not limited to solar radiation, ambient temperature, 

wind speed, desired feed water flowrate (maximum permissible water levels inside the saline water 

tank), feed water temperature (the difference in water/glass temperature), air humidity, basin 

surface area, inclination angle for the top cover, and glass transparency for solar radiation [8]. The 

direct passive solar still's performance was shown to be significantly impacted by a number of 

these factors, including the solar incident, the ambient, water, and vapor temperatures, the brine 

depth (2-2.5 cm), and the wall insulating film thickness (1–5 cm). Previously, these parameters 

have been experimentally investigated, and mathematical models were used to correlate them to 

the performance with high prediction accuracy [15]. A total water productivity of 2,197.4 

mL/week was found to be possible from the passive design with the sensible medium energy 
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storage, according to research by Cuce et al. [7], who developed a novel non-insulated solar 

distillation unit through a sensible medium for energy storage coupled with a passive supporter 

reflector. Yet, the thermal insulation and cooling for the aperture glazing and exterior structure, 

which would drive up rates of the condensation-evaporation process via decreasing heat losses and 

improving convective coefficients, were the only factors affecting water productivity. 

Furthermore, Wang et al. [16] discovered that for forecasting productivity in tubular solar stills, 

seawater temperature, basin temperature, and solar radiation were among the most fundamental 

indicators, with 40.87%, 32.43%, and 18.2 %, respectively. The single-slope solar still was shown 

to be more efficient than a pyramid-shaped still in terms of the design aspect, with a 30% greater 

output in winter due to the reduced escape of absorbed solar intensity energy from the substantial 

surface cover [17].  

 

Due to the relatively low conversion rates and high installation costs, solar radiation employment 

for solar stills or power conversion still needs to be extensively industrialized. Supervised machine 

learning (ML) and cross-validation (CV) techniques should be the subject of more innovative 

research. Inventing unique technical technologies capable of in-depth assessing the patent outputs 

and literature datasets that are now available would aid in solar harvesting, material selection, and 

solar desalination application [18]. These newly developed algorithms can make it easier for large-

scale solar stills to be commercialized and progress in solar-desalination technologies, which will 

benefit the creativities' community, business fields, and technical R&D facilities [19] [20]. 

 

Even though the inherent problem of solar still is its low water distillate productivity, it utilizes a 

sustainable and renewable energy source (pollution-free) to yield high-quality treated water. It is 

vital to select solar still systems wisely based on their productivity, which is considered a prime 

design goal to maintain design simplicity and operation feasibility. However, this is challenging 

due to various measurements and multiple heat transfer calculations [21]. There is a rising trend 

toward using ML/AI algorithms to build numerical models or complicated computational 

simulators capable of handling engineering problems. As a result, developing mathematical 

models is a valuable means and practical tool for estimating solar still productivity and evaluating 

system performance. These created mathematical models, embodied in ML models, play a primary 

role in optimizing and simulating solar still productivity, resulting in efficient and economical 

design [22]. 

 

Moreover, it would be easy to build strategies to harness this new purified water source after the 

solar desalination process to service numerous industrial sectors by predicting and knowing solar 

still productivity. In contrast, the classical mathematical models used to implement these 

computations remain complex. These algorithms necessitate a lengthy computational time, a large 

processing capacity, and the solution of multiple complicated equations [23].  

 

 

In this work, we developed a framework to establish a mathematical model that predicts how 

productive single-slope solar still would be using artificial neural networks (ANNs). In addition, 

the performance of the developed random initialization ANN model was evaluated through a 

statistical comparison of the results of solar still productivity derived from the constructed ANN 

model (predicted results) and previous experimental findings (observed results). Regarding the 

suitability for forecasting solar still productivity, transfer learning was applied to the random 
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initialized ANN model. Fine-tuning via transfer learning allowed us to obtain the target ANN 

model by unfreezing the input layer nodes and freezing at least one hidden layer neuron per the 

learned weights. The learned networks are then transferred from the built pre-trained ANN model 

(novel solar still source model) to the random initialization ANN model for the conventional solar 

still model, ultimately yielding the target ANN model. The generated ANN latter model was then 

compared to the pre-trained ANN and multiple linear regression (MLR) models. Lastly, the ANN 

target model was contrasted with random initialization ANN and MLR models to compare models’ 

accuracies in predicting water productivity in single-basin solar still. This research paper 

highlights multiple novelty and significant contributions: 

• The study utilizes transfer learning to build accurate predictive ANN models for freshwater 

productivity in solar stills, which is a unique application of solar desalination systems. 

Employing a pre-trained source ANN model improves prediction accuracy. 

• The study introduces a unique target ANN model with a specific 5-64-64-1 architecture. 

The model has been enhanced through transfer learning and is designed to improve the 

accuracy of water productivity predictions in solar stills, distinguishing it from 

conventional ANN models. 

• The established target ANN model performs well in predicting purified water outputs, 

outperforming the random initialization ANN and MLR models developed in the study. 

This was evaluated using improved statistical performance metrics. 

• The study demonstrates the practical effectiveness of the ANN model by confirming its 

generalization and capability to accurately predict distillate water production under various 

conditions. 

• This research article provides valuable insights into solar desalination systems and suggests 

cost-effective, practical solutions for addressing significant industrial challenges. These 

discoveries form the basis for future advancements in solar desalination technologies and 

pave the way for potential practical applications, instilling a sense of hope in the reader 

about the future of the field. 

The subsequent sections of this paper were organized as follows. Section 2 presents the essential 

literature review and discusses related work to identify the research gap. Section 3 introduces a 

supervised learning-based ANN methodology and framework for developing a pre-trained ANN 

model. Additionally, we investigate the application of transfer learning on the random initialization 

ANN model to generate the optimal target ANN model, describing the main building blocks, 

including network architecture, and shedding light on their criteria for evaluation. Moving on to 

section 4, we extensively discuss the implementation details for our proposed study with a 

performance analysis of the RI ANN compared to MLR models and an exploration of 

hyperparameter optimizations. Finally, this paper culminates with a discussion of closing remarks 

in section 5, emphasizing the potential prospects that lie ahead. 

 

2. Literature Review 

Knowledge-based machine learning (ML) has emerged as a powerful tool in solar-desalination 

systems, offering rapid and accurate predictions and cost-effective designs by leveraging existing 

frameworks that have been proposed in the past. Using and implementing artificial neural network 

models in the solar still desalination process could attain desirable results that are difficult to obtain 

with conventional design equations. This might be attributed to the revolution in computer 

technology and innovative mathematical modeling techniques [24]. In a recent study, Murugan et 

al. [25] aimed to improve freshwater production using solar stills, focusing on performance in 
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diverse climatic conditions. They utilized machine learning models to enhance yield predictions, 

addressing the limitations of traditional forecasting methods. The research involved evaluating 

several machine learning models, including linear regression, decision trees, random forest, 

support vector machines, and multilayer perceptron, employing metrics such as Mean Absolute 

Error (MAE), cross-validation, and parameter tuning techniques. The decision tree model emerged 

as the most effective predictor, achieving MAEs of 5.43 and 5.74 through random and grid search 

methods, respectively. This approach significantly enhances the accuracy of solar still output 

predictions, thereby contributing to optimizing solar still designs and solar energy conversion 

mechanisms. The study concluded that machine learning, particularly the decision trees model, 

offers a robust solution for forecasting distillate outputs in single basin single slope solar stills, 

enabling more efficient and sustainable water production. Future research avenues involve refining 

the model, integrating additional data, and further exploring advanced techniques such as deep 

learning to improve predictive accuracy and performance across diverse solar still designs. 

 

In a study by S. Nazari et al. [26], accurate models for predicting the energy efficiency, exergy 

efficiency, and water productivity of a single-slope solar still were developed using ANN and an 

ANN optimized with the Imperialist Competition Algorithm (ICA). These models were trained 

using empirical data, with various environmental and operational parameters such as time, ambient 

temperature, solar radiation, glass temperature, basin temperature, and water temperature 

considered. The neural network with five hidden neurons demonstrated the best performance. 

Implementing the ICA significantly improved ANN performance, reducing Mean Absolute Error 

(MAE) by 54.30%, 40.11%, and 53.35% for water productivity, energy efficiency, and exergy 

efficiency, respectively. Furthermore, the ANN-ICA achieved root mean square error (RMSE) 

values of 15.77, 1.37, and 0.29 for predicting these metrics. The results highlighted that the ICA-

enhanced ANN provided superior predictions compared to traditional ANN models. This study 

emphasizes the potential of integrating neural networks with optimization algorithms to enhance 

predictive accuracy in solar still performance metrics. 

 

Another advanced research conducted by H. A. Maddah [27], established precise supervised 

predictive machine learning models based on experimental results from the literature to estimate 

double slope solar still productivity and some key thermodynamic properties. Training collected 

datasets were created using previous inputs and outputs variables from different designed active 

or passive solar stills ( ~ 42%) for treating wastewater or brackish water with a TDS content of 

45%. The difference in water and glass temperatures (Tw - Tg) was shown to be semi-proportionally 

correlated with the water distillate with the most minor statistical errors. According to the proposed 

relationship, the highest distillate would be produced at 14:00 with an increase in both basin 

temperature (TB) and (Tw - Tg). In double slope still designs, the regression models (FGSVM, 

SEGPR, and EBoT) had the lowest attained root mean square error (RMSE) of 138, suggesting 

their reliability in precisely forecasting the distillate quantities. The remarkable accuracy of the 

SEGPR-trained model (R2 = 1) and very low RMSE < 8 demonstrated the model's capability to 

predict performance in comparable solar-desalination systems. Nevertheless, it was revealed that 

the stepwise linear regression (SLR) performed better predicting the TB pattern than the FGSVM 

did predict the (Tw - Tg) against the water distillate. For more precise predictions, H. A. Maddah 

[27] claimed that built models could be further optimized by utilizing inputs such as feed water 

flow rate, environmental conditions, and insulator properties. Such theoretical models would point 
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us in the right direction for tuning the parameters linked to the convective, evaporative, and 

radiative coefficients for boosting the distillate-water outputs in double-slope solar stills. 

 

3. Methodology and Framework 

In this work, we developed a framework to establish a mathematical model that predicts how 

productive single-slope solar still would be using artificial neural networks (ANNs). Moreover, 

the performance of the developed RI ANN model was evaluated through statistical metrics and 

comparison of the solar still productivity results derived from the constructed ANN model 

(predicted results) and previous experimental findings (observed results). The transfer learning 

method was employed for the RI ANN model based on its suitability for forecasting water outputs. 

Fine-tuning via transfer learning allowed us to generate the target ANN model by unfreezing the 

input and first hidden layers neurons and freezing at least one hidden layer neuron inherent to the 

learned weights. Therefore, to get the target ANN model with a more accurate prediction of treated 

water, the optimal learned networks (intelligence) were obtained, frozen, and transferred from the 

developed pre-trained (source) ANN model to the RI ANN model. The source model was 

established from the novel solar still system datasets. Finally, the target ANN model was 

contrasted with RI ANN and MLR models to compare the models’ accuracies in predicting water 

productivity in a single-basin solar still system. 

 
3.1 Developing source ANN model:  

The source datasets were collected from a novel hybrid solar still system designed and simulated 

using MATLAB/SIMULINK. The simulation software was used to accurately model system 

behavior with the aid of a graphical user interface (GUI) modeling tool [28]. This GUI application 

integrates a visual library into the Simulink browser, enhancing detailed and dynamic modeling 

capabilities. The initial datasets comprised operational variables of the solar still such as feed flow 

rate, meteorological conditions (sourced from NASA POWER) [29], water temperatures, salinity, 

and water distillates measured hourly from 9:00 to 18:00. These parameters were selected due to 

their critical impact on the efficiency and productivity of the solar still. The original data collected 

over several simulation runs was expanded by 7.3-fold using the MATLAB curve fitting toolbox 

through the signal builder tool to increase the dataset size from 100 to 730 data points for input 

parameters accompanied by distillate water output. This augmentation process involved adding 

controlled noise to the data to introduce non-linearity and prevent overfitting, which is essential 

for enhancing machine learning model training.  

 

For the development of the ANN base model, the expanded dataset was divided into training 

(70%), testing (20%), and validation (10%) sets. Several iterations of random selection and 

partitioning were performed in multiple rounds to ensure the generalizability and robustness of the 

results. This method was iterated ten times to address potential biases from a single partitioning. 

Following each iteration of partitioning, we conducted separate training and evaluation of the 

models. The results obtained from these repeated iterations (runs) were averaged to evaluate the 

model's effectiveness comprehensively. This methodology facilitates attaining more reliable and 

comprehensive outcomes by considering the variations in the data splits. In the training phase, the 

ANN is trained to predict an output, specifically distilled water in the novel solar still system.  

 

During the testing phase, the ANN model is used to forecast a single output value (Pstd) to examine 

the validity and reliability of the machine learning models and to determine whether the training 
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should stop or continue. The ANN is validated during the validation phase to ensure its 

performance on new cases [22]. A supervised machine learning technique, such as the ANN model, 

was chosen and compared with a multiple linear regression (MLR) model on labeled datasets in 

the training, testing, and validation phases to compare and select the best modeling stage for 

superior prediction outcomes. ANN and MLR models were constructed using a hold-out strategy 

of 32 random states, controlling the shuffling process in the train-test-split. The source ANN model 

was developed using Collab notebook/Python software and the widely used feed-forward/back-

propagation algorithm [30].  

 

Solar stills undergo energy gains and losses influenced by selected weather input variables [23]. 

The recorded daily operational feed water volume was included as an input into the ANN model. 

The feed water flow rate was considered in the neural network analysis as it is related to the 

constant factor of the basin area. When operating solar stills, users will likely utilize the feed water 

volume to determine the water quantity needed for flushing and operation [23]. The chosen input 

variables—daily solar radiation (Is), ambient temperature (Tamb), wind speed (Vw), relative 

humidity (RH), and saline water feed flow rate (Pst)—were identified as primary influencers of 

solar still performance. The dependent variable, water productivity (Pstd), was then correlated with 

these inputs that emphasis our machine learning analysis.   

 

It is worth noting that the input parameters for our model were chosen based on their substantial 

influence on the performance of solar stills and their capability to forecast freshwater productivity 

precisely. Multiple factors justified the omission of the inlet water temperature. Initially, the inlet 

temperature of the basin was consistently maintained, leading to minimal fluctuations in its level. 

The initial investigation found that this parameter did not significantly improve the model's ability 

to predict water productivity accurately. Including it would have extended the model's complexity 

without yielding substantial benefits. Therefore, our attention was directed toward the five most 

influential operational variables to optimize the model and enhance its efficiency and 

interpretability.  

 

Critical decisions in the model training process included selecting 92 iterations based on a batch 

size of 8 samples, determined to be optimal through hyperparameter tuning. The Adam optimizer's 

regularization strength and learning rate were set at 0.001 and 0.0003, respectively, to ensure 

robust training while minimizing overfitting. Early stopping with a patience value of 20 was 

employed to halt training if the validation loss did not improve, thus preserving model 

generalization. A single epoch occurs when an entire dataset is only once passed through the neural 

network forward and backward. This detailed approach to dataset preparation and model training 

highlights the systematic methodology for developing a reliable and accurate ANN model for 

predicting solar still performance. Table 1 demonstrates the collected input and output parameters 

data sources for both solar stills configuration systems.  

 

Table 1: Inputs and outputs parameters data sources 

Solar Still Design 

Configurations 

Input Parameters Data 

Source 

Output 

Parameters 

Data 

Source 

Novel solar still system 
(Pretrained model) 

Operational Variable:  
Saline water feed 

flowrate, L/day 

Literature/ 
experimental 

datasets [28]. 
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Conventional solar still 

system 

(Random Initialization 

model) 

Meteorological 

Conditions: 
Solar radiation, MJ/m2.day  

Ambient temperature, oC  

Wind speed, m/s  

Relative humidity, % 

 

NASA Power 
[29]. 

Solar still 

productivity 
Water distillate 

(L/day) 

Literature/ 

experimental 

datasets [23]. 

 

3.2 Criteria of assessment for random initialization ANN model:  

For evaluating the long-term performance of the conventional single-slope solar still, 365 

numerical datasets were manually extracted from preceding experimental results found in the 

literature and were conducted by Santos [23]. The compiled datasets initially involved direct 

measurements of feed water volumes and daily average distillate productions between February 

2006 and August 2007 using a rectangular basin still with an area of 0.976 m2 [31]. They then 

were tabulated with corresponding daily recorded weather data as input variables, including solar 

incidents retrieved from NASA power webs [29]. The random initialization ANN model was built 

with feed water volumes and daily average weather data as inputs and the total freshwater 

production as the output variable (Pstd, L/m2.day). 

 

The earlier study [23] intended to predict single-basin solar still distillate production comprising 

some water physical properties of the feed and distillate. For instance, density and specific heat 

capacity are functions of feed salinity and initial water temperature since these factors were critical 

for assessing the water safety criteria for safe human consumption [32].  

 

Likewise, as applied to the source model, the trained models used to forecast distillate water in the 

conventional solar still were employed in the testing analysis for both ANN and MLR models. The 

training datasets (70% of the curated data) comprised six matrices of [256 x 1], with each matrix 

representing an input parameter or water productivity as an output. This defined matrix size is also 

comparable to that a one [256 x 6] matrix was curated considering the inputs as mentioned earlier 

and the distillate water output. The same inputs were used in the testing datasets, extracted as 20% 

of the curated data to predict the known freshwater productivity for verifying trained model 

accuracy. Lastly, the 10% curated data were utilized to check the performance of new datasets and 

get a model that can generalize better on unseen or future datasets.  

 

It is typical to evaluate the predictive performance for the developed ANN and MLR model using 

a variety of statistical metrics, such as coefficient of determination (R2), root mean square error 

(RMSE), mean square error (MSE), mean absolute error (MAE), the overall index of model 

performance (OI), and residual, which were calculated using their mathematical computations in 

eqns. (1-7), respectively [33]. 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑜,𝑖 − 𝑥𝑝,𝑖)
𝑛
𝑖=0

2

𝑛
 

(1) 

𝑅2 =
(∑ (𝑥𝑜,𝑖 − �̅�𝑜)(𝑥𝑝,𝑖 − �̅�𝑝)

2
)𝑛

𝑖=0

∑ (𝑥𝑜,𝑖 − �̅�𝑜)
2

 ×  ∑ (𝑥𝑝,𝑖 − �̅�𝑝)
2𝑛

𝑖=0
𝑛
𝑖=0

 (2) 
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𝑀𝐴𝐸 =
∑ |𝑥𝑜,𝑖 − 𝑥𝑝,𝑖|

𝑛
𝑖=0

𝑛
   (3) 

𝑀𝐸 =  1 − 
∑ (𝑥𝑜,𝑖 − 𝑥𝑝,𝑖)

𝑛
𝑖=0

2

∑ (𝑥𝑜,𝑖 − �̅�𝑜)
2

 𝑛
𝑖=0

 (4) 

𝑂𝐼 =  
1

2
 (1 − (

𝑅𝑀𝑆𝐸

 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
) + 𝑀𝐸) (5) 

𝐶𝑅𝑀 =  
(∑ 𝑥𝑝,𝑖 − ∑ 𝑥𝑜,𝑖

𝑛
𝑖=0

𝑛
𝑖=0 )

∑ 𝑥𝑜,𝑖
𝑛
𝑖=0

 (6) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  𝑥𝑜,𝑖 − 𝑥𝑝,𝑖 (7) 

 

Knowing that the observed value is denoted by  𝑥𝑜,𝑖.  𝑥𝑝,𝑖 is symbolized as the predicted value by 

the ML models. �̅�𝑜 is the averaged observed or mathematically obtained values; �̅�𝑝 refers to the 

predicted values or theoretically estimated from averaging; the minimum and maximum observed 

values denoted by 𝑥𝑚𝑖𝑛 and  𝑥𝑚𝑎𝑥 respectively, and 𝑛 indicates the number of observations or 

dataset size. The lower 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 values determine the more accurate prediction results, 

and their values range from 0 to ∞. On the other hand, the higher 𝑅2 value demonstrates the more 

remarkable similarities between the trendlines of both observed and predicted samples (an 

identical pattern is reached when 𝑅2 = 1) [34].  

 

A perfect fit between observed and forecasted results is generated when 𝑀𝐸 value is 1. In contrast, 

a zero value implies that a mean value would have produced the same level of accuracy [35] [36]. 

The latter metric could produce a negative value −∞ if the mean observed value �̅�𝑜 is a better 

predictor than the simulated value, which indicates unacceptable performance. The 𝑂𝐼 value of 1 

expresses an optimal fit between observed and predicted outputs. The 𝐶𝑅𝑀 values are near ±1. 

Better model accuracy is achieved when the 𝐶𝑅𝑀 value is close to zero. For ideal data modeling, 

𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 and 𝐶𝑅𝑀 measures, which were obtained from the different trained models, need to 

be closer to zero, but 𝑅2, 𝑀𝐸 and 𝑂𝐼 values should converge to 1 as much as possible [37].  

 

Fig. 1 demonstrates a flow chart illustrating the selection and development of the optimal ANN 

source and target models for precisely predicting distillate water productivity, Pstd. Based on the 

statistical metrics presented in Table 2, the optimum ANN architecture was chosen through a trial-

and-error technique by determining whether the R2 was greater than 0.75 and predicting the 

distillate water (Pstd) from the testing datasets. Selected models that only satisfied the previous 

criteria were retained for further analysis to compare their predicted response patterns and residuals 

(from the testing datasets) to the actual experimental results (from the training datasets).  
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The ideal chosen architecture of the source ANN model represented in trained network weights 

was employed to be repurposed (reused) in the random initialization ANN model and trained on 

new datasets and functions based on minimum measures of errors. Hence, as illustrated in Fig. 2, 

it was attempted to fine-tune the latter model by training only the first hidden layer, leaving the 

other frozen, and developing a predictive mathematical algorithm to obtain the target model from 

patterns that had been trained.  

 

 

 
Figure 1: Flowchart for selecting and developing optimal pre-trained ANN and target models for accurately predicting distillate 

water productivity. 
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Figure 2: Schematic diagram for applying transfer learning technique on the conventional solar still system to accurately predict 

distillate water outputs Pstd, L/m2.day. 

These algorithms compute solar still freshwater productivity based on experimental findings from 

a previous study using ANN models [23]. This machine learning technique is identified as a 

transfer learning method, which was implemented in the conventional solar still base model to 

generate the final target model. random initialization ANN model was created as a first step in the 

conventional single slope solar still without applying the transfer learning method. Then, it was 

compared to the developed optimal target ANN model. In this research, we focused on developing 

an ANN regression model to forecast continuous numerical variables associated with water 

productivity in solar stills. Unlike binary classification problems that generally utilize hard-limit 

transfer functions [0,1], our ANN regression model employs non-linear transfer functions such as 

ReLU to capture the complex relationships within continuous data. By integrating these non-linear 

transfer functions into our feedforward neural network, we can more effectively model and predict 

continuous values than using linear or hard-limit functions. 

 

It is important to note that graphical and statistical comparisons were used to evaluate the 

performance of all developed ANN and MLR models. Finally, it was aimed to study and emphasize 

whether the target ANN model generated by learned (frozen) weights would provide better 

prediction than the random initialization model based on their accuracies and minimum statistical 

errors. As illustrated in Fig. 3, repurposing the pre-trained (source) model was applied to the 

random initialization model to predict target output data (distillates) in the future using the trained 



 12 

network model (transferred knowledge) and to evaluate overall long-term system performance in 

single slope solar still.   

 

 

Figure 3: A schematic block flow diagram for applying the transfer learning method on the conventional solar still system known 

as the random initialization (RI) ANN model to predict distillate water (Pstd, L/m2.day) outputs more accurately. The optimal source 

(pre-trained) ANN model was developed to produce the best-learned weights, freeze, and transfer them to the RI ANN network to 

generate further the target ANN model with the minimum statistical errors. 

 

Table 2: Presenting the RI ANN model methodology in a pseudocode form. 

S/N Step Pseudocode Explanation 

1 Input Datasets 

(70% training, 20% 

testing, 10% validation) 

X: Input features dataset (2D array). 

Y: Distillate water variable dataset (1D array).  

X_train, X_test, X_val: Split X into training, testing, and validation 

datasets (2D arrays).  

y_train, y_test, y_val: Split y as an output variable into training, 

testing, and validation datasets (1D arrays).  

2 Data Normalization Import necessary libraries (numpy, sklearn.model).  

Define MinMaxScaler objects for input and target variables. 

Fit MinMaxScaler on training datasets.  

Normalize the training, validation, and test data using the fitted 

scalers (Scaler Fit. transform).  

3 ANN Model Creation Import necessary libraries (numpy, keras, sklearn.model and 

tensorflow).  

Create a sequential neural network model.  
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First Hidden Layer Create the first hidden layer with 16 units, input dimension 5, using 

ReLU activation function, and normal weight initialization.  

Second Hidden Layer Create the second hidden layer with 32 units, using ReLU activation 

function, and normal weight initialization.  

Output Layer Create the output layer with 1 unit, representing a single fully 

connected node, using normal weight initialization.  

Compile the model Compile the RI ANN model using mean squared error as the loss 

function and Adam optimizer with a learning rate of 3e-4.  

4 Fitting the ANN to the 

Training Dataset 

Train the model on the training data (X_train, y_train) with a batch 

size of 20, 500 epochs, and validation data (X_val, y_val).  

5 Early Stopping Apply early stopping during training to monitor the validation loss 

and restore the best weights when patience exceeds 20 epochs.  

6 Hyperparameter 

Optimization 

Define a set of hyperparameter values for tuning (see Table 3).  

Use techniques such as grid search or random search to find the 

optimal hyperparameters with a maximum evaluation of 100 trials.  

Train the model using the optimal hyperparameter values. 

7 Statistical Metrics Train the model on the training datasets.  

Evaluate the model on the validation and test datasets.  

Calculate statistical metrics such as Root Mean Squared Error 

(RMSE), R-squared, OI, etc. 

Print or store the metrics results for analysis and comparison.  

 
 

4. Results and Discussion  

This chapter explains the development of an optimal pre-trained (source) ANN model architecture 

to get the best-learned network (weights). The ideal trained weights will then be repurposed 

(reused) in the random initialization (RI) ANN model to generate the target ANN model and 

predict daily water outputs. This part of the study will present a statistical comparison and 

performance analysis between the created random initialization ANN, the target ANN model, and 

the MLR model. 

 

4.1 Optimization of pre-trained ANN model architecture:  

The ANN and MLR regression models used to estimate distillate water outputs for both solar still 

configuration systems were covered in this study. The statistics of the pre-trained ANN model's 

performance with various hidden layer neuron/node numbers and activation functions are 

displayed in Table 3. Based on the network hyper-parameters / gradient descent optimization 

algorithm shown in Table 3, the optimum ANN architecture, 5-64-64-1, for the novel solar still 

was chosen through a rigorous optimization process using a trial-and-error method with a 

maximum evaluation of 100 trials aiming to balance between the model’s complexity and 

predictive accuracy. It was observed that the best neurons for the source ANN model's hidden layer 

were selected through trial and error (examined from 16 to 128 neurons) with a batch size ranging 

from 8 to 64. Each hidden layer's activation function varied and switched between sigmoid, ReLU, 

and Tanh. Despite the seemingly large number of parameters, our approach validated the model's 

generalization capabilities. Moreover, the empirical results confirmed that the chosen architecture 
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5-64-64-1 was optimal for the given data that minimized validation loss and enhanced predictive 

accuracy, and the use of techniques such as regularization and early stopping effectively mitigated 

overfitting. Although a higher number of neurons, this configuration was the most effective at 

capturing our dataset's complexities and non-linear relationships. Additionally, the number of 

neurons in the hidden layers plays a crucial role in the model's capability to effectively learn from 

and generalize the data. While fewer neurons may simplify the model and reduce computational 

demands, they can also limit the model's ability to generalize and represent the underlying data 

patterns precisely. In our scenario, the architecture with 64 neurons in each hidden layer balanced 

model complexity and predictive performance, ensuring robust and accurate predictions. 

 

Certain literature presents empirical formulas to choose the number of neurons in neural network 

models. However, our study examined the number of neurons, ranging from 16 to 128, for 

forecasting distillate water productivity in solar stills using an ANN model. Instead of solely 

relying on existing empirical methods and guidelines, empirical assessment was carried out to 

optimize the architecture of the ANN model. This decision has been made after considering various 

factors. While empirical formulas provide a useful framework, they may not always generate the 

best configuration for a specific dataset. Fine-tuning the architecture of the ANN model through 

empirical testing can ensure that it fits the dataset's characteristics, leading to improved 

performance. The range of neurons from 16 to 128 has been selected to balance computational 

efficiency and model complexity, making it a widely preferred option. Fine-tuning the ANN within 

this range notably enhanced prediction accuracy and reliability as well as boosted learning and 

convergence efficiency.    

 

Several gradient descent methods optimizers, such as RMSprop, Adagrad, Adam, and SGD, have 

also been employed and tuned in the optimization process. Regularization strength, namely 

lambda, was also assessed between 0.001 and 0.1 to calibrate ANN models and to reduce the 

adjusted loss function; thus, avoid overfitting or underfitting (see Table 3). Trials were initiated 

using 16 neurons in the input hidden layer as the starting point for optimizing the ANN base model 

architecture. It was noted that fixing the number of neurons to 64 resulted in a clear and remarkable 

improvement in the ANN model performance, particularly for the ReLU function. This transfer 

function provided the best network performance since R2, RMSE, MAE, ME, and OI values for 

the testing datasets were 0.996, 0.098, 0.074, 0.993, and 0.991, respectively.  

 

Figure 4 demonstrates the ReLU activation function graph and compares the denoising results of 

ReLU and PReLU activation functions in the pre-trained ANN model. It was observed that both 

transfer functions were very close in shape in terms of denoising capabilities, and the mean squared 

error, MSE values (ReLU = 0.0111 and PReLU = 0.0102) were similar, with the only difference 

being a slight slope for negative values in the PReLU curve. This behavior suggests that both 

activation functions performed similarly in fitting the training data and generalizing it to the 

validation data. 
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Figure 4: ReLU and PReLU activation functions graph. 

The optimization strategy primarily motivates the decision to utilize the ReLU activation function 

in our ANN model during training. By normalizing the input data to a range from -1 to 1, the ReLU 

function is optimized, leading to improved performance and model convergence speed. While the 

sigmoid transfer function is constrained to the interval [0,1], its efficacy was evaluated alongside 

other functions, including ReLU and Tanh, during the hyper-parameter optimization method. This 

examination helped us identify our regression task's optimal activation function. Ultimately, the 

ReLU function emerged as the most suitable choice for the dense layers of our ANN model due to 

its outstanding performance observed during training. It is essential to understand that in 

hyperparameter optimization, the output range of the activation functions does not necessarily have 

to match the normalization range of the input data. Irrespective of the activation functions being 

evaluated, it is advantageous to normalize the data in the training phase to a range from -1 to 1. 

 

In many practical applications, this slight difference may be insignificant. Moreover, ReLU is 

more computationally efficient than PReLU because it does not require additional learnable 

parameters, making it advantageous for resource-constrained environments. Its simplicity and 

robustness contribute to ReLU's viability as a reasonable option. It can be emphasized that the 

choice of activation is merely one component of the entire modeling pipeline, in which other 

factors, such as network architecture and hyperparameter tuning, also contribute to the overall 

performance. As shown in Table 3, the produced hyper-parameters optimization trials also 

revealed that having 16, 32, and 128 neurons with 4, 4, and 5 hidden layers, respectively, would 

harm ANN model performance with a more excellent loss value than one. Also, the ReLU function 

was better than Tanh during most trials, having the smallest lambda (weight decay) value of 0.001 

in the prediction of Pstd. Another hyper-parameter considered in the training process is the number 

of epochs, which specifies how often the learning algorithm will run through the entire training 

dataset. In addition, the learning rate values for the Adam optimizer and momentum were adjusted 

to maintain a constant value of 0.0003 and 0.99, respectively. 

 

Having too many epochs can result in an overfit model while having too few can lead to an 

underfitting of the training dataset. Consequently, an early stopping strategy, supported by a 
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callback function, was considered while building the model that enables us to define an arbitrarily 

large number of training epochs (e.g., 500 epochs) and terminate training whenever the model 

performance on a holdout validation datasets halt improving. This technique can be accomplished 

by passing the validation dataset to the fit function during model training and allowing us to 

identify the performance indicator to monitor to stop training. The loss on the validation dataset 

will then be made available under the term "validation loss" with a minimum value. Stopping 

training at the first sign of no further improvement is usually not the most excellent option. The 

early stopping event while training the datasets may occur because the model may reach a plateau 

of little progress or perhaps slightly deteriorate before improving significantly. We may adjust for 

this possible behavior by adding a delay to the trigger based on how many epochs we want to 

observe no improvement. Adding delay to the trigger while fitting the ANN to the training set can 

be achieved by specifying the "patience" parameter with a value of 20 [38]. 

 

Table 3: Hyperparameters optimization for source (pre-trained) ANN model in sequence from minimum to maximum loss. 

Trial 

number 

Hidden 

layer size 

No. hidden 

layers 

Activation 

function 

Batch size Optimizer Lambda 
(Weight decay) 

Loss 

1 64 2 ReLU 8 Adam 0.001 0.000621 

2 32 2 ReLU 8 Adam 0.001 0.00063 

3 32 2 ReLU 8 Adam 0.001 0.000723 

4 128 2 ReLU 16 Adam 0.001 0.000727 

5 32 2 ReLU 16 Adam 0.001 0.000734 

... ... ... ... ... ... ... ... 

96 32 2 ReLU 64 Adagrad 0.005 0.17612 

97 64 5 ReLU 64 Adagrad 0.001 0.255997 

98 32 4 ReLU 32 Adagrad 0.05 1.080505 

99 16 4 Tanh 32 Adagrad 0.1 1.750207 

100 128 5 Tanh 32 Adagrad 0.01 1.939331 

 

Visualizing the performance of any ANN model is a simple approach to making sense of the data 

coming out of the model and creating a knowledgeable choice about the adjustments that need to 

be applied to the hyper-parameters that influence the ANN model. It is vital to comprehend how 

to visualize data using the Matplotlib library and combine it with the ANN model to make an 

enlightened decision and enhance the ANN model. One of the main challenges of any ANN model 

is generalizing the model so that it can predict good results for new data and data that has already 

been trained.  

Figure 5 illustrates the average contribution of each input variable to the output within the optimal 

ANN model architecture. These values demonstrate the comparative significance of each input 

parameter in the training process of the developed RI ANN model.  
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Figure 5: Average contribution values of input node variables on distillate water outputs Pstd, L/m2.day. 

 

Moreover, this analysis of contributions can provide insights into the relative importance of 

variables by identifying those with the highest contribution values relative to other inputs. 

Based on the conducted analyses, it was observed that the variable with the least significant impact 

is wind speed, with a contribution score of 0.04. On the other hand, relative humidity and feed 

water flow rate exhibit moderate effects on the predicted distillate water, with contribution scores 

of 0.061 and 0.075, respectively. The variables that indicate the most significant contributions to 

the distillate water output are solar radiation (0.135) and ambient temperature (0.122). These 

parameters are typically the most influential factors impacting the distillation process, primarily 

due to their involvement in the transfer of energy through radiant and convective mechanisms 

within the solar still system and their role as energy sources. The findings of this study are 

consistent with prior research [32,33], which indicated that solar radiation and ambient 

temperature significantly affect the quality of treated water. 

 

Visualizing the validation loss vs. training loss over the number of epochs (385, 235) for both the 

pre-trained and RI models, respectively, might help to decide whether the model has been 

appropriately trained. An ideal fit, as plotted in Fig. 6, or a model that does neither overfit nor 

underfit, is specified when both the validation and training losses fall and stabilize at specific 

points. This approach is critical to avoid overfitting the ANN model and underfitting it to the point 

that it begins memorizing the training data, thus reducing its predictive accuracy [39].  

 

Based on the learning curve analysis, the ANN model's performance appears balanced and does 

not exhibit clear signs of high variance, high bias, or overfitting.  

1- Loss reduction: Both training and validation losses decrease as the number of epochs increases, 

indicating that the model is effectively learning from the data and improving its predictions. 
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2- Minimum plateau: Both training and validation losses reaching a minimum plateau suggest that 

the model has converged to a point where further training does not significantly reduce the losses. 

This behavior indicates that the model is not overfitting the training data. 

3- Convergence of curves: Both curves meet and become steady as the number of epochs increases, 

indicating that the model's performance on both the validation and training sets has stabilized. This 

means the model has found a balance between fitting the training data and generalizing it to unseen 

data. 

4- Absence of high variance or overfitting: Since the curves are steady and meet, there is no evident 

gap between training and validation losses, which suggests that overfitting is not a significant 

concern. Overfitting typically indicates a growing gap between training and validation losses as 

the model overlearns the training data. 

5- Absence of underfitting or high bias: There is no indication of high bias either, which would 

manifest as both training and validation losses remaining high and not decreasing. High bias 

implies that the ANN model should be more complex to capture the underlying patterns in the 

datasets. 

 

 

Figure 6: Training loss vs. validation loss over the number of epochs: (A) for the source (pre-trained) ANN model and (B) for the 

RI ANN model, showing both models are approaching the zero loss and being optimized by the desired number of Epochs. 

 

In light of the optimal water distillates prediction and lowest error (the minimum RMSE, CRM, 

and MAE; and the largest R2, ME, and OI), the most appropriate ANN model was 5-64-64-1 with 

a ReLU activation function (bolded in Table 3). Fig. 7 schematically illustrates the ideal generated 

source ANN model architecture 5-64-64-1. 
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Figure 7: Optimal architecture of the developed source ANN model to predict distillate water. 

 
4.2 Performance analysis of ANN RI and comparison with MLR:  

Fig. 8 compares the observed results, ANN, and MLR predictions for the training, testing, and 

validation datasets. The ANN prediction values for random initialization models were closer to the 

observed values than the MLR prediction values. The proportionate agreement between predicted 

and actual values evidences the predictive power and reliability of the built ANN model for 

predicting distillate water productivity Pstd, L/m2.day. Fig. 8 (A) demonstrates that the values 

predicted by the developed random initialization (RI) ANN model fit precisely with the observed 

values during training. As shown in Table 3, some statistical analyses were employed to evaluate 

the overall performance of the ANN and MLR models. As revealed in Fig. 8 (B), most of the 

values predicted by the ANN models were equally and tightly distributed around the 1:1 plotted 

line. The coefficient of determination, R2 (0.80) score for the RI ANN model, was partly close to 

one. The RI ANN model had an RMSE value of less than one (specifically, 0.743 L/m2.day), as 

presented in Table 3. Model efficiency, ME, and an overall index of model performance, OI-related 

values were 0.80 and 0.832, respectively, which draw near one. The coefficient of residual mass, 

CRM, was extremely near zero at - 0.0024 L/m2.day, but the mean absolute error, MAE, was 

somewhat diverged from zero at 0.607 L/m2.day. Furthermore, Fig. 8 (B) illustrates that multiple 

points acquired by applying the MLR model during the training stage were positioned above and 

below the 1:1 slope line. Table 3 also presents the MLR statistical performance metrics.  

 

The created RI ANN model relatively outperformed the MLR's accuracy during the training phase, 

with an R2 value of 4% higher. The RMSE and MAE values were 0.5 and 0.43 times higher than 

their ANN model values. The OI value for the MLR model is reduced by roughly 1.8% compared 

to the value for the ANN model, and the ME value for the MLR model (0.771) was slightly far 

from one. The relative errors of the forecasted Pstd values using the RI ANN and MLR models are 

shown in Fig. 8 (C).  

Residuals were often in the proximity of 2% throughout the training process for the ANN model. 

In contrast, as stated in Fig. 8 (C), the MLR model's residuals were more significant than those 

using the RI ANN model, indicating that the developed RI ANN model was adequately accurate. 

 

5-64-64-1  

Architecture 
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Moreover, Fig. 8 (D) also indicates how the RI ANN and MLR models were employed to 

investigate the link between the observed and predicted distillate values during the testing process. 

As was the case during the training phase, the built ANN model outperformed the MLR model 

regarding the agreement between observed and predicted values. Most of the freshwater output 

values for the ANN model, as stated in Fig. 8 (E), followed the 1:1 line during the testing process. 

As a result, the predicted and observed values were relatively close.  

 

Table 3 shows the statistical parameters R2, ME, OI, RMSE, CRM, and MAE used to examine the 

agreement between the actual and predicted values by the ANN and MLR models using the testing 

datasets. During the testing process, the R2, ME, and OI values were near to one using the 

established RI ANN model, demonstrating high agreement between the observed and predicted 

variables using the developed RI ANN model. 

 

On the other hand, the MLR model utilizing the testing datasets had R2, ME, and OI values of 2.3, 

2, and 3.1 %, respectively, and hence was less accurate than the constructed RI ANN model. It can 

be seen from Table 3 that the values of RMSE, CRM, and MAE are high for the distillate water 

predicted by the MLR model and low for the Pstd forecasted by the RI ANN model. The created 

RI ANN model's RMSE (0.721 L/m2.day) was more than double that of the MLR model (0.750 

L/m2.day). In comparison to the CRM value for the MLR model, the CRM value for the RI ANN 

model was closer to zero. Similarly, the CRM value for the MLR model was one time greater than 

that of the generated RI ANN model. The MAE value (0.602 L/m2.day) for the developed RI ANN 

model was about 1% lower than those from the MLR model (0.615 L/m2.day).  

 

 

The residuals during the testing process are plotted as illustrated in Fig. 8 (F). With relative errors 

(90% of the values) largely falling between -1% and +1 %, the ANN RI model was closer to zero 

and can be utilized to predict Pstd. Nevertheless, using the MLR model, the residual values that fall 

within 1% imply less than 90% of the total error values during the testing process.   

 

Regarding the validation datasets, Fig. 8 (G) compares the observed Pstd outputs, including ANN 

RI, forecasted results, and MLR prediction results. During the validation process for the 

established RI ANN model, Fig. 8 (H) demonstrates that the distillate water typically followed a 

1:1 line, suggesting a great match between actual and predicted values. As was the case during the 

training and testing processes, the constructed RI ANN model outperformed the MLR model based 

on the agreement between observed and predicted data. R2 was close to 0.80 according to the ANN 

RI model prediction result.  

 

Table 3 displays that while the R2, ME, and OI values were comparatively close to one, the RMSE 

and MAE values were relatively low. The CRM value (-0.001) was also very near zero. The 

generated RI ANN model exhibited a higher R2 value than the MLR model, which was 4.7% less 

accurate. About 1.02 times as much RMSE was present in the MLR model (0.837 L/m2.day) 

compared to the ANN RI model. 

Furthermore, the developed RI ANN model had a ME value of approximately 5% more accurately 

than the MLR model. The MLR model's OI value (0.816) was not very close to one compared to 

the RI ANN model, with a value of 0.841. The MAE value of 0.728 for the MLR model rose by 

97.02% from that of the RI ANN model. The validation datasets for both RI ANN and the MLR 
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model's relative errors of the forecasted Pstd values are shown in Fig. 8 (I), with an average relative 

error of 1.5 % for the MLR model when utilizing the validation datasets. This figure shows the 

discrepancies between the findings of the two models. It highlights the slight underestimation of 

the predicted distillate water. As evidence of the insignificant underestimation in the predicted 

distillates, the comparable value for the built RI ANN model was lower at 0.5% for the validation 

datasets.  

 

 

Figure 8: Comparison between observed vs. predicted distillate water values using RI ANN and MLR models during modeling 

stages with their acquired residuals: (A-C) from training datasets; (D-F) from testing datasets; (G-I) from validation datasets.   

 

It is worth noting that when the plots illustrated in Fig. 9 (A-I) were examined for the training, 

testing, and validation datasets using the transfer learning method, the predicted distillate water 

results using the developed target ANN model appeared too close to the observed values. The 

target ANN model was generated by repurposing the transferred learned weights from the source 

ANN model. In corresponding to the built target ANN model, the results obtained using the RI 

ANN and MLR models revealed a more significant deviation from the actual values for all 
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modeling processes. Based on the preceding, it was possible to conclude that the generated target 

ANN model was precisely trained and presented consistency in predicting freshwater productivity.  

 

 

 

Figure 9: Comparison between observed vs. predicted distillate water values using target ANN and MLR models during modeling 

stages with their acquired residuals: (A-C) from training datasets; (D-F) from testing datasets; (G-I) from validation datasets. 

 

Likewise, it provided better predictions using the same statistical performance indicators, as 

demonstrated in Table 4, with 0.832 ME and RMSE value of 0.618, than the RI ANN model, 

which scored a higher value with an increment of 0.103. These findings strengthen the reliability 

of the developed ANN models, particularly for ANN as a promising target model. 

 

Moreover, it was verified that the developed latter model effectively forecasted Pstd without 

requiring further experimental work, which consumes more time and involves higher expenses. 

To sum it up, the target ANN model performed much better than both RI ANN and MLR models 

during all modeling phases, namely training, testing, and validation sets. The evaluation criteria 

were in terms of OI with a unique value (0.872) relatively close to 90% compared to RI ANN and 
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MLR models, which attained less overall performance with reduced values of 0.834 and 0.803, 

respectively.  

 

It was observed that the prime criteria for assessing the performance of the developed ANN and 

MLR models were during testing datasets based on statistical analysis results, as presented in Fig. 

10. Moreover, these outcomes for treated water predictions were comparatively in conformity with 

the studies of [40].   

 

It is worth mentioning that the current study involved a comparative analysis of the performance 

of ANN and MLR models. This comparison is important for several reasons. Firstly, it serves as a 

foundational benchmark to assess the improvements offered by ANNs. While ANNs are known 

for their advanced predictive capabilities, particularly in capturing non-linear data relationships, 

MLR provides a simpler, more traditional model for comparison. Secondly, the analysis 

demonstrates the advantages of using more complex models like ANN in practical scenarios, such 

as solar desalination. By showcasing the superior performance of ANN over MLR, the study 

highlights the effectiveness of ANNs in addressing the inherent complexities of the dataset. Lastly, 

the inclusion of MLR in the study enhances the reliability and robustness of the findings, ensuring 

that the observed improvements with ANN are substantive and well-supported. This 

comprehensive approach contributes to a more nuanced understanding of the value of ANNs in 

predictive modeling tasks related to solar desalination applications. 

 

H. A. Maddah et al. [3] developed precise supervised machine-learning regressions to generate 

trained models based on experimental outcomes. The suggested methodology aims to enhance the 

precision of prediction models by employing dimensional analysis and expanding datasets through 

in-between randomization. The constructed models were utilized to forecast the thermal efficiency 

(ηth) when substituting polystyrene with an alternative wall insulation material. The water glass 

difference temperature (Tw–Tg) and evaporative heat transfer coefficients (hewg) were correlated 

with the solar still outputs using the stepwise linear regression (SLR) method, which yielded 

minimal statistical errors (R2 = 1) and a root mean square error (RMSE) value < 0.016.  

 

Another comparable state-of-the-art study by M. Safa et al. [40] was focused on investigating 

irrigated and dryland wheat fields in Canterbury. The research involved comprehensive data 

collection methods. The study aimed to identify several direct and indirect parameters contributing 

to developing an ANN model for forecasting energy consumption in wheat production. The 

ultimate model could forecast energy consumption by considering various factors such as the size 

of the crop area, farmers' social considerations, and energy inputs. This model revealed a predictive 

accuracy for energy usage, with a margin of error of ±12% (equivalent to ±2900 MJ/ha).  

Moreover, a comparative analysis between the ANN model and the MLR model showed that the 

ANN model has superior predictive capabilities for energy consumption compared to the MLR 

model, specifically within the designated training and validation datasets. The ultimate ANN 

model can forecast energy consumption by considering various factors such as farm conditions, 

farmers' social considerations, and energy inputs. This model exhibited a margin of error of ±2900 

MJ/ha when predicting energy usage. Comparatively, the ANN model demonstrates superior 

predictive accuracy in estimating energy consumption compared to the MLR model. 
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Figure 11 displays an illustrative residual histogram of the ANN models employed in the context 

of the conventional solar still. The study's findings indicate that the ANN modeling can yield test 

results wherein approximately 80% and 85% of the predictions fall within a 20% to 25% deviation 

from the actual value for the RI ANN and target ANN models, respectively. The average standard 

deviations for the relative errors of the optimal ANN predictions for distillate water were 0.46 and 

0.50 for the RI ANN and target ANN models, respectively. The residual plots consistently 

exhibited a minor rightward skew, suggesting a slightly elevated occurrence of overestimations.  

 

Table 4: Statistical parameters for assessing the performance of ANN and MLR models during training, testing, and validation stages. 

Statistical 

Parameters 

Testing Models Training Models Validation Models 

ANN-RI ANN-TL MLR ANN-RI ANN-TL MLR ANN-RI ANN-TL MLR 

R2 0.803 0.835 0.786 0.801 0.831 0.761 0.797 0.816 0.748 

RMSE 0.721 0.618 0.750 0.743 0.622 0.783 0.822 0.708 0.837 

MAE 0.602 0.523 0.615 0.607 0.545 0.649 0.685 0.575 0.728 

CRM -0.035 -0.001 -0.034 - 0.0024 -0.002 -1.228 -0.001 -0.0026 -0.068 

ME 0.801 0.832 0.782 0.798 0.831 0.771 0.795 0.813 0.746 

OI 0.834 0.872 0.803 0.832 0.871 0.814 0.841 0.851 0.816 

Note: R2: coefficient of determination, RMSE: root mean square error, MAE: mean absolute error, ME: model efficiency, OI: 

overall index of model performance. 

 

 

 

 
Figure 10: Evaluation of ANN and MLR models' performance during the testing modeling process. 
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Figure 11: A histogram comparison of deviations between predicted and actual values for the RI ANN model vs. the target ANN 

model. 

 
 

5. Conclusion 

This research paves the way towards creating novel statistical tools for developing precisely 

accurate predictive supervised ANN models for freshwater productivity in conventional single 

slope solar stills using the transfer learning method. Due to the significant capital costs associated 

with solar distillation, which include the cost of land and equipment, the use of solar still 

technology for saltwater water desalination would demand an optimization process. Therefore, for 

the entire process to successfully optimize expenses and enhance water production, precise 

forecasting of the solar still's predicted productivity remains essential. An ANN model was 

presented in this study to forecast the water productivity (Pstd, L/m2.day) of solar still desalinating 

saline water. The primary objective of this work was to apply the transfer learning technique to 

the RI ANN model for conventional solar still. This method can be achieved by employing the 

best-learned weights acquired from the developed source ANN model to ultimately generate the 

optimum ANN model that has the potential to outperform the training ANN model from scratch. 

The generated ANN was studied and emphasized as a promising target model compared to the 

created RI and MLR models. The pre-trained ANN model was established from which learned 

weights (intelligence) were transferred. Several neural network architectures were trained with 

varying numbers of neurons in the hidden layers. Their hyper-parameters were tuned using the 

trial-and-error technique to determine which source ANN model offered the best performance and 

ensure the selection of the best-learned network. The chosen ideal pre-trained ANN model had a 

5-64-64-1 architecture with a ReLU transfer function. A feed-forward back-propagation algorithm 

was utilized to build ANN models, and their applicability for Pstd prediction was investigated.  

 

The transfer learning method predominantly enhances the predictive performance of neural 

networks, which enables the model to begin with a more informed state rather than learning from 

scratch. This approach is achieved by leveraging a pre-trained model to perform similar tasks. This 
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method more effectively captures complex patterns and relationships in the selected variables. 

Furthermore, transfer learning frequently results in improved generalization and faster 

convergence, particularly when the training datasets are limited. Conversely, the inherent 

distinctions in the capabilities of the transfer learning-enhanced ANN models over MLR can be 

attributed to their superiority. The linear nature of MLR renders it incapable of capturing non-

linear relationships and interactions between input variables, which neural networks, particularly 

those with transfer learning, can efficiently model. Therefore, ANN can make more precise 

predictions in complex scenarios like solar desalination systems. 

 

It was concluded that when employing the transfer learning method, the target ANN model 

outperformed the RI ANN and MLR models in all phases of the modeling process, including 

training, testing, and validation, based on the highest recorded OI of 0.872 and lowest RMSE of 

0.618 respectively. These findings suggest that the optimal target ANN model may be employed 

effectively in diverse solar still configuration systems, which desalinates brackish water, to 

forecast distillate water productions after the solar desalination process. The results also confirmed 

the developed ANN model's accuracy and generalization capability. Finally, a major contribution 

of this research implicates an evaluation of the ANN modeling techniques during the saltwater 

solar desalination process, which adds a new perception and guides us towards tunning key 

parameters correlated to some design aspects, such as solar still surface area and glass cover area, 

heat transfer energies, including evaporative, radiative, and convective coefficients, to maximize 

purified water productions in various configurations of solar still desalination systems. 

  

Nomenclature  

Pstd ⎯ Solar still productivity, L/m2.day 

st ⎯ Solar still efficiency, % 

Ast ⎯ Solar still area, m2  

Tw      ⎯ Basin water temperature, oC 
Tg ⎯ Glass Cover Temperature, oC 
Pst ⎯ Saline water feed flowrate, L/day 

                   

List of Abbreviations 

ML ⎯ Machine Learning 
AI ⎯ Artificial Intelligence  

ANN ⎯ Artificial Neural Network 

MLR ⎯ Multiple Linear Regression 

GUI ⎯ Graphical User Interface 

KSA ⎯ Kingdom of Saudi Arabia 

RO ⎯ Reverse Osmosis 
TL ⎯ Transfer Learning 
RI ⎯ Random Initialization 

R2 ⎯ Coefficient of determination 

RMSE ⎯ Root mean square error 

MAE ⎯ Mean absolute error 

ME ⎯ Model Efficiency 
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OI ⎯ Overall index of model Performance 

 

List of Subscripts  

e    ⎯ Evaporative 
b-w ⎯ Basin to water 
w-g ⎯ Water to glass 

ft ⎯ Feed tank 

amb ⎯ Ambient 

 

Appendix 

Mathematical Symbols Definition 

Symbol Name  Definition/ Meaning 

Υ𝑦 ⎯ Output variable identified as distillate water.  

𝑤𝑦𝑗   Weights between 2nd hidden and output layers. 

𝑥𝑖  Input variables.  

𝑤𝑗𝑘  Weights between the 1st and 2nd hidden layers.  

𝑤𝑘𝑖   Weights between the input and first hidden layers 

𝑚  Number of neurons in the 1st hidden layer.  

𝑝  Number of neurons in the 2nd hidden layer.  

𝑛  Number of neurons in the input layer 

𝑏𝑘  Bias values of the neurons in the 1st hidden layer. 

𝑏𝑗  Bias values of the neurons in the 2nd hidden layer.  

𝑏𝑦  Bias values of the neurons in the output layer.  

𝐹  Activation function.  

𝐹𝑖  Hidden units/ neurons in the hidden layers. 

𝑤𝑖   Weight values that are attached to each input.  

𝑦  Predicted parameter for the MLR model formula.  

𝛽  The intercept of the MLR model formula. 

𝛽𝑖  The coefficients of the predictors.  

𝑥𝑖  The predictors of the MLR model formula.  

𝑋0 ⎯ Original values of input and output variables.  

𝑋𝑛 ⎯ Normalized value. 

𝑋𝑚𝑖𝑛 ⎯ Minimum of input and output variables.  

𝑋𝑚𝑎𝑥 ⎯ Maximum of input and output variables.  

𝑥𝑜,𝑖  Observed input and output values. 

𝑥𝑝,𝑖  Predicted value by the machine learning models. 

�̅�𝑜  Averaged observed/ mathematically obtained values. 

�̅�𝑝  Predicted values/ theoretically estimated from averaging. 

𝑛  Number of observations or dataset size.  
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