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Abstract

Prompt and accurate anomaly detection of drilling tools is of great significance to ensure the safe and stable operation of drilling
processes. However, the operating mode of a drilling tool may often change, leading to difficulties in distinguishing the drilling
anomalies from the normal mode switching. Further, the variations of drilling signals caused by such anomalies in drilling tools
are usually slight, making it quite challenging to separate the abnormal part from the normal part in the time series, which would
compromise the accuracy and promptness of anomaly detection. Accordingly, this paper proposes a new method for anomaly detec-
tion of drilling tools based on operating mode recognition and interval-augmented Mahalanobis distance. The main contributions
are threefold: 1) A mode recognition method based on the Earth Mover’s distance (EMD) and K-means clustering is proposed to
identify drilling operating modes. 2) An anomaly detection method based on the interval-augmented Mahalanobis distance (IAMD)
is proposed to detect anomalies of drilling tools. 3) An alarm generation strategy based on the kernel density estimation and alarm
deadband is designed to reduce the false alarm rate. The effectiveness of the proposed method is demonstrated by industrial case
studies involving a real drilling system.
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1. Introduction

Drilling tools are the major equipment for resource ex-
ploration in geological drilling processes. However, due to
the harsh environments and complex disturbances in the well,
drilling tools may easily fall into degraded working conditions
or even cause drilling accidents. According to Willersrud et al.
(2015), drilling failures caused by abnormal operating time ac-
count for 20% to 25% of the total drilling time. If a drilling
anomaly is not detected in time, it may develop into a seri-
ous accident. For instance, the 2010 Gulf of Mexico blowout
caused by excessive pressure inside the drill pipe resulted in di-
rect huge economic losses and serous environmental pollution
(Norazahar et al., 2014). Timely identification of anomalies and
adjustment of drilling strategies are essential to the safety and
efficiency of drilling processes.

Commonly used anomaly detection for drilling tools in-
cludes model based methods and data-driven methods (Li et al.,
2021b). The former requires the establishment of mechanism
models, e.g., the axial dynamic model (Liu et al., 2022), the
torsional dynamic model (Liu et al., 2019), and the transverse
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dynamic model of the drilling tool (Kapitaniak et al., 2018). As
the motion of drilling tools was in three-dimension, according-
ly some coupled dynamic models were established, e.g., Kamel
and Yigit (2014); Ding et al. (2023) applied the lumped param-
eter method to obtain the coupled dynamic model of the axial
and torsional drilling system. In addition, dynamic models of
the drill bit and rock were utilized to evaluate drilling perfor-
mance (Trindade, 2020). However, the mechanism model is
specific and it is difficult to adapt to changes in the formation
environment, such as the formation pressure and rock type.

Data-driven methods extract features from drilling data and
train classifiers to detect anomalies. In Rafezi and Hassani
(2023), the wavelet packet was used to decompose vibration
signals and then the back-propagation artificial neural network
was exploited to detect the bit bounce and quantify the de-
gree of bit wear. In Wang et al. (2022), the Bayesian network
and the auxiliary classifier generative adversarial network were
combined to construct an anomaly diagnosis model for drilling
processes. In addition, an improved intelligent fault diagnosis
method was proposed by Han et al. (2022) based on the moving
window sparse principal component analysis; it used integrated
case-based reasoning to analyze the anomaly data and deter-
mine the anomaly type. In Chamkalani et al. (2013), a mixed
least square support vector machine method was developed to
predict pipe adhesion. In order to identify the bit wear under
different operating modes, Fan et al. (2023) designed an adap-
tive monitoring framework based on neighbourhood preserva-
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tion embedding. To adapt to formation changes, Zhang et al.
(2022) exploited historical formation data for domain invariant
representation learning, so as to identify bit bounce anomalies
at different depths.

The above studies provide effective solutions for anomaly
detection in drilling systems. However, there are two major
problems with the existing approaches: 1) Most researches aim-
s at detecting anomalies in the drilling down mode (Yang et al.,
2023; Zhang et al., 2023b), whereas the drilling operation may
switch between multiple modes; thus, methods designed for a
single mode cannot adapt to the mode changes and thus may
generate significant false and missed alarms. 2) Improving the
accuracy of anomaly detection is the major concern in existing
research, while the promptness is often overlooked, which is
critical for early detection of drilling anomalies (Aslam et al.,
2023). Motivated by the above issues, this paper proposes a
new method for anomaly detection of drilling tools based on op-
erating mode recognition and interval-augmented Mahalanobis
distance. The proposed method consists of two major stages:
In the first stage, the distance between the normal time series
and the reference time series in terms of data distributions is
calculated and different operating modes are identified through
clustering; in the second stage, monitoring indicators under dif-
ferent operating modes are devised and compared with the de-
signed alarm limits to detect whether an anomaly is present.
The main contributions of this paper are threefold:

1) A mode recognition method based on the Earth Mover’s
distance (EMD) and K-means clustering is proposed to identify
drilling operating modes.

2) An anomaly detection method based on the interval-
augmented Mahalanobis distance (IAMD) is proposed to detect
anomalies of drilling tools.

3) An alarm generation strategy based on the kernel density
estimation and alarm deadband is designed to reduce the false
alarm rate.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the problem. Section 3 presents the pro-
posed method for drilling anomaly detection. Section 4 demon-
strates the effectiveness of the proposed method based on actual
drilling examples, followed by conclusions in Section 5.

2. Problem description

Fig. 1 displays the diagram of a geological drilling system,
where the top drive motor serves as a power unit to generate
torque and drive the drillstring to rotate, the drillstring sys-
tem pulls the bottom hole assembly (BHA) to cut and crush
the rock (Fan et al., 2022), and the mud circulation system re-
turns the cuttings and mud to the surface mud pit. In a drilling
system, there are five key process variables, including the rate
of penetration (ROP, m/h), weight on bit (WOB, kN), hook load
(HKL, kN), rotary per minutes (RPM, r/min), and torque (TRQ,
kN·m). Field operators monitor drilling operations by observ-
ing real-time trends of these variables to ensure safe drilling
operations (Liu et al., 2021).

The most common anomalies in drilling tools are the bit
bounce and pipe sticking. The bit bounce usually occurs when
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Fig. 1. Diagram of a geological drilling system.

the drill bit hits the hard formation and loses contact with the
downhole formation. The pipe sticking is an issue that the drill
bit and pipe are not rotating properly and it is usually caused by
the unstable hole walls and loose formation in the well. If such
anomalies are not handled well, the drilling tools may operate in
a fatigue state for a long period, resulting in serious accidents,
such as the drilling tool breakage. The difficulties in detecting
the anomalies of drilling tools lie in the following two aspects:

• The operating mode of a drilling tool may often change,
making the drilling variables run in several different nor-
mal operating zones, which lead to the difficulty in dis-
tinguishing the drilling anomalies from the normal mode
switching. If the same alarm limits are used under differ-
ent modes, it can result in massive false and missed alarms.

• As the bit bounce and pipe sticking are not as serious as re-
al drilling accidents, the fluctuations in the drilling signals
caused by them are usually slight, making it challenging
to separate the abnormal part from the normal part in the
time series, which would compromise the accuracy and
promptness of anomaly detection.

The common operating modes of a drilling tool include the
stable drilling, sweeping hole, and mode switching. Fig. 2
shows the time series of the above five variables under two op-
erating modes, namely, the stable drilling and sweeping hole.
The operating mode is switched at t = 695 s. It can be seen
that these drilling variables show different variations under the
two operating modes. Specifically, ROP shows significant vari-
ations in amplitude; WOB, HKL, RPM, and TRQ exhibit slight
amplitude changes. Thus, among the five variables, ROP is the
one most sensitive to mode switching and thus can be used as
the key signal to distinguish operating modes. As the drilling
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Fig. 3. Distributions of ROP at different operating modes and well depths.
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Fig. 2. Plots for ROP, WOB, HKL, RPM, and TRQ in different
operating modes.

depth increases, the data distribution of the drilling signals may
change. In order to verify the feasibility of using ROP to identi-
fy operating modes at different depths, Fig. 3 displays the data
distribution of ROP under three different modes, namely, the
stable drilling, sweeping hole, and mode switching. It can be
seen that in the same mode, the variational ranges of ROP under
different drilling depths are very close to each other; in differ-
ent operating modes, even if the drilling depths are similar, the
data distributions are quite different. Therefore, it is reasonable
to choose ROP as the key drilling signal to identify operating
modes. The other four drilling variables, although not sensitive
to mode switching, are inextricably linked to tool operation and
are thus used to monitor tool anomalies.

According to the above analysis, this paper proposes a new
method with two major stages for anomaly detection of drilling
tools:

1) Recognition of operating modes: Considering that the da-
ta distributions of ROP are disparate under different operating
modes, the Earth Mover’s distance (EMD) is used to measure
the difference between the normal time series and the reference
time series in terms of distributions; then, K-means clustering
is applied to recognize operating modes based on the EMDs.

2) Detection of anomalies: Given the multiple drilling sig-
nals, the monitoring indicators based on the interval-augmented
Mahalanobis distance is designed and the alarm generalization

strategy is developed to adapt to different operating modes.
During realtime monitoring, the current operating mode is

identified by judging which cluster center the EMD of ROP
is closest to, and then the Mahalanobis distance is calculated
based on all the process variables and is compared with the alar-
m limit under the corresponding mode to determine whether an
anomaly occurs. The specific implementation of the proposed
anomaly detection method is described in the next section.

3. The proposed method

This section presents the proposed anomaly detection
method for drilling tools, including the recognition of operat-
ing modes based on the EMD and K-means clustering, design
of monitoring statistic indicator based on the IAMD, alarm lim-
it design through kernel density estimation, and alarm perfor-
mance optimization based on threshold deadband.

3.1. Recognition of operating modes

This subsection presents the method to recognize operat-
ing modes of drilling processes prior to anomaly detection.
Fig. 3 shows the data distribution of ROP under three operat-
ing modes, namely, steady drilling, sweeping hole, and mod-
e switching. It can be seen that even when the drilling depth
is close, the variational ranges of ROP under the three modes
overlap with each other in a large proportion, making it difficult
to distinguish the two modes by directly setting a threshold. In
(Li et al., 2021a), the Jensen-Shannon divergence was applied
to measure the difference of data conforming to the same distri-
bution, so as to identify operating modes. However, in geologi-
cal drilling, ROP may correspond to different data distributions
under different operating modes. Considering that EMD can
measure the difference between the distribution of two data set-
s of different lengths and does not depend on the distribution
hypothesis of the data, it has high flexibility in measuring d-
ifferent distribution differences (Zhang et al., 2023a). In this
section, EMD is used to quantify differences in the distribution
of ROP data for different operating modes.

Given an ROP reference data segment xr1 =

[xr1(1), · · · , xr1( j), · · · , xr1(n)]′ and an ROP comparison
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data segment xr2 = [xr2(1), · · · , xr2(i), · · · , xr2(m)]′ with win-
dow widths n and m, respectively, where xr1( j) and xr2(i) are
the jth and ith values, respectively, in the corresponding ROP
fragments. The EMD between xr2 and xr1 is then calculated as

EMD(xr2, xr1) = min
β=[βi j]

∑m
i=1

∑n
j=1 ϕi j · βi j∑m

i=1
∑n

j=1 βi j
(1)

where ϕi j and βi j are the ordinal difference value and the val-
ue of moving from xr2 to xr1, respectively; min denotes the
minimum total cost of moving from xr2 to xr1. The constraint
conditions of EMD(xr2, xr1) are

βi j ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n (2)

n∑
j=1

βi j ≤ xr2(i) 1 ≤ i ≤ m (3)

m∑
i=1

βi j ≤ xr1( j) 1 ≤ j ≤ n (4)

m∑
i=1

n∑
j=1

βi j = min

 m∑
i=1

xr2(i),
n∑

j=1

xr1( j)

 (5)

where Eq. (2) means that the amount moved from xr2(i) to xr1( j)
is non-negative; Eq. (3) represents that the amount moved out
of xr2(i) does not exceed itself; Eq. (4) implies that the amount
moved into xr1( j) does not exceed itself; and Eq. (5) indicates
that the total amount moved does not exceed the minimum of
the total value of the data in xr2 and xr1.

According to Briani et al. (2016), the implementa-
tion of Eq. (1) is equivalent to solving the problem:
minβ=[βi j]

∑m
i=1

∑n
j=1 ϕi j · βi j, which can be solved using linear

programming
minimize ϕTβ

subject to Aβ = b
β ≥ 0

(6)

where the cost vector β ∈ R(m·n)×1, the distance vector ϕ ∈
R(m·n)×1, the distribution vector b ∈ R(m+n)×1, and the coefficient
matrix A ∈ R(m+n)×(m·n) are defined as follows

β =
[
β11, β12, . . . , β1n, β21, . . . , β2n, . . . , βm1, . . . , βmn

]′ (7)

ϕ =
[
ϕ11, ϕ12, . . . , ϕ1n, ϕ21, . . . , ϕ2n, . . . , ϕm1, . . . , ϕmn

]′ (8)

b =
[
xr2(1), · · · , xr2(i), · · · , xr2(m), xr1(1), · · · , xr1( j), · · · , xr1(n)

]′
(9)

A =



1n 0 0 · · · 0
0 1n 0 · · · 0
0 0 1n · · · 0
...

...
...

. . .
...

0 0 0 · · · 1n

In In In In In


(10)

where In is the identity matrix of n × n and 1n is an all 1 vector
of 1 × n. The estimated value β∗ is determined by using linear
programming to solve Eq. (6) under the given constraints.

Considering the easy implementation and efficient computa-
tion of K-means (Liang et al., 2016), this clustering algorithm
is applied here for mode identification based on the calculated
EMDs. The K-means clustering iterates to find a cluster that
minimizes the loss function denoted by

Loss =
k∑

j=1

∑
ei∈e

∥∥∥ei − c j

∥∥∥ (11)

where ei is the EMD between the ROP sequence in the Pith
window of the offline phase and the reference segment xr1; the
vector e represents the set of obtained EMD values; c j denotes
the center of the jth cluster; k represents the number of clusters
and is determined as the number of unique operating modes.

The offline clustering algorithm based on EMD and K-means
is summarized in Algorithm 1. The input includes offline ROP
segment xr f ∈ R1×N , reference ROP segment xr1 ∈ R1×τ, and
the number of clusters k. The output is the cluster center c j of
each cluster C j. In line 1, a sliding window of width v is used to
intercept xr f into N − v+ 1 data segments. Line 2 calculates the
EMD between different segments and xr1, and stores all EMDs
in the vector e. Lines 3 to 12 execute K-means clustering based
on the EMDs. In line 3, k initial clustering centers are selected
randomly; then, in lines 5 to 8, each calculated difference value
ei is assigned to the nearest cluster C j; nest, in lines 9 to 11, k
new clustering centers are obtained according to the results of
the last clustering; last, in line 12, the above clustering steps
are repeated until the loss function reaches a minimum value.
In the online phase, the value EMD at time t is assigned to the
nearest cluster C j to determine the current operating mode.

Algorithm 1 The operating mode clustering algorithm based
on EMD and K-means.
Input: xr f , xr1, k;
Output: center c j of each cluster C j;

1: xr f is intercepted into N − v + 1 segments by a window of
size v;

2: The EMDs between different segments and xr1 are calcu-
lated and stored in e;

3: Select any k samples c j( j = 1, ..., k) in e as the initial cen-
ters, let cluster C j = φ;

4: repeat
5: for i = 1 : N − v + 1 do
6: di j =‖ ei − c j ‖;
7: ei ∈ C j → argmindij;
8: end for
9: for j = 1 : k do

10: Calculate new cluster center c j =
1

C j

∑
ei∈C j

ei;
11: end for
12: until The centers c j are not updated;

3.2. Calculation of interval-augmented Mahalanobis distance

As the variables in a drilling process usually hold high corre-
lations with each other, ignoring such correlations in detection
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of drilling anomalies may lead to incorrect conclusions. Ac-
cordingly, in this section, the Mahalanobis distance (MD) (Gre
et al., 2021), as a distance measure incorporating correlations,
is exploited to construct the monitoring statistic indicator for
anomaly detection. Taking RPM and TRQ as an example in
Fig. 4, where the green and blue points represent the normal
samples, the purple square point represents the mean of the
samples, and the red triangular point represents the abnormal
sample. Here, Px and Py denote two directions representing the
two principal components; Px1, Py1, Px2, and Py2 are the pro-
jected values of the green and red triangular points in the Px and
Py directions, respectively. Intuitively, the red triangular point
is closer to the center of the mean than the blue point, but the
red triangular point is an abnormal sample and the blue circle
point is a normal sample. Considering that normal data tend
to be distributed in the direction of the principal componen-
t Px and components decomposed in the direction of Py have a
lower component value while abnormal samples have opposite
distributions, the Mahalanobis distance is taken in this section
to reduce the influence of the data trend distribution on drilling
anomaly detection (Shang et al., 2018).
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Fig. 4. Scatterplot for RPM and TRQ.

As the variations of drilling signals in the presence of a
drilling anomaly are usually non-obvious, it needs to take the
historical samples in a certain longer time window rather than
only the current sample values. Meanwhile, there is a trade-off
between the window size and the number of samples in cal-
culation. If all data samples in a long time window are used,
it may improve the detection accuracy but would also increase
the computation. In view of the slight changes of drilling sig-
nals, this work proposes to make use of interval-augmented data
for the calculation of Mahanobis distance. Given the time se-
ries x(t) ∈ R1×M of M drilling variables at time instant t, its
interval-augmented vector xλ,L(t) ∈ R1×M·L is represented as

xλ,L(t) = [x(t) · · · x(t − λ( j − 1)) · · · x(t − λ(L − 1))] (12)

where λ denotes the sampling interval and L is the number of
historical samples selected, i.e, the L historical samples with-
in the time window λ(L − 1) from the current time t are in-
cluded. Accordingly, given the sample matrix X ∈ RN×M for
model training, its interval-augmented sample matrix Xλ,L ∈

R[N+λ(1−L)]×M·L is denoted by

Xλ,L =


x(1 − λ(1 − L)) · · · x(1 − λ( j − L)) · · · x(1)

.

.

.
. . .

.

.

.
. . .

.

.

.
x(t) · · · x(t − λ( j − 1)) · · · x(t − λ(L − 1))
.
.
.

. . .
.
.
.

. . .
.
.
.

x(N) · · · x(N − λ( j − 1)) · · · x(N − λ(L − 1))


(13)

where N is the number of samples used in model training.
For the interval-augmented vector xλ,L(t) at time t,

the interval-augmented Mahanobis distance (IAMD) statistic
dλ,L(t) is calculated as

dλ,L(t) =
√(

xλ,L(t) − µλ,L
)
Σ−1
λ,L

(
xλ,L(t) − µλ,L

)T (14)

where Σλ,L is the covariance matrix of the interval-augmented
matrix Xλ,L; Σ−1

λ,L represents the inverse matrix of Σλ,L; µλ,L =[
µ1 · · · µ j · · · µM·L

]′
represents the column mean vec-

tor of the matrix Xλ,L, and µ j denotes the mean of the data in
column j of Xλ,L. The covariance matrix Σλ,L is given by

Σλ,L =



Cov (a1, a1) · · · Cov (a1, ai) · · · Cov (a1, aM·L)
.
.
.

. . .
.
.
.

. . .
.
.
.

Cov (ai, a1) · · · Cov (ai, ai) · · · Cov (ai, aM·L)
.
.
.

. . .
.
.
.

. . .
.
.
.

Cov (aM·L, a1) · · · Cov (aM·L, ai) · · · Cov (aM·L, aM·L)


(15)

where M · L denotes the column count of Xλ,L; Cov
(
ai, a j

)
rep-

resents the covariance between any two dimensions or columns
ai and a j in Xλ,L as (Li and Zhu, 2023)

Cov(ai, a j) =
1

N + λ(1 − L) − 1

N+λ(1−L)∑
t=1

(
ai(t) − µai

) (
a j(t) − µa j

)
(16)

where N + λ(1 − L) denotes the number of rows in Xλ,L; ai(t)
and a j(t) are the tth values in ai and a j, respectively; µai and µa j

represent the mean values of the ai and a j vectors, respectively.

3.3. Alarm generation strategy

Given the calculated IAMD in Eq. (14), it needs to compare
it with an alarm limit, so as to determine whether the drilling
process is under a normal or anomalous state. This subsection
presents an alarm generation strategy for drilling anomaly de-
tection based on IAMD statistics. The IAMD statistic is the
sum of squares of variables with many degrees of freedom and
the Chi-squared distribution is used to fit the MD statistic in the
Ji et al. (2019). However, the interval-augmented MD statistic
does not always satisfy the hypothesis of Chi-squared distribu-
tion, and the fitting effect of Chi-squared distribution may not
be satisfactory (Corina and Hovda, 2018). Accordingly, this
subsection adopts the kernel density estimation (KDE) to fit the
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IAMD statistics under different values of λ and L. The KDE
function f h

λ,L(x) is given by

f h
λ,L(x) =

1
[N + λ(1 − L)] h

N∑
t=1−λ(1−L)

K
(

dλ,L(t) − x
h

)
(17)

where x represents the value of the continuous IAMD, h is the
bandwidth of the kernel function, dλ,L(t) denotes the IAMD for
tth sample in the training data, and K(·) stands for the Gaussian
kernel function given by

K
(

dλ,L(t) − x
h

)
=

1
√

2π
exp

−1
2

(
dλ,L(t) − x

h

)2 (18)

where exp represents the exponential function.
The alarm limit Aλ,L is inversely calculated from the integral

of the probability distribution function

δ =

∫ Aλ,L

−∞

f h
λ,L(x)dx (19)

where δ is the confidence level.
Eventually, during online monitoring phase, the value of the

IAMD statistic dλ,L(t) for realtime samples is compared with the
value of the designed alarm limit Aλ,L to determine the alarm
state a(t), i.e.,

a(t) =
 1 dλ,L(t) ≥ Aλ,L

0 dλ,L(t) < Aλ,L
(20)

where a(t) = 1 indicates that the drilling process is under an
anomalous state at time t; otherwise, the process is normal and
no alarm is generated.

Due to the complex geological environment, the drilling sig-
nals are easily disturbed by the external disturbances during the
drilling process, resulting in high false and missed alarm rates.
It is therefore necessary to improve the alarm generation strat-
egy in anomaly detection. An effective way is the alarm dead-
band, which is widely used to optimize alarm configuration in
process industries (Afzal et al., 2018; Gyasi and Wang, 2022).
By designing a suitable alarm deadband, the false and missed
alarms can be effectively reduced. Thereby, the alarm gener-
ation strategy in Eq. (20) is improved by designing an alarm
deadband. The alarm signal a(t) with an alarm deadband is for-
mulated as

a(t) =


1 if dλ,L(t) ≥ Aλ,L + ω/2
0 if dλ,L(t) < Aλ,L − ω/2
a(t − 1) otherwise

(21)

where ω denotes the width of the designed alarm deadband.
Fig. 5 gives an illustrative example of an alarm deadband.

Fig. 5(a) shows the plot of the monitoring statistics (blue curve),
the fixed alarm limit (dashed red line), and the deaband (green
rectangle); Fig. 5(b) gives the alarm signal based on a fixed
alarm limit and Fig. 5(c) presents the alarm signal based on
the alarm deadband. Under normal circumstances, the alarm
signal should be generated continuously during time period [a,

g]. However, under the fixed threshold in Fig. 5(b), because
the monitoring statistic traverse the fixed alarm limit, it is de-
tected that no anomaly has occurred during periods (c, d) and
(e, f ), which increases the missed alarm rate and also caused
alarm repeating for three times. With the alarm deadband, the
alarm signal in Fig. 5(c) is continuously generated during [b,
h]. Compared to Fig. 5(b), there may be a small increase in
detection delay within an acceptable range, but it significantly
reduces the false alarm rate and improves the accuracy of the
alarm system.

Fig. 5. An example of an alarm deadband.

3.4. Procedures and Performance Evaluation
This subsection summarizes the steps of the proposed

anomaly detection method using a diagram shown in Fig. 6.
The main steps for the offline part are as follows:

Step 1 - Clustering for different operating modes: Given the
historical ROP data xr f , and then the sliding window is used to
intercept xr f and the data segment set of xr f is obtained. The
EMDs between different segments and xr1 are calculated based
on Eq. (1) to get the set e, and then K-means clustering is used
to determine the clustering centers corresponding to different
operating modes.

Step 2 - Design of IAMD alarm limits and deadbands: Giv-
en the historical data X of the drilling variables over the same
time period of xr f , data augmentation is conduced to obtain
Xλ,L based on Eq. (13). Meanwhile, the mean µλ,L and covari-
ance Σλ,L of Xλ,L are also calculated. Then, the IAMD is cal-
culated based on Eq. (14) for each sample, and KDE is used to
facilitate the design of alarm limit Aλ,L and deadband ω under
different operating modes.

From the offline calculation, the clustering centers c j, mean
vector µλ,L, covariance matrix Σλ,L, alarm limit Aλ,L, and alarm
deadband ω are determined and used in the online monitoring
stage. The main steps of the online part are as follows:

Step 1 - Operating mode recognition: Given the online win-
dow data segment xrn(t) at the current time t, and then the EMD
en(t) is calculated based on Eq. (1). The K-means assigns the
en(t) to the cluster with the closest operating mode center.

Step 2 - Online anomaly detection: At the current time in-
stant t, the interval-augmented data x∗λ,L(t) is obtained, the I-
AMD d∗λ,L(t) is calculated by Eq. (14) based on µλ,L and Σλ,L of
the associated operating mode. The alarm signal a∗(t) is gen-
erated by Eq. (21) based on the designed alarm limit Aλ,L and
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deadband ω; if it is detected a∗(t) = 1, a drilling anomaly is
detected to be present.
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Fig. 6. The diagram for the offline calculation and online mon-
itoring of the proposed method.

To compare the anomaly detection performance of the
method, performance metrics including the accuracy (Acc), the
false alarm rate (FAR), and the missed alarm rate (MAR) are
used, i.e.,

Acc =
TP + TN

TP + TN + FP + TN
(22)

FAR =
FP

FP + TN
(23)

MAR =
FN

TP + FN
(24)

where TP, FN , FP, TN stand for the number of true positives,
false negatives, false positives, and true negatives, respectively.
In addition, the Detection Delay (DD) is also exploited to assess
the detection promptness. The DD refers to the time from the
occurrence of an anomaly to the presence of the alarm. Smaller
values of FAR, MAR, and DD, or a larger Acc, indicate better
performance of the anomaly detection scheme; vice versa.

In the calculation of the IAMD, there are two key adjustmen-
t parameters, namely, the time interval λ for data augmenta-
tion and the number L of augmented samples, which may have
significant influences to the anomaly detection result. Accord-
ingly, this works adopts the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) method to screen out the
best evaluation effect of the two parameters (Atenidegbe and

Mogaji, 2023); the calculation process is summarized as fol-
lows:

Set the test ranges of λ and L as [1, λmax] and [1, Lmax], re-
spectively. Under each combination of λ and L, the metrics
Acc, FAR, MAR, and DD are calculated. Denote the number
of parameter combinations as z = λmax · Lmax, a matrix for the
performance metrics is obtained as

χInd =
[
ηAcc ηMAR ηFAR ηDD

]
∈ Rz×4 (25)

where ηAcc, ηMAR, ηFAR, and ηDD denote the vectors consisting
of Acc, MAR, FAR, and DD under z combinations of λ and L .

As MAR, FAR, and DD have opposite changing directions
compared to Acc, the conversion is conducted as

η̂MAR = max
(
ηMAR

)
− ηMAR

η̂FAR = max
(
ηFAR

)
− ηFAR

η̂DD = max
(
ηDD

)
− ηDD

(26)

where max() is the largest element in the index vector. Then,
there is χ̂Ind = [ηAcc, η̂MAR, η̂FAR, η̂DD].

To ensure the reliability of the results, it is necessary to stan-
dardize the metrics. The standardization process is given by

ηAcc = ηAcc/||ηAcc||2
ηMAR = η̂MAR/||η̂MAR||2
ηFAR = η̂FAR/||η̂FAR||2
ηDD = η̂DD/||η̂DD||2

(27)

where || · ||2 denotes the l2 norm. Then, the matrix for the per-
formance metrics is χInd = [ηAcc, ηMAR, ηFAR, ηDD].

Based on the matrix χInd, a comprehensive index ψ is cal-
culated; ψ denotes a weighted value of the four metrics. Each
element of ψ is given by

ψi =
D−i

D+i + D−i
, i = 1, 2, · · · , z (28)

where D+i and D−i are calculated as

D+i =

√√√ 4∑
j=1

ξ j[χInd(i, j) −max(χInd(:, j))]2 (29)

D−i =

√√√ 4∑
j=1

ξ j[χInd(i, j) −min(χInd(:, j))]2 (30)

where ξ j is the weight of the jth index; here, the metrics are
weighted equally, i.e., ξ j = 1. Eventually, the maximum val-
ue of ψ is obtained as the final comprehensive index used to
evaluate the influence of λ and L.

4. Industrial Case Studies

This section demonstrates the effectiveness of the proposed
anomaly detection method based on case studies with data col-
lected from a real geothermal drilling site in China. The data
includes 4175 samples during normal operation involving three
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operating modes. Fig. 7 displays the time series of four drilling
variables. The period from 1 s to 2000 s was corresponding to
the stable drilling, the sweeping hole was from 2001 s to 3800
s, and the mode switching occured from 3801 s to 4175 s. As
discussed in Section 2, the ROP is exploited in operating mode
recognition and the other four variables are used for anomaly
detection.

Fig. 7. Time series of ROP, WOB, HKL, RPM, and TRQ under
three different operating modes.

In the actual drilling process, the stable drilling mode occu-
pies most of the total drilling time. Therefore, the ROP data un-
der stable drilling is taken as the reference data distribution xr1
for operating mode detection. The ROP fragments under differ-
ent modes are captured by a sliding window of width v = 30,
and the step size is set to 1. Then, the EMDs between the
fragments in the sliding window and xr1 are calculated. After
that, K-means clustering is applied to cluster the data based on
the calculated EMDs. Considering that there are three different
modes, the number of clusters is set to be k = 3. Fig. 8 displays
the calculated EMDs in subplot (a) and the clustering results in
subplot (b). Each cluster is associated with an operating mod-
e. The centers of these clusters are obtained as c1 = 7.2148,
c2 = 470.3043, and c3 = 0.2897.

Fig. 8. EMD calculation and clustering results in offline phase.

Next, two cases are presented to illustrate the anomaly detec-
tion using the proposed method. The alarm limits under differ-
ent modes are designed by the KDE method; the alarm dead-
band for the IAMD statistics is set to 20% of the statistical val-
ue. Meanwhile, some other classic anomaly detection methods
are applied for comparison, including the Principal Componen-
t Analysis (PCA) (Zhang et al., 2021), standard Mahalanobis

Distance (MD) (Yang and Delpha, 2022), and Kullback-Leibler
Divergence (KLD) (Li et al., 2021c).

4.1. Case 1
This case involves detection of bit bounce. In the real drilling

process, the drill bit drilled into the dolomite with an uneven
texture, resulting in the bit bounce. Fig. 9 shows the time series
of all the drilling variables, where the red curves denote the
period under the bit bounce from 727 s to 1029 s.
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Fig. 9. Time series of ROP, WOB, HKL, RPM, and TRQ under
the bit bounce in Case 1.

Fig. 10. Comprehensive index under different combinations of
λ and L in Case 1.

Simulations are conducted to evaluate the influence of λ and
L, which are set as λ = 1 ∼ 5 and L = 1 ∼ 10. Thus, there
are z = 50 different combinations of λ and L. Fig. 10 shows
the plot of the calculated comprehensive index under different
λ and L using the TOPSIS method in Section 3.4. The blue
point highlighted by a red ellipse represents the best perfor-
mance achieved with λ = 5 and L = 4. Thus, in the rest of
Case 1, this pair of parameters is used in the calculation of I-
AMD.

Fig. 11 shows the anomaly detection results using both the
proposed method and other comparison methods. For each
method, there is a subplot presenting the trend of the monitor-
ing statistics (blue curve) and the corresponding alarm signal
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(a) T2 statistics and alarm plots using PCA

(b) SPE statistics and alarm plots using PCA.

(c) KLD statistics and alarm plots.

(d) MD statistics and alarm plots.

(e) IAMD statistics and alarm plots.

Fig. 11. Anomaly detection results in Case 1.

(green circles). The red dashed line represents the calculated
alarm limit for each statistical index; the symbol NA and A in
the alarm lots indicate the non-alarm state and alarm state, re-
spectively. It can be observed from Fig. 11(a) and (b) that the
T2 and SPE of PCA fluctuate around the alarm limits during
the bit bounce, resulting in a large number of missed alarms.
The same problem can also be observed with the original MD
statistics in Fig. 11(d). As for the KLD statistic in Fig. 11(c),
it can be seen that the FAR is rather high as shown during the
normal operating period around 300 s. In contrast, the proposed
method has very low false and missed alarm rates as shown in
Fig. 11(e).

Table 1 summarizes the performance metrics of all the meth-
ods in two scenarios without and with operating mode recog-

Table 1 Comparison of different methods in Case 1; − indicates
that the method fails in anomaly detection.

Method
PCA
(T2)

PCA
(SPE)

KLD MD IAMD

Without
operating
mode
recognition

Acc(%) 71.20 70.80 69.30 70.30 71.23
FAR(%) 6.03 0.57 2.01 1.43 1.45
MAR(%) 81.19 95.05 96.70 94.72 91.09
DD(s) − − − − −

With
operating
mode
recognition

Acc(%) 72.70 82.10 79.28 77.00 94.39
FAR(%) 3.01 3.01 9.45 2.44 3.25
MAR(%) 83.17 52.15 45.54 70.30 10.89
DD(s) − 16 13 − 0

nition. In the scenario without mode recognition, the normal
drilling is considered. It can be observed from the table that
all the methods fail to detect the drilling anomaly when the
mode recognition is not conducted. With mode recognition,
the anomaly detection performance metrics for all the method-
s are improved; specifically, the SPE of PCA, KLD, and the
proposed method based on IAMD achieve successful anoma-
ly detection. Comparing the performance metrics of difference
methods in the scenario with mode recognition, it can be seen
that the proposed method based on IAMD outperforms all the
other approaches significantly; its anomaly detection accuracy
is as high as 94.39% and the detection delay is 0.

4.2. Case 2
This case involves detection of pipe sticking under the

sweeping hole operating mode. Fig. 12 shows the time series
of the five drilling variables. The pipe sticking happened over
the period from 216 s to 359 s. It can be observed that these
variables exhibited different variations in the presence of pipe
sticking; there were slight increases in WOB and TRQ, a minor
decrease in HKL, and a slow fluctuation in RPM.
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Fig. 12. Time series of ROP, WOB, HKL, RPM, and TRQ un-
der the bit bounce in Case 2.

Fig. 13 presents the plot of the calculated comprehensive in-
dex using the TOPSIS method in Section 3.4. It can be ob-
served that the best performance is achieved at the blue point
with λ = 1 and L = 7, as highlighted by a red ellipse. Accord-
ingly, in the rest of Case 2, this pair of parameters is used in the
calculation of IAMD.
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Fig. 13. Comprehensive index under different combinations of
λ and L in Case 2.

Fig. 14 displays the anomaly detection results using both the
proposed method and other comparison methods. It can be ob-
served from Fig. 14(a), (b) and (d) that the T2 and SPE statistics
of PCA, as well as the original MD statistics, have high missed
alarm rates during the period of pipe sticking. From Fig. 14(c),
it can be seen that the KLD has a lower missed alarm rate but
much larger detection delay. In contrast, the proposed method
achieved a smaller detection delay, as well as much lower false
and missed alarm rates, as shown in Fig. 14(e).

Table 2 Comparison of different methods in Case 2; − indicates
that the method fails in anomaly detection.

Method
PCA
(T2)

PCA
(SPE)

KLD MD IAMD

Without
operating
mode
recognition

Acc(%) 85.91 87.68 85.62 85.81 85.80
FAR(%) 0.00 0.92 0.23 0.00 0.00
MAR(%) 99.31 81.25 1.00 1.00 1.00
DD(s) − − − − −

With
operating
mode
recognition

Acc(%) 86.21 87.98 92.98 91.82 96.83
FAR(%) 0.00 3.21 0.00 4.02 3.70
MAR(%) 97.22 65.28 48.61 33.33 0.00
DD(s) − − 28 53 0

Table 2 summarizes the performance metrics of all the meth-
ods in two scenarios without and with operating mode recog-
nition. It can be observed that without mode recognition, all
the methods fail in detecting the drilling anomaly. Incorporat-
ing the operating mode recognition, KLD, MD, and the pro-
posed method based on IAMD succeed in anomaly detection.
Thus, it can be concluded that the the proposed mode recogni-
tion method based on EMD and K-means can effectively iden-
tify the correct operating mode, which is helpful in the further
detection of drilling anomaly. Comparing the performance met-
rics of different methods in the scenario with operating mode
recognition, it can be observed that the proposed method based
on IAMD achieves more excellent performance with the detec-

(a) T2 statistics and alarm plots using PCA.

(b) SPE statistics and alarm plots using PCA.

(c) KLD statistics and alarm plots.

(d) MD statistics and alarm plots.

(e) IAMD statistics and alarm plots.

Fig. 14. Anomaly detection results in Case 2.

tion accuracy as 96.83% and the detection delay as 0, which are
much better than the metrics using KLD and MD.

5. Conclusion

To improve the accuracy and promptness of anomaly de-
tection in drilling tools, this paper proposes a new method
based on operating mode recognition and interval-augmented
Mahalanobis distance. The proposed method consists of two
major stages. First, an operating mode recognition method
based the Earth Mover’s distance and K-means clustering is
proposed to identify operating modes of the drilling process.
Then, the anomaly detection is achieved by calculating the
interval-augmented Mahalanobis distance (IAMD) and design-
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ing the alarm generation strategy. The results in the industrial
case studies demonstrated that the proposed anomaly detection
method detected the drilling anomalies correctly and achieved
much higher detection accuracy and lower detection delay com-
pared to other state-of-the-art methods.
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