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A B S T R A C T

In modern industrial processes, real-time monitoring and control of key quality variables are crucial
but challenging due to measurement limitations and process complexities. Traditional methods for
developing soft sensor models are not only time-consuming and labor-intensive but also require
substantial expertise in machine learning, and often lack user-friendly interfaces, thereby limiting
their accessibility to engineers in the field. To address these issues, this paper introduces an easy-
to-use, open and efficient automated soft sensor design tool called Soft Sensor Manager. The Soft
Sensor Manager incorporates advanced supervised, semi-supervised, and causal machine learning
algorithms to enable effective model development and deployment. It also provides functionalities
such as data preprocessing, feature engineering, algorithm selection, hyperparameter optimization,
model evaluation and online deployment within a user-friendly interface. The software’s effectiveness
was demonstrated through its application in predicting light catalytic cracked oil yield using real
industrial data. By automating the soft sensor design process, the Soft Sensor Manager enhances
modeling efficiency and model quality, ultimately contributing to improved process monitoring and
optimization in industrial settings.

1. Introduction
In modern industrial systems, real-time monitoring and

control of key quality variables are essential for ensuring
safety, efficiency, and product quality (Gopaluni et al., 2020;
Lawrence et al., 2024; Cao, 2024). However, measuring
many critical variables in real-time with physical sensors is
often hindered by high costs or technical limitations (Rus-
sell E.L., 2000; Qin, 2014). This measurement gap poses
significant challenges for effective process monitoring and
optimization, potentially leading to suboptimal operations,
increased safety risks, and missed opportunities for process
improvement (Lou et al., 2022).

To address these challenges, soft sensors have emerged
as a powerful tool in various process industries over the past
few decades (Kadlec et al., 2009; Cao et al., 2020). These
computational models leverage the rapid accumulation of
industrial big data, enhanced computational capabilities, and
advanced machine learning theories to estimate difficult-
to-measure variables. Soft sensors have been successfully
adopted in chemical, petroleum, steel, and pharmaceutical
sectors, contributing significantly to process monitoring and
optimization (Schaeffer and Braatz, 2022; Fan et al., 2014).

Despite these advancements, developing effective soft
sensor models remains a challenging task (Chen et al., 2015;
Kadlec and Gabrys, 2009). The process involves multiple
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complex stages, each requiring substantial domain expertise
and data analysis skills. These stages include data acquisi-
tion, pre-processing, feature engineering, algorithm selec-
tion, and parameter tuning (Chen et al., 2015; Kadlec and
Gabrys, 2009). Moreover, traditional soft sensor develop-
ment is often time-consuming and labor-intensive, with a
high potential for human error that affects model quality
and reliability (Jiang et al., 2020). This complexity poses a
significant barrier to widespread adoption, particularly for
engineers who may lack specialized knowledge in machine
learning.

Most soft sensor solutions currently available on the
market are integrated into large-scale industrial automation
and control systems, offered by major companies such as
Siemens (Siemens), ABB (ABB), and Honeywell (Honey-
well). While these integrated systems provide soft sensor
functionalities, they present several limitations. Firstly, they
often come with substantial costs, making them less ac-
cessible to small and medium-sized enterprises. Secondly,
these systems typically exhibit slow algorithm update cycles,
potentially lagging behind the latest advancements in the
field. Moreover, as closed proprietary systems, they lack the
flexibility for customization and expansion to meet specific
user requirements.

Consequently, there is a pressing need for an open,
efficient, and user-friendly automated soft sensor design tool
that simplifies the development process and makes soft sen-
sor technology more accessible(Karmaker et al., 2021; Real
et al., 2020; Schaeffer and Braatz, 2022). This tool should
have the following features: a user-friendly graphical inter-
face to lower the usage barrier; an open system architecture
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Table 1
Comparison of Soft Sensor Manager with Existing Commercial Solutions

Feature Existing Commercial Solutions Soft Sensor Manager

Algorithm Diversity Limited (basic ML) Wide range (supervised, semi-supervised, causal)
Openness Closed source, difficult to customize Open framework
Update Cycle Slow (vendor-driven) Flexible, user-managed updates
Cost High licensing fees Free core modules
Causal Rarely included Causal feature extraction
Version Control Basic Automated logging, multiple model versions

to support user customization and secondary development; a
rich algorithm library that includes both traditional methods
and intelligent algorithms; and comprehensive project man-
agement functions to support the development, maintenance,
and iteration of models.

Automated Machine Learning (AutoML) approaches,
which streamline end-to-end model development and auto-
mate hyperparameter tuning, have shown promise in reduc-
ing the time and expertise required for soft sensor develop-
ment (Hutter et al., 2019; Salehin et al., 2024). Additionally,
the incorporation of causal inference capabilities and domain
knowledge into AutoML pipelines is expected to yield im-
proved model interpretability and trustworthiness (Cao et al.,
2022; Chan et al., 2024). Furthermore, the advent of deep
learning, sensor fusion, and hybrid modeling techniques has
enabled the development of advanced industrial soft sensors
capable of real-time, data-driven estimation of process vari-
ables that are either infeasible or costly to measure directly
(Yuan et al., 2018; Byrski et al., 2024). This work proposes
an innovative automated soft sensor design and visualization
software called Soft Sensor Manager. Figure 1 illustrates the
overall architecture of Soft Sensor Manager, highlighting
its key functional modules and their interactions. Table 1
provides a comparison between the proposed Soft Sensor
Manager and existing commercial solutions, highlighting
the key advantages of our approach in terms of openness,
algorithm diversity, and causal learning capabilities.

The core contributions of this work are threefold. First,
it provides a comprehensive open frameworks integrating
supervised, semi-supervised, and causal machine learning
algorithms for full-process automation of soft sensor de-
sign. While some commercial platforms provide limited
machine learning capabilities, they often lack causal and
semi-supervised methods and are not openly accessible.
Our framework addresses this gap by offering an integrated
platform for diverse modeling approaches. By incorporat-
ing these diverse approaches, the software effectively han-
dles various data scenarios and captures complex relation-
ships in industrial processes. Supervised learning algorithms
form the foundation for predictive modeling, while semi-
supervised techniques leverage both labeled and unlabeled
data to enhance model performance. The inclusion of causal
machine learning methods further improves model robust-
ness and interpretability.

Second, it introduces novel unsupervised latent causal
feature extraction (UCFE) and supervised causal feature

extraction (SCFE) algorithms specifically designed for dy-
namic industrial processes. By incorporating temporal dy-
namics and causal relationships, UCFE and SCFE enhance
model robustness and interpretability, addressing challenges
of non-stationary industrial environments.

Third, from an engineering perspective, the Soft Sensor
Manager significantly reduces the complexity of industrial
data workflows. Its features, including the integrated data
pipeline, automated hyperparameter tuning, model diagnos-
tics, version control and one-click online deployment, lower
the barrier for practitioners without specialized expertise
to create and maintain high-quality models. This makes it
easier for process engineers to use sophisticated soft sensor
techniques without requiring extensive coding or statistical
knowledge.

The remainder of this work is organized as follows.
Section II introduces the design of the Soft Sensor Manager,
highlighting its core functional modules and technical fea-
tures. Section III discusses the machine learning techniques
integrated into the automated soft sensor design process.
Section IV demonstrates the practical application of Soft
Sensor Manager in the catalytic cracking unit at the Parkland
Refinery. Finally, Section V concludes the study, summariz-
ing key findings, discussing the impact of software on indus-
trial processes, and outlining potential future developments.

2. Automated Soft Sensor Design
To achieve intelligent and automated soft sensor tech-

nology, we designed Soft Sensor Manager. The Soft Sen-
sor Manager is developed primarily in Python, leveraging
libraries such as PyTorch for deep learning modelsPaszke
et al. (2019), Bayesian optimization libraries (Optuna) for
hyperparameter tuning(Akiba et al., 2019) and scikit-learn
for traditional machine learning algorithms(Pedregosa et al.,
2011). This software divides the soft sensor development
process into five key stages: data processing, model selection
and fitting, model evaluation and visualization, model saving
and management, and online application. Figure 2 provides
a visualization of the modular architecture of Soft Sensor
Manager, which illustrates how the various components
interact to streamline the entire soft sensor design process.
The modular structure of the software supports the addi-
tion of new algorithms and custom preprocessing functions
via plugins, fostering further innovation and collaboration
within the community. To maximize the tool’s impact, the
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Figure 1: Overview of Automated Soft Sensor Manager’s Structure

core framework is released on GitHub as open-source soft-
ware. In the following section, we will provide a detailed
introduction to the core functions and technical details of this
software.

2.1. Data Import and Processing
Data import and processing are fundamental steps in

constructing a soft sensor model. Soft Sensor Manager of-
fers efficient data processing capabilities, providing reliable
data support for subsequent modeling. Soft Sensor Manager
supports multiple data import methods, including local file
uploads, database connections, and online data acquisition.
Users can automatically load and read the data by providing
a link to the data source.

After data import, raw data often contain noise, missing
values, and outliers, which are unfavorable for modeling. To
address these issues, Soft Sensor Manager provides a variety
of data cleaning and feature engineering tools. It can auto-
matically identify and handle missing values and outliers.
For multi-source data, users can set the time window for data
alignment, and the system will automatically process data
from different time scales, ensuring consistency on a unified
timeline. It integrates various feature selection algorithms to
identify the most valuable feature subsets(Tibshirani, 1996;
D. Asir Antony Gnana Singh, 2016; Monirul Kabir et al.,
2010). The software also allows users to set the sampling
rates according to actual needs and to select the time range
for the training and testing datasets through the interface.

To manage the challenge of data preprocessing across
these diverse algorithms, Soft Sensor Manager employs a
unified, yet flexible, approach. A modular data preprocessing
pipeline is implemented where all data initially pass through

a central preprocessing stage. This stage handles univer-
sal tasks, such as data cleaning, outlier detection, missing
value imputation, and time-alignment, using a set of pre-
defined "plug-in" functions. After this standardization, each
algorithm-specific module can apply further transformations
if required. For example, causal learning pipelines may
compute lagged features, while autoencoder-based methods
automatically normalize and reshape inputs. This design
ensures both overall consistency and accommodation of
individual algorithm needs.

Soft Sensor Manager seamlessly integrates with exist-
ing industrial data management systems. This integration
enables direct access to extensive historical datasets, often
spanning several months or even years, allowing users to
leverage the vast amounts of data already collected and
stored in these systems for model training.

2.2. Model Selection and Training
The core module of Soft Sensor Manager is model

selection and training. This module integrates a variety
of advanced machine learning algorithms, including regu-
larized linear regression(Yu and Yao, 2017), random for-
est (RF) (Cheng et al., 2023), principal component re-
gression (PCR)(Yuan et al., 2016), partial least squares
(PLS)(Liu, 2014), support vector machine (SVM)(Shang
et al., 2014), and attention-based neural network (ANN)
(Cao et al., 2024a) algorithms, semi-supervised Gaussian
process regression (SSGPR)(Esche et al., 2022), semi-
supervised auto-encoders regression (SSAER)(Yuan et al.,
2020), semi-supervised variational auto-encoders regres-
sion (SSVAER)(Zhuang et al., 2023) and causal machine
learning(Cao et al., 2020, 2022; Yu et al., 2022). These
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Figure 2: An Example of Modular design for Automated Soft Sensor Manager

algorithms range from simple linear models to complex
nonlinear models, capable of addressing industrial modeling
tasks with varying levels of complexity and characteristics.

While the base algorithms (such as Random Forest,
SVM, and neural networks) integrated into Soft Sensor
Manager are classical methods, our contribution lies not in
reinventing these fundamental algorithms, but in adapting
and integrating them into an automated framework specif-
ically designed for the complexities of industrial process
data. This includes incorporating features for time-series
alignment, dynamic feature engineering, and outlier han-
dling. For example, our implementation of Random Forest
and neural networks allows for the incorporation of time-
lagged features and handles partially labeled data, which
is crucial for real-world industrial applications. Our imple-
mentation of semi-supervised learning algorithms include
handling scenarios with a high proportion of unlabeled data
and incorporating domain knowledge to guide the learning
process, which enhances the model’s ability to generalize
from limited labeled data.

Users can manually select models and utilize visualiza-
tion tools to analyze the applicability and performance of the
models. This functionality helps users quickly identify the
most suitable model for their data and requirements, thereby
enhancing modeling efficiency. During the model training
process, users can set hyperparameters such as learning
rate, number of iterations, batch size, and more to further
optimize model performance.

For hyperparameter tuning across these diverse algo-
rithms, a Bayesian optimization engine is integrated(Akiba
et al., 2019). This engine systematically searches for optimal
hyperparameters (e.g., the number of estimators for Random
Forest, kernel parameters for SVM, or the latent dimensions
in SCFE). It operates within user-defined or process-specific
constraints, such as limiting the maximum number of hidden
layers in a neural network due to hardware or execution
time limitations. A unified K-fold temporal cross-validation
protocol is employed to ensure fair and consistent evaluation
across all models while preserving the time-series dependen-
cies inherent in industrial data.

2.3. Model Evaluation and Visualization
Model evaluation and visualization are essential stages

in the development of soft sensor models. Through the visual
interface, users can view key metrics such as training error
and validation error. The software also supports model eval-
uation and validation, offering various evaluation metrics
(e.g., root mean squared error, coefficient of determination)
to help users comprehensively assess the predictive capabil-
ities of their models.

Visualization is another major highlight of Soft Sen-
sor Manager. To aid engineers in understanding the causal
or critical relationships uncovered by the algorithms, Soft
Sensor Manager provides a range of visualization and in-
terpretability tools. For example, feature importance plots
and partial dependence graphs help engineers understand the
relative impact of different input variables on the model’s
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predictions. For models incorporating causal discovery tech-
niques, causal graph visually represents the causal depen-
dencies among process variables, providing deeper insights
into the underlying process dynamics. Integration of SHAP
(SHapley Additive exPlanations) (Lundberg and Lee, 2017)
provides local explanations for individual predictions, al-
lowing engineers to understand how specific input values
contribute to the model’s output. These tools collectively en-
hance the interpretability of the models, enabling engineers
to gain a deeper understanding of the causal and critical
relationships in their processes.

2.4. Model Saving and Management
Soft Sensor Manager includes a comprehensive model

saving and management module. After model evaluation
is completed, users can save the model within the system,
which includes the trained algorithm, model parameters, and
related metadata (such as time range for training and testing,
training time, hyperparameter settings, etc.). The system
automatically records training logs, performance metrics,
and parameter settings for each model, facilitating model
comparison and optimization for users.

Moreover, the software supports model version con-
trol and online updates, allowing soft sensor models to
continuously learn and improve, adapting to ever-changing
industrial environments. With each update or retraining of
the model, the system generates a new version, allowing
users to easily trace back and compare the performance
of different versions. This version control mechanism not
only enhances the flexibility of model management, but
also provides strong support for model optimization and
improvement.

Model management includes models’ sharing and col-
laboration features. Soft Sensor Manager supports multi-
user collaboration, allowing different team members to share
and discuss models. Model security is also a critical aspect of
management. Users can assign different access permissions
based on roles, ensuring that only authorized persons can
view, modify, and deploy models. These comprehensive
features make Soft Sensor Manager a powerful tool for
developing, managing, and deploying soft sensor models in
various industrial applications.

2.5. Model Loading and Online Application
For models that need to be applied in real production

environments, Soft Sensor Manager supports the deploy-
ment of models into real-time systems, enabling online
predictions. This capability ensures that soft sensor models
can respond quickly to changes in actual working conditions.
To ensure the reliability and stability of models in pro-
duction environments, Soft Sensor Manager also provides
model monitoring and maintenance tools. Users can set
performance indicators and alarm thresholds for the models
and the system will automatically monitor the predictive
performance of the models. If anomalies are detected, the
system will notify users for intervention.

In long-term applications, soft sensor models need con-
tinuous updates and maintenance to adapt to changing pro-
cess conditions and new data inputs. The software employs
an incremental learning mechanism, where newly acquired
data batches are periodically used to update model pa-
rameters. Users can set strategies for periodic training and
updates. The system will retrain the models based on the
latest data and deploy them to the production environment.

3. Machine Learning Techniques for
Automated Soft Sensor Design
The development of soft sensors relies on advanced ma-

chine learning techniques capable of modeling the complex
and nonlinear relationships inherent in industrial data. As de-
picted in Figure 3, a range of machine learning approaches,
including supervised, semi-supervised, and causal methods,
form the backbone of the automated soft sensor design
process. This section explores the roles of these techniques
in improving the accuracy and robustness of automated soft
sensor models.

3.1. Soft Sensor Modeling
At the core of soft sensor development is the modeling of

the relationship between measurable input variables and the
target output variable. Let 𝐱 ∈ ℝ𝑚 denote the vector of input
features, and 𝑦 ∈ ℝ represent the target variable that we aim
to estimate. The objective is to learn a function 𝑓 ∶ ℝ𝑚 → ℝ
that maps the inputs to the output:

�̂� = 𝑓 (𝐱;𝜽), (1)

where �̂� is the estimated output, and 𝜽 is the parameter of the
model. The function 𝑓 can be linear or nonlinear, depending
on the complexity of the relationship between 𝐱 and 𝑦. The
goal is to find the optimal parameters 𝜽∗ that minimize a loss
function 𝓁, capturing the discrepancy between the predicted
and true outputs.

Figure 3: Machine Learning Techniques used in Automated
Soft Sensors

3.2. Supervised Learning in Soft Sensor
Development

Supervised learning is a fundamental approach in soft
sensor modeling, where the model is trained using a labeled
dataset  = {(𝐱𝑖, 𝑦𝑖)}𝑛𝑖=1. Each input vector 𝐱𝑖 is associated
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with a known output 𝑦𝑖. The learning process involves solv-
ing the following optimization problem:

𝜽∗ = argmin
𝜽

1
𝑛

𝑛
∑

𝑖=1
𝓁
(

𝑦𝑖, 𝑓 (𝐱𝑖;𝜽)
)

+ 𝜆(𝜽), (2)

where 𝓁(𝑦𝑖, �̂�𝑖) is the loss function measuring the error
between the true output 𝑦𝑖 and the predicted output �̂�𝑖, (𝜽)
is a regularization term to prevent overfitting, and 𝜆 is a
hyperparameter controlling the regularization strength.

Common choices for the loss function in regression tasks
include the mean squared error (MSE): 𝓁(𝑦𝑖, �̂�𝑖) = (𝑦𝑖− �̂�𝑖)2.
The regularization term can be, for example, the L2 norm
of the parameters: (𝜽) = |𝜽|22. To solve the optimiza-
tion problem in Equation (2), gradient-based optimization
algorithms are commonly used. For instance, the gradient
descent update rule is as follows:

𝜽(𝑘+1) = 𝜽(𝑘) − 𝜂∇𝜽(𝜽(𝑘)), (3)

where 𝜽(𝑘) is the parameter at iteration 𝑘, and 𝜽(𝑘+1) is the
updated value. The learning rate 𝜂 controls the step size,
while ∇𝜽(𝜽(𝑘)) represents the gradient of the loss function
, guiding the parameters towards minimizing the empirical
loss and regularization terms.

3.3. Semi-Supervised Learning in Soft Sensor
Design

In industrial settings, acquiring labeled data can be ex-
pensive or impractical, whereas unlabeled data are often
abundant. Semi-supervised learning leverages both labeled
and unlabeled data to improve model performance (Lu and
Chiang, 2018; Zhuang et al., 2023; Yuan et al., 2020; Esche
et al., 2022). Let 𝑙 = {(𝐱𝑖, 𝑦𝑖)}

𝑛𝑙
𝑖=1 be the labeled dataset

and 𝑢 = {𝐱𝑗}
𝑛𝑙+𝑛𝑢
𝑗=𝑛𝑙+1

be the unlabeled dataset. The semi-
supervised learning objective combines the supervised loss
on labeled data with an unsupervised loss on unlabeled data:

𝜽∗ = argmin
𝜽

1
𝑛𝑙

𝑛𝑙
∑

𝑖=1
𝓁
(

𝑦𝑖, 𝑓 (𝐱𝑖;𝜽)
)

+ 𝛼 ⋅
1
𝑛𝑢

𝑛𝑢
∑

𝑗=1
𝓁unsup

(

𝑓 (𝐱𝑗 ;𝜽)
)

+ 𝜆(𝜽),
(4)

where 𝓁unsup is an unsupervised loss function encouraging
the model to learn from the structure of the input data,
and 𝛼 is a hyperparameter balancing the influence of the
unlabeled data. A common choice for the unsupervised loss
is the consistency loss(Chang et al., 2021). By minimizing
the consistency loss, the model is encouraged to be robust to
small perturbations of the input data, i.e., to produce similar
outputs for similar inputs:

𝓁unsup
(

𝑓 (𝐱𝑗 ;𝜽)
)

= 𝔼𝝃

[

‖

‖

‖

𝑓 (𝐱𝑗 ;𝜽) − 𝑓 (𝐱𝑗 + 𝝃;𝜽)‖‖
‖

2
]

, (5)

where 𝝃 represents random perturbations applied to the in-
put. By incorporating unlabeled data, semi-supervised learn-
ing can learn the underlying structure of the input data and
improve the model’s generalization ability, especially when
labeled data are scarce.

3.4. Causal Machine Learning Based Soft Sensor
In complex industrial processes, traditional soft sensor

approaches often struggle with the high dimensionality and
multicollinearity of process variables. Although latent fea-
ture extraction methods have been widely used to address
these issues (Yuan et al., 2016; Liu, 2014), they focus mainly
on correlations rather than causal relationships. While exist-
ing causal discovery methods, such as the Peter-Clark (PC)
algorithm (Spirtes et al., 2000) and the Greedy Equivalence
Search (GES) (Chickering, 2002), have been applied to
industrial processes, they typically treat variables as instan-
taneous rather than considering the temporal dynamics in-
herent in process systems. Furthermore, these methods often
struggle with the scale and high noise levels characteristic of
industrial data. These limitations can lead to reduced model
robustness and poor generalization, especially when process
conditions change (Xu et al., 2021).

To overcome these challenges, we propose a novel ap-
proach that integrates causal machine learning with latent
feature extraction. This integration aims to identify and
leverage causal relationships between variables, extracting
latent features that are not only highly relevant, but also
causally related to the target variable. In doing so, we seek
to enhance model robustness, interpretability, and gener-
alization, particularly in dynamic industrial environments.
To this end, we introduce two novel methods: unsupervised
latent causal feature extraction (UCFE) and supervised latent
causal feature extraction (SCFE), which we will detail in the
following sections.

Compared to existing methods, our approach offers sev-
eral advantages. Traditional feature extraction methods like
PCA maximize variance or correlation, potentially captur-
ing spurious relationships. Recent deep learning approaches
can learn complex nonlinear features but may not preserve
causal structure. Our method explicitly optimizes for both
predictive power and causal consistency, resulting in features
that are both informative and robust under changing process
conditions.

3.4.1. Unsupervised Latent Causal Feature Extraction
UCFE aims to extract latent features that reflect the

causal structure of the process without using the target vari-
able directly. The latent variables are defined as 𝐙 = 𝐖⊤𝐗,
where 𝐗 ∈ ℝ𝑛×𝑚 is the input data matrix and 𝐖 ∈ ℝ𝑚×𝑝

is the loading matrix. In UCFE, the soft sensor model is
constructed by selecting latent features that are believed to
have causal influence on the target variable 𝑦. The model can
be expressed as:

�̂� = 𝑓 (𝐙;𝜽), (6)
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where 𝑓 is a predictive function, and 𝜽 are the model
parameters. Figure 4 illustrates the UCFE framework for
soft sensor design. While PCA is used as an illustrative
example, our Soft Sensor Manager also integrates other
techniques such as slow feature analysis, autoencoders, and
variational autoencoders. The choice of technique depends
on the specific characteristics of the industrial data and the
requirements of the application. To clarify the relationship
between the latent variables and the target variable 𝑦, we
note that in a Bayesian network, the Markov blanket of a
target node 𝑦 includes 𝑦’s parents, children, and the parents
of its children. In this example, 𝑧4 is included in the equation
𝑓 (𝑧1, 𝑧6, 𝑧4) because it is a child of 𝑦 in the causal graph,
making it part of 𝑦’s Markov blanket (Pearl, 2014).

While UCFE effectively reduces dimensionality and
captures latent structures, it does not directly consider the
target variable during feature extraction. This may result in
features that are not optimally informative for predicting 𝑦.

Figure 4: Framework of Unsupervised Latent Causal Feature
Extraction for Soft Sensor Design

3.4.2. Supervised Latent Causal Feature Extraction
SCFE integrates the target variable 𝑦 and temporal dy-

namics directly into the feature extraction process to identify
latent features that have the most significant causal impact
on 𝑦. By incorporating time-lagged relationships, SCFE
ensures that the extracted features capture the dynamic be-
havior of the process and are highly relevant for predicting
the target variable. Figure 5 shows the SCFE framework for
soft sensor design.

In SCFE, we start by defining a latent variable 𝑡𝑘 at time
𝑘 as a linear combination of the process variables at that
time:

𝑡𝑘 = 𝐰⊤𝐱𝑘 (7)

where 𝐱𝑘 ∈ ℝ𝑚 is the vector of 𝑚 process variables at time
𝑘, and 𝐰 ∈ ℝ𝑚 is the weight vector to be determined. To
capture the temporal dynamics and causal relationships over
time, we construct a latent feature 𝑢𝑘 as a combination of the
current and past latent variables:

𝑢𝑘 = 𝛽1𝑡𝑘 + 𝛽2𝑡𝑘−1 +⋯ + 𝛽𝑠𝑡𝑘−𝑠+1 (8)

where 𝛽𝑖 are coefficients representing the influence of the
latent variables at different time lags on the target variable,
and 𝑠 is the number of time lags considered.

Figure 5: Framework of Supervised Latent Causal Feature
Extraction for Soft Sensor Design

The objective of SCFE is to find𝐰 and 𝜷 = [𝛽1, 𝛽2,… , 𝛽𝑠]⊤
that maximize the correlation between 𝑢𝑘 and the target
variable 𝑦𝑘, ensuring that the extracted features have a direct
causal impact on 𝑦. This can be formulated as the following
optimization problem:

max
𝜷,𝐰

∑𝑛
𝑘=𝑠 𝑦𝑘𝑢𝑘

√

∑𝑛
𝑘=𝑠 𝑦

2
𝑘

√

∑𝑛
𝑘=𝑠 𝑢

2
𝑘

(9)

subject to ‖𝐰‖ = 1 and
√

∑𝑛
𝑘=𝑠 𝑢

2
𝑘 = 1, where 𝑛 is the total

number of samples. By including historical information in
𝑢𝑘, SCFE captures the dynamic causal relationships between
the process variables and the target variable over time.

To solve the optimization problem, we reformulate it
using data matrices. Let 𝐗 ∈ ℝ𝑛×𝑚 be the data matrix of
the process variables, and 𝐲 ∈ ℝ𝑛 be the vector of target
variables. We define the historical data matrices 𝐗𝑖 as:

𝐗𝑖 = [𝐱𝑖, 𝐱𝑖+1,… , 𝐱𝑖+𝑛−𝑠]⊤, for 𝑖 = 1, 2,… , 𝑠 (10)

Each 𝐗𝑖 ∈ ℝ(𝑛−𝑠+1)×𝑚 contains the process variable data
with a time lag of 𝑠 − 𝑖 + 1. We then construct the matrix 𝐙
that contains all the historical information:

𝐙 = [𝐗𝑠,𝐗𝑠−1,… ,𝐗1] ∈ ℝ(𝑛−𝑠+1)×𝑚𝑠 (11)

The latent feature 𝑢𝑘 can be expressed in matrix form:

𝐮 = 𝐙(𝜷 ⊗ 𝐰) (12)

where 𝐮 = [𝑢𝑠, 𝑢𝑠+1,… , 𝑢𝑁 ]⊤ ∈ ℝ𝑛−𝑠+1, and ⊗ denotes the
Kronecker product. The optimization objective (9) becomes:

max
𝜷,𝐰

𝐽 =
𝐲⊤𝐮

‖𝐲‖‖𝐮‖
=

𝐲⊤𝐙(𝜷 ⊗ 𝐰)
‖𝐲‖‖𝐙(𝜷 ⊗ 𝐰)‖

(13)

subject to ‖𝐰‖ = 1 and ‖𝐙(𝜷⊗𝐰)‖ = 1. By maximizing 𝐽 ,
we ensure that the latent feature 𝐮 is highly correlated with
𝐲, capturing the most significant causal relationships.
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Figure 6: Framework of Automated Soft Sensor Design for LCC

To solve for 𝜷 and 𝐰, we use the method of Lagrange
multipliers (Rockafellar, 1993). Taking the derivatives of
Lagrangian 𝐿 with respect to 𝐰 and 𝜷 and setting them
to zero. After obtaining 𝐰 and 𝜷, the latent feature 𝐮 can
be computed. The soft sensor model is then constructed by
regressing 𝐲 onto 𝐮:

�̂� = 𝑏𝐮 + 𝜺 (14)

where 𝑏 is the regression coefficient estimated using the
least-squares method, and 𝜺 is the residual error vector. To
extract multiple latent features, the SCFE algorithm itera-
tively extracts a set of latent features that are orthogonal and
have significant causal impacts on 𝑦.

3.5. Algorithm Selection Criteria
To ensure the appropriate selection of algorithms for dif-

ferent industrial scenarios, we provide guidelines for choos-
ing between supervised, semi-supervised, and causal algo-
rithms. Supervised learning methods are prioritized when
sufficient labeled data are available. These methods are
particularly suitable for processes with relatively stable oper-
ating conditions and well-defined input-output relationships.

Semi-supervised learning techniques are applicable in
scenarios where labeled data is scarce but unlabeled data
is abundant. This is common in industrial settings where
manual labeling is expensive or time-consuming. Semi-
supervised methods leverage the inherent structure of un-
labeled data to enhance predictive performance, even with
limited labeled data.

Causal machine learning algorithms are particularly use-
ful for handling complex, high-dimensional industrial data
with multicollinearity issues. These methods are beneficial
when there are complex interdependencies among process
variables, potential confounding factors, or when the plant
experiences frequent changes in operating regimes. Causal
algorithms can also improve model interpretability and ro-
bustness in non-stationary industrial environments.

To further tailor these algorithms for industrial ap-
plications, the Soft Sensor Manager incorporates several
application-specific optimization strategies. For example,
in supervised learning, domain-specific feature selection
techniques are applied to enhance model interpretability and
efficiency. In semi-supervised learning, the balance between
labeled and unlabeled data is dynamically adjusted based
on the process conditions, and informative pseudo-labels
are generated by leveraging expert process knowledge. For
causal machine learning, UCFE and SCFE algorithms inte-
grate time-lag management and process-specific constraints
to extract latent features that are both statistically robust and
causally relevant.

The integration of supervised, semi-supervised, and
causal machine learning techniques in the Soft Sensor Man-
ager provides a comprehensive framework for automated
soft sensor design. This combination leverages the strengths
of each approach, enabling the automated soft sensor design
to achieve higher accuracy, better generalization, and greater
resilience to changing process conditions. By automating
the selection and application of these diverse methods, the
Soft Sensor Manager empowers engineers to develop more
robust and adaptive soft sensors, ultimately contributing to
improved monitoring and control in industrial processes.
4. Automated Soft Sensor Application

To validate the practicality and effectiveness of the pro-
posed Soft Sensor Manager software, we applied it to the
fluid catalytic cracking (FCC) unit at the Parkland Refinery
in Canada (Cao et al., 2024b). Fluid catalytic cracking is one
of the most important processes in modern refining, with
the aim of converting heavy oil fractions into high-value
lighter intermediates to produce gasoline and diesel. Light
catalytic cracked oil (LCC) is a liquid petroleum product in
an FCC unit, typically used as a blending feed for gasoline.
The accurate measurement of this variable is crucial for
optimizing production processes and improving economic
benefits. In this project, we used the LCC yield as a key
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Table 2
Performance of Different Machine Learning Algorithms in Automated Soft Sensor Tool

Category Algorithm RMSE (Train) R2 (Train) RMSE (Test) R2 (Test)

Supervised Learning

RF 0.962 ± 0.021 0.942 ± 0.015 1.075 ± 0.032 0.905 ± 0.018
PCR 1.106 ± 0.035 0.938 ± 0.018 1.221 ± 0.041 0.890 ± 0.014
PLS 1.046 ± 0.028 0.927 ± 0.017 1.169 ± 0.036 0.897 ± 0.022
SVM 0.980 ± 0.024 0.947 ± 0.013 1.089 ± 0.031 0.905 ± 0.020
ANN 0.941 ± 0.022 0.959 ± 0.014 1.110 ± 0.033 0.889 ± 0.021
RNN 0.978 ± 0.025 0.955 ± 0.017 1.092 ± 0.034 0.901 ± 0.015
LSTM 0.952 ± 0.017 0.958 ± 0.015 1.086 ± 0.032 0.903 ± 0.011

Semi-Supervised Learning
SSGPR 0.950 ± 0.027 0.928 ± 0.015 1.175 ± 0.037 0.884 ± 0.024
SSAER 0.972 ± 0.025 0.924 ± 0.011 1.173 ± 0.038 0.891 ± 0.019
SSVAER 0.974 ± 0.026 0.931 ± 0.017 1.146 ± 0.035 0.895 ± 0.022

Causal Machine Learning
UCFE 0.971 ± 0.014 0.945 ± 0.007 1.084 ± 0.015 0.904 ± 0.009
SCFE 0.950 ± 0.016 0.955 ± 0.012 1.074 ± 0.013 0.906 ± 0.008

quality variable. Figure 6 illustrates the framework for the
automated LCC soft sensor design.

4.1. Data Preparation in LCC
For LCC soft sensor design, the training dataset spans

from January 1, 2023, to March 15, 2024, and the testing
dataset spans from March 16, 2024, to May 30, 2024, with
a sampling frequency of 15 minutes. It should be noted
that the data was split temporally rather than randomly.
This approach preserves the temporal order of the data
and reflects the practical scenario of deploying soft sensors
for future predictions. We used the data import module to
read raw data from the database into the software. This
data includes process variables such as reaction temperature,
pressure, feed rate, and catalyst activity. Next, we used the
software’s data preprocessing module to clean and align the
raw data, automatically removing outliers and anomalies.
The software used the mutual information-based feature
selection method to automatically select important variables
from hundreds of process variables (Jiang et al., 2019).

4.2. Model Selection and Evaluation in LCC
During the model selection phase, we evaluated three

categories of machine learning algorithms. For each cat-
egory, multiple algorithms were tested to provide a com-
prehensive comparison. We employed a rolling window
cross-validation approach, which involves creating multiple
training-testing splits while preserving temporal order. This
method allows us to assess model stability across different
time periods. Additionally, we have included uncertainty
estimates for each performance metric to provide a more
nuanced evaluation of model performance.

For supervised learning, we implemented random forest
(RF), principal component regression (PCR), partial least
squares (PLS), support vector machine (SVM), attention-
based neural network (ANN) algorithms, recurrent neural
network (RNN) and long short-term memory (LSTM) net-
work. To address the customization of neural network archi-
tectures for different real-world processes, the Soft Sensor
Manager provides a default setting with two hidden layers

of 64 neurons each. This configuration has been found to be
a good starting point for medium-scale industrial datasets.
Beyond this default setting, the software supports auto-
tuning through Bayesian optimization, which explores a
range of network depths (2–9 hidden layers) and numbers
of neurons per layer (32–256). The optimal architecture is
determined through systematic cross-validation to balance
model accuracy and computational efficiency. Among these,
RF demonstrated the best performance on the test set with
an RMSE of 1.075 and an R2 of 0.905, indicating its strong
generalizability. ANN showed the best performance on the
training set, but exhibited some overfitting as evidenced by
the slightly lower test set performance.

For semi-supervised learning, we employed SSGPR,SS-
AER and SSVAER. To simulate a real-world scenario where
labeled data are scarce, we deliberately removed the 20%
labels from the training data. This approach allowed us
to evaluate the algorithms’ ability to leverage unlabeled
data, although it expectedly resulted in a slight decrease
in overall performance compared to supervised methods
using all available labels. Among the semi-supervised meth-
ods, SSVAER showed the best performance on the test set
(RMSE: 1.146, R2: 0.895). While this performance is lower
than the best supervised learning results, it demonstrates
the effectiveness of SSVAER in utilizing unlabeled data to
improve model generalization under limited labeled data
conditions.

In the causal machine learning category, we imple-
mented the proposed UCFE and SCFE algorithms. SCFE
outperformed UCFE and showed competitive results com-
pared to the best supervised learning methods, achieving an
RMSE of 1.074 and an R2 of 0.906 on the test set. This
indicates that incorporating causal relationships in feature
extraction can lead to robust and generalizable models.

Table 2 provides a comprehensive summary of perfor-
mance metrics with uncertainty estimates across various
machine learning techniques. It should be noted that while
some models showed excellent performance on the train-
ing set (e.g., NN with RMSE of 0.941 and R2 of 0.959),
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Figure 7: Application of Causal Machine Learning for Automated LCC Soft Sensor Design

their test set performance was relatively lower, indicating
potential overfitting. In contrast, methods like RF and SCFE
maintained more consistent performance between training
and test sets, suggesting better generalization. These results
highlight the importance of evaluating multiple algorithms.
The Soft Sensor Manager allows engineers to easily compare
these different approaches, enabling them to select the most
suitable model for their specific application based on both
predictive performance and other considerations such as
interpretability and generalization capability.

4.3. Model Saving and Online Application
For the LCC automated soft sensor, the causal ma-

chine learning approach (SCFE) shows the best performance
among various machine learning techniques tested. Once the
model evaluation is complete, Soft Sensor Manager provides
a straightforward method to save trained models. Users can
save the optimized SCFE model by simply clicking the ’Save
Model’ button on the software interface. This function stores
not only the model parameters, but also the training config-
uration, hyperparameters, and metadata associated with the
model, ensuring that all necessary information is preserved
for future use or retraining.

For online deployment, once the fitting results of SCFE
saved, the model can be loaded directly into production
environments via the software online deployment module.
The deployment process is fully automated, requiring min-
imal user intervention, and the software monitors model
performance in real time. Figure 7 presents the fitting and
online application results of the SCFE method based on

causal machine learning. In addition, the system allows for
scheduled retraining, where models can be updated with
new data, further enhancing their robustness and long-term
reliability in dynamic industrial environments.

4.4. Discussion
The primary objective of this study is not to determine

the superiority of any single algorithm, as the efficacy of
different methods can vary significantly across industrial
processes, key variables, and datasets. Instead, Soft Sensor
Manager is designed as a platform that allows engineers to
rapidly evaluate and implement a wide range of machine
learning techniques without requiring extensive prior knowl-
edge or preparation.

This approach offers several key advantages. The soft-
ware accommodates various industrial scenarios, allowing
users to select the most appropriate model for their specific
application. By automating much of the modeling process,
it significantly reduces the time and effort required to de-
velop and deploy soft sensors. In addition, the user-friendly
interface and automated workflows make advanced machine
learning techniques accessible to engineers who may not
have specialized data science expertise. The ability to easily
test and compare multiple models also encourages ongoing
optimization of soft sensor performance, fostering continu-
ous improvement.

From a scientific and technical perspective, one of the
significant challenges addressed by this paper is the integra-
tion of diverse machine learning algorithms. This platform
integrates supervised, semi-supervised, and causal learning
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methods, providing engineers with a comprehensive toolkit
to address diverse industrial challenges. By developing uni-
fied modules for data preprocessing, model training, and
evaluation that cater to these varied algorithms, the Soft Sen-
sor Manager overcomes compatibility issues and simplifies
the user experience.

Another technical difficulty tackled is the automation
of hyperparameter tuning and model selection. Selecting
optimal hyperparameters is critical for model performance
but is often a complex and time-consuming task requiring
expert knowledge. The software incorporates automated hy-
perparameter optimization techniques that streamline this
process, enabling non-expert users to achieve high-quality
models without extensive experimentation.

Moreover, the inclusion of causal machine learning
methods addresses the challenge of model interpretability
and robustness in changing process conditions. Traditional
soft sensors may perform well under static conditions but can
degrade when process dynamics shift. By leveraging causal
relationships, the Soft Sensor Manager enhances the stability
and generalization capabilities of the models, ensuring more
reliable performance in dynamic industrial environments.
Specifically, the UCFE and SCFE algorithm introduced in
this study incorporate causal relationships and temporal
dynamics, leading to more robust and interpretable models.

While the results demonstrate the potential of Soft Sen-
sor Manager, it is crucial to recognize its current limita-
tions and areas for improvement. The performance of the
software may fluctuate across different industrial processes,
data characteristics, and operational complexities. Factors
such as data quality, quantity, and intrinsic complexity of
the monitored processes can significantly influence the tool’s
effectiveness. Additionally, the software’s adaptability to
highly specialized or rapidly evolving industrial environ-
ments may require further refinement.

Future research directions should focus on enhancing the
robustness and interpretability of the Soft Sensor Manager.
This could involve integrating advanced techniques such as
transfer learning (Li et al., 2023) and meta-learning (Sun
et al., 2019) to address challenges related to data scarcity and
improve the tool’s performance in new or data-limited sce-
narios. Furthermore, exploring the incorporation of domain-
specific knowledge and hybrid modeling approaches could
enhance the software’s applicability across various industrial
sectors (Jia et al., 2008; Subramanian et al., 2022; Peng et al.,
2022).

5. Conclusion
In this study, we developed an innovative automated

soft sensor design tool to address the challenges associated
with real-time monitoring and control in complex industrial
processes. The Soft Sensor Manager simplifies data prepro-
cessing, feature engineering, model selection, model evalu-
ation, and online deployment, making advanced soft sensor
technology more accessible. The results from the industrial
light catalytic cracked oil yield demonstrate that the software

not only reduces the complexity and time required for soft
sensor development, but also enhances the accuracy and
reliability of the developed models. The proposed automated
soft sensor design tool facilitates the integration of advanced
machine learning techniques into industrial process monitor-
ing systems, representing a significant advancement in soft
sensor technology. Future work will focus on improving user
experience, and extending its applications to other industrial
processes, thus supporting the intelligent and digital trans-
formation of the industry.
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