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o Artificial intelligence was introduced for real-time tracking of green CO, in refineries.
e Model accuracy within 2.66% error was demonstrated using a commercial dataset.

e A cost-effective alternative to lab-based renewable carbon measurements is provided.

Oil refining sustainability is enhanced through Al-driven emission tracking.



Machine Learning for Real-Time Green Carbon Dioxide
Tracking in Refinery Processes

Liang Cao®!, Jianping Su®*!, Jack Saddler®, Yankai Cao?, Yixiu Wang®,
Gary Lee?, Lim C. Siang“, Yi Luo®, Robert Pinchuk?, Jin Li¢ and R.

Bhushan Gopaluni®**

“Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1723, Canada
bChina University of Petroleum, Beijing, 102200, China
¢Forest Products Biotechnology/Bioenergy Group, University of British Columbia, Vancouver, British Columbia, V6T

174, Canada

4pgrkland Refining (B.C.) Ltd, Department of Low Carbon Strategy, Burnaby Refinery, Burnaby, BC V5C 1L7, Canada

ARTICLE INFO

Keywords:

Biogenic feedstocks
Co-processing
Machine learning
Real-time monitoring

Green Carbon Dioxide Track-

ABSTRACT

The global increase in greenhouse gas emissions presents an urgent environmental
challenge, demanding innovative strategies for emission reduction and a funda-
mental shift in energy consumption practices. Co-processing biogenic feedstocks,
such as used cooking oils and biocrudes derived from forest and agricultural
residues, within existing oil refineries has been demonstrated as a cost-effective,
scalable approach to producing low-carbon fuels, quickly helping the oil refiners to
mitigate carbon dioxide emissions, leveraging the existing infrastructures. Despite
its potential, monitoring the "green" CO, emissions originating from biogenic
feedstocks during co-processing remains challenging. The molecular structure
of biogenic components becomes indistinguishable from fossil-based molecules,

e necessitating costly, labor-intensive, and time-consuming sample collection and
testing procedures, often involving isotope carbon analysis. This work proposes
anew approach by applying artificial intelligence to model green CO, emissions in
real-time. By analyzing over 102,000 samples of industrial data from a commercial
FCC unit, a robust machine learning framework is developed to provide continuous,
cost-effective, and accurate green CO, monitoring. The methodology encompasses
a comparative analysis of ten input analysis techniques and five regression models
to model emissions, achieving an average error margin of just 2.66% compared
to traditional laboratory measurements. This Al-driven approach offers refiners
and policymakers a practical tool for assessing the environmental performance
of biogenic feedstock co-processing, facilitating informed decision-making in
renewable fuel production.

Nomenclature

Al Artificial Intelligence

AMS Accelerator Mass Spectrometry

CatBoost Categorical Boosting

CO, Carbon Dioxide

EWMA Exponential Weighted Moving Average

FCC Fluid Catalytic Cracking

GHG Greenhouse Gas

IoT Internet of Things
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LARS Least Angle Regression

LASSO Least Absolute Shrinkage and Selection Operator
LightGBM  Light Gradient Boosting Machine

LSC Liquid Scintillation Counting

OLS Ordinary Least Squares

SGDR Stochastic Gradient Descent Regressor

XGBoost Extreme Gradient Boosting

1. Introduction

Climate change has become an urgent global issue that requires immediate and strategic inter-
ventions. As part of this effort, societies around the world are striving to reduce carbon emissions,
a challenge that is particularly complicated for the transportation and industrial sectors [1-3].
Technological constraints in long-distance transport, the maturity of alternative industrial solutions,
and the heavy dependence on fossil fuels due to their cost effectiveness have hindered decarbonization
in these sectors [4,5].

Initiating policy interventions is necessary to drive change in these sectors [1, 6, 7]. Market-
oriented policies, such as low carbon fuel standards, have been implemented on the West Coast of
North America, notably in regions such as California, Oregon, and British Columbia [6, 8]. These
policies require fuel suppliers to decrease the carbon intensity of their products. Furthermore, policies
in North America and Europe also mandate specific percentages of renewable fuels [9]. Canada has
also implemented a national clean fuel standard [10]. Initially, fuel suppliers adhered to the regulations
by purchasing and blending bioethanol and biodiesel. However, as policy stringency has ramped up
over time, these suppliers are now motivated to produce fuels with lower carbon intensity to maintain
profitability.

Fuel suppliers in Canada, including oil refineries, are now under growing pressure to decarbonize
their operations and products due to various policies such as carbon taxes, Canada’s clean fuel standard,
and environmental regulations that make CO, emissions costly [10]. However, it should be noted that
these policies also guide industry adaptation to future needs. These policies not only require a shift
towards greener operations, but also offer a unique opportunity for the fossil fuel industry to lead the
transition to sustainable energy sources. By aligning their vast resources and technical expertise with
environmental objectives, these entities can significantly accelerate global efforts to mitigate climate
change, demonstrating a proactive commitment to a sustainable future. Instead of being viewed as an
adversary to decarbonization, the fossil fuel industry, with its experience in energy production and vast
infrastructure, should be seen as a partner in decarbonization efforts.

Collaboration with the fossil fuel industry is crucial to accelerate decarbonization. Co-processing
refers to the simultaneous processing of biomass with fossil fuels in existing refinery infrastructures,
which allows for the integration of renewable feedstocks without the need for substantial changes to
existing operational systems. Fig. 1 shows a diagram of co-processing. Biogenic feedstock is low-
carbon-intensive feedstocks, such as bio-crudes made from forest, mill residues [11, 12], microalgae,
municipal sludge, and municipal waste [13]. However, in the processing of biogenic feedstocks, such
as municipal waste, potential pollutants can be generated, requiring careful management and treatment
strategies to mitigate environmental impacts [14, 15]. These materials can undergo processes such as
hydrothermal liquefaction to produce biocrude, which is then suitable for further processing [16].
Co-processing biogenic feedstocks offers a promising pathway to reduce the carbon intensity of
products and mitigate process emissions. The widespread adoption of co-processing feedstocks, such
as biocrudes derived from forest/agricultural residues, is expected to occur when a stable and sufficient
supply becomes available. Co-processing represents one of the few methods available for traditional
oil companies to reduce their greenhouse gas emissions, as burning fossil fuels contributes to 70% of
the life-cycle emissions of petroleum products.

The commercialization of co-processing biogenic feedstocks has been successfully implemented
in both hydrotreaters and fluid catalytic crackers (FCCs) [17-19]. To enable effective co-processing in
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Figure 1. A diagram of co-processing

hydrotreaters, substantial modifications are necessary to enhance their capacity for biogenic feedstock.
However, the upgrading of hydrotreaters to co-process biocrudes has proven to be a considerable
technical challenge [20].

FCC co-processing is more robust compared to co-processing at the hydrotreater, allowing for
a higher co-processing capacity [21-23]. The FCC unit, which is used primarily to convert heavy
fractions of crude oil into lighter components, is also the largest source of greenhouse gas (GHG)
emissions within oil refineries [24]. This is primarily due to constant regeneration of the catalyst,
where the deposited coke is burned, subsequently releasing CO, into the atmosphere. The schematic
representation of the FCC is shown in Fig. 2.

With the introduction of biogenic feedstocks in the co-processing method, renewable biogenic
feedstocks also contribute to CO, emissions. Green CO, refers to CO, emissions originating from
renewable biogenic sources, rather than from fossil fuels. In the context of industrial processes,
particularly in the co-processing of biogenic feedstocks within oil refineries, green CO, generally
denotes the emissions resulting from the combustion or processing of renewable materials such as
plant-based biomass or bio-wastes. Unlike CO, produced by fossil fuels, which increases the net
amount of carbon in the atmosphere, green CO, is regarded as part of the carbon cycle, since the
carbon emitted is balanced by the carbon absorbed during the growth of biomass. Therefore, while
still contributing to total CO, emissions, green CO, is considered less impactful on the overall carbon
footprint and the potential for global warming. Green CO, emissions from this process must be
rigorously measured for multiple reasons. First, the refinery needs to pay carbon taxes based on the
amount of CO, emissions. Therefore, an accurate assessment of green CO, is crucial to determine
the financial obligations of the refinery under environmental taxation regulations. Second, it helps in
the formulation of effective policies, providing the government with accurate data to guide efforts to
reduce the overall carbon footprint of the industrial sector.

In this work, artificial intelligence (Al) is adopted for the first time in the field of biogenic feedstocks
co-processing for green CO, modeling, offering a promising avenue to address these challenges. The
industrial partner, Parkland Refining Ltd., is actively involved in coprocessing oleochemical / lipid
feedstocks such as tallow, canola oil and tall oil, thus reducing the carbon intensity (CI) of the various
fuels manufactured. The partner has provided a wealth of valuable data from multiple operational
scenarios, laying the crucial foundation for the development of Al models in this study. Using this
extensive dataset, along with internet of things (IoT) technology and sensor networks, this study offers
large-scale real-time monitoring of green CO, emissions in an industrial setting. To ensure the validity
and quality of the results, this study cross-validated them with quarterly experimental results sampled
from Parkland Refining Ltd.
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Figure 2. A flow diagram of a Fluid Catalytic Cracking (FCC) unit with online renewable content
monitor.LCC: Light Catalytic Cracking gasoline; HCC: Heavy Catalytic Cracking gasoline; LCO: Light
Cycle Oil; HCO: Heavy Cycle Oil; CO,: Carbon Dioxide.

In this study, a novel approach is introduced to monitor green CO, in the refining industry by
integrating artificial intelligence with the co-processing of biogenic feedstocks. This novel contribution
is underscored by several key advances:

1. First to apply Al in co-processing: To the best of the author’s understanding, this study is the
first to leverage Al for real-time green CO, tracking in this context, offering a scalable and efficient
alternative to conventional methods such as AMS '“C.

2. Utilization of a large commercial dataset: This research is uniquely supported by a large dataset of
102,000 samples from Parkland Refining Ltd., significantly enhancing the precision and reliability
of findings.

3. Real-time monitoring and cost efficiency: This data-driven approach not only facilitates real-time
green CO, monitoring but also represents a cost-effective alternative to !*C measurements, making
it a practical solution for the industry.

4. Sustainability impact: This method empowers refineries to accurately quantify and reduce their
green CO, emissions, contributing to more accurate carbon accounting practices.

2. Review of the Green CO, Tracking in Co-processing

Climate change and global warming require industries, particularly those with significant carbon
outputs such as oil refineries, transition towards more environmentally sustainable practices. This
shift is compelled not merely by the need to protect the environment, but also by strict policies and
regulations that demand the reduction of greenhouse gas emissions [1, 6, 7]. In this context, accurate
quantification of green CO, emissions becomes crucial, especially in processes such as co-processing,
where biogenic feedstocks are used along with fossil feedstocks in refineries [4, 5, 8].
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Distinguishing between biogenic and fossil-derived CO, is crucial to evaluate the environmental
impact of fuels produced through co-processing. Tracking green CO, involves measuring the amount
of renewable content in co-processed fuels. The goal is to create affordable, efficient and fast methods
that not only stimulate scientific development but also aid industries in meeting environmental
regulations and sustainability goals [17,18]. Moreover, these improvements are crucial to giving pol-
icymakers and stakeholders the right tools for informed decision making and effective environmental
management [9, 10, 19,20]. These methodologies are broadly classified into two categories: direct and
indirect measurement ( [25]). This review focuses on these classifications, exploring the merits and
limitations inherent in the different methodologies within each category.

Direct measurement means collecting samples and subsequently analyzing the renewable content
within co-processed fuels. This is the most straightforward way to know the renewable content,
similar to how oil refineries measure the other properties of fuels such as density, energy content,
elemental composition, etc. Accelerator mass spectrometry (AMS) '# C is considered the benchmark
to distinguish between biogenic and fossil-derived CO,, attributed to its exceptional precision and
reliability [23,26]. However, despite its analytical precision, the AMS !4C technique faces difficulties
that include high costs (with testing alone priced around $300-$500 for each sample, which does
not include sample collection and other associated expenses), long processing times, and operational
complexity, making frequent tests impractical for many facilities [23, 26].

Alternatives to AMS “C, including liquid scintillation counting (LSC) 14C and Carbon-13 (13C)
analysis, have been explored to address these drawbacks. Although these methods provide additional
means to measure biogenic CO,, they share some limitations with AMS #C, such as the need for stable
conditions to obtain accurate readings, the difficulty in detecting low biogenic CO, concentrations, and
potential risks of sample contamination, which may lead to inaccurate results [27,28].

In response to these limitations, both the industrial and academic sectors are advancing measure-
ment technologies to improve accuracy, lower costs, and streamline operational procedures for easier
adoption in industrial settings. Indirect measurement methods represent an important complement to
direct methods to track green CO, in co-processing. They offer the potential for continuous, real-time
monitoring and can reduce the need for expensive and time-consuming laboratory analyzes. Unlike
direct measurements that evaluate the biogenic carbon content through physical or chemical analysis
of fuel samples, indirect methods estimate renewable content based on operational data, mathematical
models, or surrogate measurements. This approach can be beneficial when direct measurements are
impractical or when processes involve complex mixtures of feedstocks and products, as is common in
co-processing scenarios [29, 30].

One prevalent method within this category is mass balance calculation, where the input and output
flows of carbon in the refinery processes are analyzed to estimate the renewable content of produced
fuels. However, this method requires accurate and comprehensive data on all materials entering
and leaving the system, which can be challenging to obtain in real-world operations. Additionally,
assumptions made during the calculations, such as constant process efficiency or identical behavior of
biogenic and fossil carbon in the process, can significantly affect the accuracy of the results [25].

Another indirect measurement approach is the use of process simulation and modeling techniques.
These methods involve developing mechanistic models [31] or soft sensor models [32, 33], which is
very popular and effective in many fields. In this work,to describe how different types of feedstock
behave within the co-processing environment [34, 35], data from process monitoring systems—such
as flow rates, temperatures, and pressures—are integrated to estimate the renewable content of fuels
without the need for extensive laboratory testing.

Despite their potential, indirect methods are not without challenges. The quality and availability of
operational data, the complexity of refinery processes, and the dynamic nature of production can all
complicate the application and reliability of these methods. In addition, the regulatory acceptance of
indirect measurement results can vary as standards and verification procedures are still evolving. As
such, although indirect methods have the promise of simplifying the tracking of green CO,, they must
be carefully developed, validated and implemented to ensure their precision and reliability [30]. As
the field evolves, the integration of direct and indirect measurement approaches could provide a more
comprehensive and practical solution for assessing the renewable content of co-processed fuels.
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In conclusion, as the industry moves forward, the development of new, efficient, and cost-effective
methods for tracking green CO, will be paramount. The advancements in this field will aid not only
in fulfilling regulatory requirements but also in actualizing the potential environmental benefits of
using biogenic feedstocks in co-processing. Collaborative efforts of researchers, industry professionals,
and policy makers will be essential to overcome existing challenges and achieve significant strides in
reducing carbon emissions from refinery operations [23,36].

3. Methods
3.1. Online Green CO, Monitoring

Continuous processing of biogenic feedstocks by refineries generates an abundance of data. In
particular, refineries already have the ability to measure total CO, emissions in real time, but the
amount of green CO, can only be determined by sampling through AMS'*C. This situation creates an
opportunity: this work proposes the integration of machine learning methodologies to first establish a
reliable and accurate real-time model to predict total CO, emissions. Once this model is established,
this study can proceed with a detailed analysis to approximate the green CO, emissions. Total CO,
emissions are considered to be a linear combination of input variables, as follows:

Total CO, = a - fossil feed +b - bio feed + e(fossil, bio) (1)

CO,(fossil, bio)

The predicted CO, is further decomposed into two components. CO,( f ossil, bio) represents the main
contribution of fossil feed and bio feed to the CO, production, while £(fossil, bio) accounts for the
additional contribution or adjustment to the CO, production that is not directly explained by the fossil
feed and bio feed. For instance, changes in reaction conditions, such as variations in temperature and
pressure, can affect the rate of reaction and the products, ultimately affecting the production of CO,.
In practical operations, the precision and reliability of the model are enhanced by optimizing the &
term, ensuring that the predicted values are as close as possible to the actual emissions. £(fossil, bio)
is defined as follows:

e(fossil, bio)=c - feature [ +d - feature Il +e - feature [I1 + --- 2)

Here, fossil feed, bio feed, feature I, feature 11, feature III,... represent the selected variables in the
co-processing, while a,b,c,d,e,... stand for the coefficients in the linear regression model that are
determined through data analysis.

Defining the co-processing ratio, r,,, as the proportion of bio feed to the combined amount of
bio feed and fossil feed (bio feed / (bio feed + fossil feed)), it is noteworthy that green CO, is not
only related to the bio feed, but also the corresponding (fossil, bio) of the co-processing ratio.
Consequently, the formula for green CO, can be further derived as shown below:

Green CO, =b - bio feed + r,, - e(fossil, bio) 3)

Using machine learning methodologies to analyze and predict total CO, emissions, this work is able
to further estimate green CO, emissions. The proposed approach represents a notable advancement in
the monitoring accuracy of green CO,. This innovative solution effectively tackles a long-standing
challenge in the refining industry, allowing real-time monitoring of the biogenic fraction in various
products and outputs.

3.2. Data Preprocessing and Feature Selection of Green CO, in FCC Co-processing

The data for this study were collected from a commercial refinery between May 2020 and March
2023, resulting in over 102,000 samples recorded every 10 minutes. Outliers were removed using the
three-sigma rule to ensure data quality. After cleaning, the dataset was split into training (80%) and
testing (20%) sets.
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The FCC co-processing has a substantial array of variables, utilizing all these variables without

a careful selection strategy inevitably risks model overfitting. Such overfitting undermines the
model’s versatility and impairs its ability to accurately predict unseen data, thereby diminishing the
effectiveness of the model [37]. Therefore, the identification of key features for the modeling phase is
a crucial step. The initial selection of characteristics is performed with expert knowledge, as shown in
Fig. 3. The selection of these features is driven by their essential role in the overall process.
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Figure 3: Initial feature selection and data smoothing

Following initial selection, data smoothing is used to reduce noise and highlight underlying trends.
This study uses the exponential weighted moving average (EWMA) method [38] for smoothing. This
method has proven effective in reducing noise, thereby providing a cleaner dataset, and plays an
instrumental role in enhancing the robustness of feature selection. To further assess the importance
of these features, this work uses a variety of machine learning algorithms. The principle of selection
criteria is consistency, meaning that a feature had to be identified as important across a majority of the
models to be considered.
Given the large number of features in the dataset, this work employs ten different feature selection
methods to analyze the importance of each feature, selecting those consistently significant across all
methods as model input. These methods are carefully chosen for their unique strengths in feature
selection and encompass all current feature selection methodologies.
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Mutual information based feature selection is used for its ability to capture any kind of statistical
dependency, especially useful for nonlinear relationships [39]. The least absolute shrinkage and
selection operator (LASSO) [40] is used for its ability to perform both variable selection and
regularization to improve the precision of the prediction and the interpretability of the statistical model.
Elastic net models were used for their ability to handle multicollinearity, offering stable estimates even
when variables are highly correlated [41].

Boruta feature selection [42], a wrapper built around the random forest classification algorithm, is
used for its ability to efficiently handle high-dimensional data, ensuring robustness against overfitting.
Other tree-based models such as the random forest regressor, the gradient boosting regressor, the
extreme gradient boosting (XGBoost), the light gradient boosting machine (LightGBM) and the
categorical boosting (CatBoost) [43] were utilized for their strengths in handling the skewed error
distribution and minimizing the influence of outliers.

Each of these models is trained on the same dataset, ensuring a fair comparison of the importance
of the features. To facilitate a direct comparison and highlight universally significant features, all
feature importance was normalized using the min-max scaler. Ultimately, this work will select the most
important features for further modeling. This comprehensive approach, considering the potential biases
and uncertainties of single model applications, establishes a robust framework for feature importance
analysis in biomass co-processing.

Fig. 4 shows the feature importance as identified by different algorithms. Among the top-ranked
features, variables such as the "fossil feed", the "catalyst circulation rate," and the "bio feed," which
are significant contributors to the coke generation in the refining process. Interestingly, ’catalyst cooler
steam flow’ and ’upper regenerator temperature’ also emerged as crucial features. These features are
consequential to the coke combustion process, reflecting the amount of coke that has been burned.
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Figure 4. Feature selection using feature importance. LASSO: Least Absolute Shrinkage and Selection
Operator; XGBoost: Extreme Gradient Boosting; LightGBM: Light Gradient Boosting Machine; CatBoost:
Categorical Boosting.

In previous studies, ’preheat temperature’ was recognized as a critical feature, guided by its
identification through causal discovery methods [44]. However, in current research, a consistency-
based principle for selection criteria is adhered to, meaning that a feature is considered significant
if and only if it is deemed important by a majority of algorithms used. As a consequence, although

Page 8 of 19



the "preheat temperature” had potential significance in the causal discovery method, it is not included
because it did not meet the selection criteria in this work. The 'riser temperature’, theoretically related
to coke generation, is not chosen because of the existence of intricate feedback loops in the system.
Ultimately, this work selected fossil feed, catalyst cooler steam flow, catalyst circulation rate, bio feed,
and upper regenerator temperature for green CO, modeling.

3.3. Modeling of Green CO, in FCC Co-processing

When developing an online system for monitoring green CO, emissions, careful attention was
given to designing a model that is easy to interpret, ensuring it can be readily understood by both
engineers and government officials. In order to achieve a reliable, interpretable and simple online
monitoring system for green CO,, a variety of linear regression models are employed in this study. The
ordinary least squares (OLS) model is used for its ability to minimize the sum of squared residuals and
aim for the least mean squared error. For high-dimensional data analysis, the least angle regression
model (LARS) [45] is used, praised for its robustness against overfitting. This work also incorporated
the Bayesian Ridge model, known for its proficiency in managing multicollinearity and offering stable
estimates through a probabilistic model.

The stochastic gradient descent regressor (SGDR) [46] is also adopted. Stochastic gradient descent
is a popular optimization method that is used in various machine learning algorithms. SGDR efficiently
fits linear models on large data sets, making it ideal for managing a wide range of features and
samples. For dealing with skewed error distributions, the Theil-Sen model [47] is used, while the
Huber regression [48] is used to minimize the influence of outliers.

Fig. 5 illustrates the steps of the proposed algorithm for the online monitoring of green CO,
emissions. The process begins with co-processing data after an initial selection of features such as
fossil feed, bio feed, preheat temperature, and catalyst circulation rate. These features undergo data
smoothing to reduce noise and emphasize trends. Subsequently, the final inputs are selected, including
fossil feed, catalyst cooler steam flow, bio feed, and upper regenerator temperature, to establish the
machine learning model for predicting total CO, and green CO, emissions.
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Figure 5. Schematic diagram of the proposed green CO, online monitoring algorithm

Specifically, this work performed nonreplacement sampling on the original data, with each subset
constituting 30% of the original dataset. This process is repeated 10,000 times, resulting in 10,000
distinct subsets. To ensure robustness and mitigate potential bias, a comparison of multiple regression
models is carried out, accompanied by an in-depth further analysis using the bootstrapping method.
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Subsequent modeling analysis is performed on these 10,000 subsets to derive a distribution for bio feed
coefficients b, fossil feed coefficients a, and their corresponding ratio, accompanied by the 95% and
99% confidence intervals. By using these sub-samples to create several models, this work can improve
the robustness of models and get a better sense of the prediction uncertainty.

4. Results

4.1. Green CO, Online Monitoring

As represented in Fig. 6, the ratio of biofeed coefficient to fossil feed coefficient b/a is approxi-
mately 0.62. This ratio is crucial because it clarifies the relative impact of biofeed and fossil feed on
total CO, emissions under identical conditions in the co-processing of FCC units. Specifically, when
biofeed and fossil feed are processed at the same flow rates, the CO, emissions from biofeed amount
to only 62% of those produced by fossil feed. It is worth mentioning that the analysis, leveraging
big data and machine learning in a commercial-scale refinery, supports this conclusion with broader
applicability and practicality compared to traditional laboratory-scale studies. The only deviation is
observed with the Theil-Sen method, which produced a slightly lower coefficient, below 0.6.

_OLS - Bio_feed OLS - Fossil_Feed OLS - Bio_feed / Fossil_Feed
0] Towen 1 AT
‘L:n‘ -=--99% Confidence Interval 5 11 { i 10 i1 : 1
g 5 |- 95°/? Confidencsl?terval ii i i E 5 i E i i E
i i . i i - i i L
0 11 1 1 1 O 11 1 1 1 0 11 1 1 1
0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.5 0.6 0.7
LARS - Bio_feed LARS - Fossil_Feed LARS - Bio_feed / Fossil_Feed
[N 1 1 1 i 1 1 1 [ ) 1 1
10 i i P i i i 10 i i P
i i P 5 i i i i i o
5 i i P i i o 5 i i o
s I I
0 11 Il 1 1 0 | ] 1 | - 0 i | 1 1 1
0.2 0.3 0.4 03 04 05 06 0.7 0.5 0.6 0.7
Bayesian Ridge - Bio_feed Bayesian Ridge - Fossil_Feed Bayesian Ridge - Bio_feed / Fossil_Feed
11 1 1 1 [N 1 [ [ 1 1 1
(I ] 1 1 1 [} 1 [ I} 11 1 1 1
I sioH SR D
5 | ‘g Yy t JEENEY N
[} 1 1 1 11 1 [} [ 1 1 1
0 i ' i 0 HH : i 0 i H i
0.2 0.3 0.4 04 05 06 07 0.5 0.6 0.7
SGD - Bio_feed SGD - Fossil_Feed SGD - Bio_feed / Fossil_Feed
[ 1 1 1 1 1 1 1 1 1 1 1 1
L9 1 1 1 1 1
1y L 101 B/ o 10 Y U
10 i i P i i P L i P
i i P 5 i i P 5 L i P
LK 1 1 1 ) 1 1 1 1 1 1 1 1
0 i ; . 0 i H i 0 A 1 i
0.2 0.3 0.4 0.4 0.5 0.6 0.7 0.5 0.6 0.7
Theil-Sen - Bio_feed Theil-Sen - Fossil_Feed Theil-Sen - Bio_feed / Fossil_Feed
[ 1 1 1 [} 1 RN 1 1 1 [
i i P L i P 10 i i P
10 R DN 10 b LN b AN
i i Lo 5 L i P 5 P i i
i i P L i o i i i
[ | 1 1 1 1 1 1 1 1 1 1 1 1 1
0 11 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1
0.20 0.25 0.30 0.35 0.3 0.4 0.5 0.5 0.6 0.7
Huber - Bio_feed Huber - Fossil_Feed Huber - Bio_feed / Fossil_Feed
i i P i i P i i i
i i P 10 i i P 10 P i i
10 i i P i i P i i i
i i P i i P 5 P i i
[} 1 1 1 [ | 1 1 1 [} 1 1 1
1 A 1 1 1 [ | 1 1 1 [} 1 1 1
0 1| 1 1 1 O 1 1 1 1 0 11 1 1 1
0.20 0.25 0.30 0.35 0.40 0.4 0.5 0.6 0.5 0.6 0.7

Figure 6. Bio feed coefficient and fossil feed coefficient under different methods. OLS: Ordinary Least
Squares; LARS: Least Angle Regression; SGD: Stochastic Gradient Descent.

Following the comparison of multiple regression models and the bootstrapping analysis, this work
used the coefficients derived to establish online green CO, monitoring. As an illustration, Fig. 7 and
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Fig. 8 presents the results of the Huber regression. This monitor not only offers continuous tracking of
total CO, emissions with a 95% confidence interval, but also provides refiners with dynamic, real-time
tracking of green CO, emissions with the same confidence level.

CO2 Soft Sensor on Training Data with 95% Confidence Interval
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Figure 7. Total CO, emissions and green CO, emissions on training data for the Huber regression

Take the 53,500th training sample as an example, where the actual CO, emission value is 20,750
kg/h. This work predicted that the CO, emission would be 20,780 kg/h, with a lower limit of 20,600
kg/h and an upper limit of 20,900 kg/h. This work also predicted that the green CO, emissions will be
2,130 kg / hour, with a lower limit of 2,000 kg/h and an upper limit of 2,280 kg/h. For the 3,300th test
sample, where the actual CO, emission value is 18,790 kg/h, the model predicted the CO, emission to
be 18,780 kg/h, with a lower limit of 18,660 kg/h and an upper limit of 18,860 kg/h. It also predicted
green CO, emissions to be 2,420 kg/h, with a lower limit of 2,295 kg/h and an upper limit of 2,540
kg/h.

4.2. Verification by AMS C

From the third quarter of 2021 to the first quarter of 2023, Parkland refinery collected 13 samples
and sent them for third-party testing. Each sample, with a significant investment in terms of human
resources and finances, is of extreme value. The '*C results from these tests served as a means to verify
the accuracy of the proposed green CO, online monitor. However, the reliability of *C results hinges
on several conditions, such as stable operating conditions. Some samples might have been collected
under circumstances where these conditions were not met, making their results less reliable. This work
used real-time monitors to validate and analyze these sampling results, scrutinizing their reliability.
This not only affirmed the accuracy of proposed algorithm in providing predictive results, but also
demonstrated its practicality as a third-party tool for validating the effectiveness of sampling methods.

Using Huber regression as an example, this work generated predictions for the proportion of
biogenic carbon content, calculated as the ratio of green CO, to total CO,. Fig. 9 presents the predicted
14C results and their 95% and 99% confidence intervals under different co-processing ratios. The 13
samples collected by the Parkland refinery are indicated by the X mark on the graph. The results
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Figure 8. Total CO, emissions and green CO, emissions on testing data for the Huber regression

revealed that six samples were within the 95% confidence interval, eight samples were within the 99%
confidence interval, while five samples were beyond the 99% confidence interval.

When examining these five samples that fell outside the 99% confidence interval, this work found
that operational factors during the sampling phase were influencing the measurements. Four of these
samples, represented on the left in Fig. 9, were collected during periods of flux, where the feedstock
is transitioning between biomass, fossil fuels, or a mixture of both. These instances of transition could
create an unstable environment within the processing unit, which likely impacted the accuracy of these
measurements.

Additionally, the sample represented in the upper right corner of the Fig. 9 demonstrates an unusual
spike. This sample is collected four minutes before a significant, although temporary, increase in feed
rate is observed. This temporary fluctuation may have introduced further inconsistencies in the sample,
indicating that subtle changes in operating conditions could significantly affect the accuracy of the
measurements. This work hypothesizes that such sudden changes in feed rate may have influenced the
concentration of biogenic carbon, thus accounting for the observed discrepancy.

After investigating the six samples that fall within the 95% confidence interval presented in Table
1, additional examination of the comparison between the predictions of the Al model and laboratory
measurements '*C revealed low error margins, ranging from 0. 89% to 4. 28%, with a mean error of
2.66%. These findings verify the precision of the AI model in predicting green CO, content.

To ensure a robust analysis, the study is not limited to a single model. Instead, four additional
methods for monitoring green CO, were explored, as demonstrated in Fig. 10 and Fig. 11. The results
were consistent across all the methods, strengthening the previous observations. Regardless of the
algorithm used, the same five '4C ample results deviated from the predictions, while the rest fell
within the predicted confidence interval of the proposed model, indicating that they are likely to be
representative and accurate.

From a policymaker’s perspective, it might be reasonable to require comprehensive data from
refineries. However, such a strategy may pose some challenges. For example, collecting various data
(including tasks such as 24-hour sampling) can be technically challenging due to complexities such as
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Figure 9. Validation of Accelerator Mass Spectrometry 4C results with modeled 95%,99% confidence
interval using Huber regression

Table 1
Experimental and Al model results of 4C (green CO,) within 95% confidence interval during co-processing
Co-processing Ratio | Experiment | Huber regression model | Error
Sample 1 16.21% 10.51% 10.12% 3.71%
Sample 2 16.22% 10.59% 10.24% 3.31%
Sample 3 19.31% 12.63% 12.09% 4.28%
Sample 4 19.92% 12.32% 12.43% 0.89%
Sample 5 19.95% 12.17% 12.41% 1.97%
Sample 6 20.89% 12.75% 12.98% 1.81%

blockages, and can result in substantial costs, as these tasks often require the involvement of third-party
entities. Furthermore, because of the lack of detailed instructions or guidance on the sampling methods
that refineries should follow, the large amount of data requested may be classified as unnecessary or
not representative. This could create an administrative burden on refiners, government agencies, and
auditors in the future. Based on an extensive dataset and using different machine learning algorithms,
the study demonstrates a reliable method for determining renewable content, which may substantially
mitigate these operational and administrative difficulties.

5. Discussion

This study demonstrates how Al can bridge the gap between complex operational data and real-
time green CO, estimation. Despite the contributions of this study, there are limitations that should be
acknowledged. One such limitation involves the representativeness of the dataset. Although this study
uses a large dataset from Parkland Refining Ltd., it represents data from a single refinery. Therefore,
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Figure 10. Validation of Accelerator Mass Spectrometry “C results with modeled 95%, 99% confidence
interval using Bayesian ridge and ordinary least squares

the generalizability of the findings to other refineries may be limited. Additionally, while machine
learning models offer powerful tools for prediction and analysis, they inherently depend on the quality
and range of the data provided. Any bias or anomaly in the dataset could influence the predictions and
interpretations of the models. Moreover, transitioning from traditional measurement methods to Al-
based approaches for green CO, monitoring introduces challenges, particularly in gaining regulatory
acceptance and ensuring seamless integration into existing frameworks.

Given these limitations, future research should explore integrating additional data sources, refining
model architectures, and conducting multi-site validations. Further, aligning these Al-based estimates
with evolving regulatory frameworks and stakeholder needs can ensure that this approach contributes
meaningfully to the global decarbonization agenda.
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Figure 11. Validation of Accelerator Mass Spectrometry '“C results with modeled 95%, 99% confidence
interval using stochastic gradient descent regression and least angle regression

6. Conclusion

In summary, this study introduces an innovative framework for accurately modeling green CO,
emissions during the co-processing of biogenic feedstocks. Leveraging the power of big data and
artificial intelligence, models have been developed to track green CO, emissions. This method
represents a significant advance over traditional direct measurement techniques, allowing continuous
real-time monitoring with increased efficiency and accuracy, demonstrated by an average error margin
of just 2.66% compared to conventional laboratory measurements. This precision underscores the
efficacy of the machine learning model and marks a substantial improvement in the field. The
effectiveness of the approach has been confirmed through practical tests using '*C measurements.
This research not only propels the use of artificial intelligence within the oil refining sector, but also
has the potential to guide the industry towards more sustainable practices.
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