
Time Series Representation Learning via Cross-Domain1

Predictive and Contextual Contrasting: Application to Fault2

Detection3

Ibrahim Yousef1*, Sirish L. Shah2, and R. Bhushan Gopaluni14

1Department of Chemical and Biological Engineering, The University of British5

Columbia, Vancouver, Canada6

2Department of Chemical and Materials Engineering, University of Alberta,7

Edmonton, Canada8

*Corresponding author: iy641@mail.ubc.ca9

Abstract10

Data-driven methods for fault detection increasingly rely on large historical datasets, yet11

annotations are costly and time-consuming. As a result, learning approaches that minimize the12

need for extensive labeling, such as self-supervised learning (SSL), are becoming more popular.13

Contrastive learning, a subset of SSL, has shown promise in fields like computer vision and14

natural language processing (NLP), yet its application in fault detection is not fully explored.15

In this paper, we introduce Cross-Domain Predictive and Contextual Contrasting (CDPCC),16

a novel contrastive learning framework that integrates temporal and spectral information to17

capture informative time-frequency features from time series data. CDPCC consists of two18

key components: cross-domain predictive contrasting, which predicts future embeddings across19

time and frequency domains, and cross-domain contextual contrasting, which aligns time- and20

frequency-based representations in a shared latent space. We evaluate CDPCC on fault detec-21

tion tasks using both simulated and industrial datasets. Our results show that a linear classifier22

trained on features learned by CDPCC performs comparably to fully supervised models. More-23

over, CDPCC proves highly effective in scenarios with limited labeled data, achieving superior24

performance with only 50% of the labeled data compared to fully supervised training on the25

entire dataset. The source code is publicly available at https://github.com/iy641/CDPCC.git.26

Keywords— Time series analysis, Neural networks, Contrastive learning, Self-supervised learning,27

Fault detection28

1 Introduction29

The advancement of modern industrial equipment has made industrial processes more complex and inte-30

grated, increasing the risk of process faults [1]. Therefore, fault detection technologies have become crucial31

1

to ensure safe and efficient operations in modern industrial systems [2]. Fault detection is concerned with32

determining whether a process is operating normally or abnormally (i.e., experiencing a fault) [3, 4]. Over33

the past decades, numerous fault detection ideas have been proposed. Early research relied on precise phys-34

ical models and extensive knowledge bases of inference rules, both of which are challenging to acquire in real35

industrial settings [5, 6]. However, with the availability of big data and cost-effective parallel computing,36

data-driven fault detection has gained significant attention in academia and industry. Unlike traditional37

methods, data-driven fault detection methods require minimal or no prior knowledge, offering the potential38

for high detection accuracy at a relatively low cost [7].39

40

Most modern data-driven fault detection methods are developed in a supervised learning manner that41

requires all process data for each time interval to be labeled with the corresponding process state. In su-42

pervised learning settings, models automatically extract discriminative features and patterns that maximize43

the separation between different process conditions, such as normal and faulty states [8, 9]. However, the44

performance of supervised learning models scales upwards with the amount of labeled data, making the avail-45

ability of labeled data a major bottleneck [10]. To this end, manual labeling is not only time-consuming and46

costly but also prone to errors and ambiguities in industrial settings, which can lead to misclassifications and47

reduced model performance. Despite the abundance of available data, the lack of labeled annotations has48

prompted researchers to seek alternative approaches. Self-supervised learning (SSL), which has recently seen49

significant success in fields like computer vision and natural language processing (NLP), offers a promising50

solution [11]. SSL enables the extraction of robust feature representations from unlabeled data by leverag-51

ing the inherent properties of the data itself [12]. However, the application of SSL in the context of fault52

detection remains underexplored.53

54

The idea behind SSL is straightforward: design a task where the model can generate its own supervisory55

signals without manual annotation and then train the model to solve that task [13]. This process allows56

the pre-trained model to learn general and transferable features from the input data, which can be applied57

to various downstream tasks, such as fault detection. Compared to supervised learning, where models are58

trained on fully labeled data, SSL models can achieve comparable performance with significantly less labeled59

data [14]. Existing work in SSL can be broadly categorized into two groups: pretext task-based methods and60

contrast-based methods (i.e., contrastive learning). Pretext task-based methods involve designing auxiliary61

tasks that leverage the intrinsic structure within the data, enabling the model to generate pseudo-labels and62

learn meaningful representations. As the model learns to predict these labels, it must recognize and exploit63

this underlying structure to solve the task successfully. Examples include predicting the degree of rotation of64

an image [15], solving jigsaw puzzles [16], or colorizing grayscale images [17]. However, the choice of pretext65

task can limit the generalizability of the learned features. For instance, a model trained to predict image66

rotations may focus primarily on geometric transformations, potentially overlooking other valuable features67

such as color and texture [18].68

69

Contrastive learning methods can be viewed as methods that learn through comparison. In contrastive70

learning, feature representations are learned by comparing different views of the same input against those71

of other inputs [19]. The underlying intuition is that embeddings of similar inputs (positive pairs) should72

cluster closely in the representation space, while embeddings of dissimilar inputs (negative pairs) should be73

far apart [19, 20]. Although contrastive learning has been successfully applied to time series data, existing74

methods still face notable limitations. First, most existing methods are inspired by experiences in computer75

2

vision and NLP domains, which often rely on strong inductive biases, such as transformation- and cropping-76

invariance [21]. These assumptions do not always hold true for time series data. For example, while cropping77

an image may retain the underlying object, cropping a time series can change its semantics and distribu-78

tion. Secondly, existing methods primarily focus on learning instance-level representations that describe the79

whole input time series [21]. These instance-level representations may not be suitable for tasks that require80

low-level representations, such as fault detection. Lastly, recent approaches in contrastive learning for time81

series typically sample contrastive pairs along the temporal axis only, ignoring the spectral axis [22]. As a82

result, they fail to exploit the time-frequency cross-correlations that are intrinsic to time series data.83

84

To address the limitations of existing methods, we introduce a contrastive learning framework for time85

series named Cross-Domain Predictive and Contextual Contrasting (CDPCC). CDPCC promotes contrastive86

representation learning by simultaneously exploring temporal and spectral relationships within time series87

data. CDPCC consists of two key modules. The first module, cross-domain predictive contrasting, trains88

the model to predict future embeddings across both domains: it uses a temporal context to predict future89

spectral embeddings and a spectral context to predict future temporal embeddings. This bidirectional learn-90

ing approach allows the model to capture useful cross-domain features. The second module, cross-domain91

contextual contrasting, ensures that the representations derived from the temporal and spectral domains of92

the same time series sample are closely aligned in the shared latent space while maximizing their separation93

from representations of other time series samples. This allows the model to learn more discriminative rep-94

resentations on top of the robust features captured by the first module.95

96

The main contributions of this work are summarized as follows:97

• We propose CDPCC, a novel contrastive learning framework for time series representation learning.98

CDPCC samples contrastive pairs along both the temporal and spectral domains, exploiting the time-99

frequency cross-correlations inherent in time series data.100

• We introduce a novel cross-domain predictive contrasting module that learns robust representations101

by designing a challenging cross-domain prediction task. Additionally, we incorporate a cross-domain102

contextual contrasting module to further learn discriminative features.103

• We conduct comprehensive experiments of our proposed CDPCC framework using simulated and104

industrial datasets. The experimental results demonstrate that the learned representations are effective105

for fault detection tasks across supervised learning, semi-supervised learning, and transfer learning106

settings.107

2 Background & Related Work108

Data-driven fault detection. Traditionally, data-driven fault detection methods have relied on feature109

extraction and dimensionality reduction. Feature extraction identifies important local or global patterns,110

such as statistical measures (e.g., mean, variance, range), which are then used as inputs to a shallow clas-111

sifier for fault detection [23, 24]. Dimensionality reduction tools project high-dimensional noisy data onto112

a lower-dimensional space where key information is concentrated [25]. Commonly used techniques for fault113

detection include principal component analysis (PCA) [26, 27], partial least squares (PLS) [28, 29], and114

canonical correlation analysis (CCA) [30, 31].115

116

3

Supervised learning Unsupervised learning

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?
?

?

?

?

?

Self-supervised learning

𝑧 2 𝑧 2𝑧 2

𝑧1 𝑧1 𝑧1

Figure 1: A high-level comparison of three representation learning paradigms. In supervised learning
(left), models use class labels (blue and orange circles) to separate samples from different classes.
In unsupervised learning (middle), models identify patterns within unlabeled data points (grey
circles). Self-supervised learning (right) generates pseudo-labels from the data (striped circles) and
trains models to distinguish between them. This figure is inspired by a similar illustration in [37].

Recently, deep learning models have gained significant research interest for industrial fault detection117

due to their ability to learn meaningful representations directly from data, bypassing the tedious feature118

extraction process [32, 33]. However, supervised learning, which dominates modern deep learning-based fault119

detection research, requires large amounts of labeled data [34]. Acquiring such labeled data is challenging120

in industrial settings due to the harsh operating conditions that make real-time fault recording difficult.121

In addition, manual labeling is costly, time-consuming, and requires extensive process knowledge. Hence,122

unsupervised learning has been explored as an alternative [35, 36]. However, unsupervised learning relies on123

assumptions about data structure rather than fault-specific patterns, making it less effective for accurately124

identifying and classifying faults. To improve learning from abundant unlabeled data, SSL has emerged as125

a promising paradigm for fault detection.126

127

Self-supervised learning (SSL). SSL is a newly popular learning paradigm that involves predictive128

tasks where the supervisory signal comes directly from the data without the need for explicit labels. While129

SSL has only recently become a popular research focus, its origins can be traced back to ideas that were130

initially categorized under unsupervised learning [38]. Interestingly, early research efforts that are now con-131

sidered foundational to SSL— such as DeepCluster [39], Instance Discrimination [40], and context prediction132

[41]— were originally introduced as unsupervised learning methods. The rebranding of these methods was133

driven by the growing recognition that labeling these methods as purely unsupervised was somewhat mis-134

leading [42]. Unlike traditional unsupervised learning, where the goal is often to discover hidden structures135

in the data without any supervision, SSL relies on predictive tasks that provide an internal supervisory signal136

[43]. This signal, while not derived from human annotations, is nonetheless a form of supervision because137

it guides the training process based on the inherent structure of the data. As a result, SSL has emerged138

as a distinct learning paradigm, distancing itself from other learning paradigms. Figure 1 illustrates the139

distinction between SSL and other representation learning paradigms.140

141

Contrastive learning for time series. Contrastive learning, a popular type of SSL, aims to learn142

useful representations by contrasting positive pairs against negative ones. This approach involves sampling143

pairs from the data to learn a representation space where positive pairs are pulled together while negative144

pairs are pushed apart [19, 20]. Following the recent success of contrastive learning in computer vision [44–145

47] and NLP [48, 49], there has been growing research interest in applying these ideas to time series data.146

4

a) CPC b) SimCLR

~𝒯

d) T-FC

~𝒯2

~𝒯1

c) TCC

Figure 2: Positive pair selection strategies in state-of-the-art contrastive learning methods for time
series. (a) CPC: Positive pairs are created by contrasting past and future segments from the same
time series. (b) SimCLR: The original time series and its augmented view form a positive pair. (c)
TCC: Positive pairs are formed by contrasting the context of one augmented view with the future
time steps of another, as well as between the contexts of the two augmented views. (d) T-FC:
Positive pairs consist of the time-domain signal and its corresponding spectral representation.

However, time series data present unique challenges, such as temporal dependencies, irregular sampling, and147

varying semantic meanings, making it difficult to directly apply methods developed for other domains. As148

a result, several approaches have emerged as baselines for contrastive learning for time series.149

150

Contrastive Predictive Coding (CPC) is designed to capture temporal features by predicting future151

data points in the latent space using autoregressive models [18]. It constructs a contrastive loss to maximize152

mutual information between data from the same time series, preserving temporal dependencies in the learned153

latent representations. SimCLR uses data augmentations to generate positive pairs from the same data154

points and applies contrastive loss to maximize the similarity between them [50]. The goal is to learn155

representations that are invariant to augmentations, as they typically do not change the underlying semantic156

meaning. Although SimCLR was initially designed for images, [51] adapted it for time series (EEG signals)157

by developing time series-specific augmentations. Next, Temporal Contextual Contrasting (TCC) combines158

two tasks: a cross-view prediction task (temporal contrasting) and a contrastive task (contextual contrasting)159

[52]. The cross-view prediction task helps to learn robust temporal features, while the contrastive task focuses160

on learning more discriminative features. Time-Frequency Consistency (T-FC) leverages the rich spectral161

information in time series data by ensuring that time-based and frequency-based representations from the162

same sample are closer to each other in the latent space than representations from different samples [53].163

Overall, the main difference between these methods lies in their strategies for selecting contrastive pairs.164

Each method employs a different sampling policy to construct positive pairs. Figure 2 summarizes the165

various positive pair selection strategies adopted by the aforementioned methods.166

167

Rationale for CDPCC. Employing predictive tasks that span different domains (i.e., time and fre-168

quency domains) forces the model to learn representations that are consistent and informative in both169

5

domains. The time-domain signal and its frequency transform (e.g. Fourier spectrum) reflect the same170

underlying data from complementary perspectives: the time domain represents temporal order and local171

variations, while the frequency domain emphasizes periodicities and frequency content. By predicting across172

these domains, we encourage the model to encode information that allows one representation to be mapped173

to or predict the other. This cross-domain prediction acts as a form of multi-view self-supervision, akin to174

learning from two different modalities of the same data. As a result, the learned representations become175

invariant to domain-specific noises and capture variations that are consistent in both time and frequency176

domains.177

178

Traditional time series contrastive learning methods often rely on intra-domain (i.e., same domain)179

comparisons. For instance, contrasting different augmented time series samples with each other in the time180

domain alone. While this can allow the model to learn temporal features, the model might overfit to patterns181

visible only in that domain. On the other hand, cross-domain (time↔ frequency) prediction is fundamentally182

more challenging and constraining because the model must learn features that map information between how183

a pattern looks in time and how it looks in frequency. This can allow the model to reveal latent structures184

that might be hidden when viewed from a single domain. For instance, a transient spike in the time domain185

corresponds to a broad range of frequencies in the spectrum.186

3 Problem Formulation187

Given a labeled time series dataset D = {X,Y } = {(x1, y1), (x2, y2), . . . , (xN , yN)} consisting of N samples,188

where each sample xi has p channels and L time steps (i.e., xi ∈ RL×p) and is associated with a class label189

yi ∈ {0, . . . , C − 1}, with C denoting the total number of classes. The goal is to learn a non-linear encoder190

gE that maps each xi to a representation hi that captures its underlying structure. During the pre-training191

phase, the encoder is trained in a self-supervised manner by optimizing a contrastive loss function using192

only the input data X, disregarding the labels Y . After pre-training, gE and its optimized parameters Θ193

are employed for downstream tasks. While the proposed method is applicable to all time series data, in194

this work, we specifically focus on fault detection tasks, where the classification task involves distinguishing195

between different operating conditions. Specifically, X represents process measurements over time, and Y196

indicates the process state (e.g., normal or faulty).197

198

The learned representations are evaluated using three common protocols, as illustrated in Figure 3. In199

linear evaluation, gE parameters Θ remain unchanged, and a new linear layer is added on top of gE . Only200

this new layer is trained using the labeled data D for the downstream task. In fine-tuning, a new linear201

layer is also added, but the entire model, including both gE and the new layer, is retrained with the labeled202

data D. Transfer learning involves training the pre-trained encoder and a new linear classifier on a different203

dataset than the one used for self-supervised pre-training.204

205

In this work, we employ two evaluation protocols: linear evaluation on the same dataset (Step 2-I in206

Figure 3), which assesses the quality of the learned features, and transfer learning (i.e., fine-tuning on a207

different dataset, Step 2-III in Figure 3), which evaluates the generalizability and transferability of the208

representations learned during self-supervised pre-training.209

6

v

Encoder 𝑔𝐸

Projection
head

(𝑋, 𝑌)

𝑋’

ℒ

Step 1: SSL pre-training

v

Encoder 𝑔𝐸

Linear
Classifier

(𝑋, 𝑌)

෠𝑌

Step 2-I: Linear Evaluation

v

Encoder 𝑔𝐸

Linear
Classifier

(𝑋, 𝑌)

෠𝑌

Step 2-II: Fine-tuning

frozen

Step 2-III: Transfer Learning

(𝑋, 𝑌)

Encoder 𝑔𝐸

Linear
Classifier

෠𝑌

ℒ ℒ ℒ

𝒟1 𝒟1 𝒟1 𝒟2

gradient flow

Figure 3: A conceptual illustration of SSL training and evaluation protocols. Step 1: SSL Pre-
training: The encoder is trained in a self-supervised manner using a contrastive loss, exploiting the
inherent structure of X without relying on class labels Y . A projection head is only used during
pre-training but is discarded in evaluation. The goal of SSL is to learn an encoder that can extract
meaningful and generalizable features from raw input data. After pre-training, the learned encoder
is evaluated on a downstream classification task using labeled data D. Three common evaluation
protocols are used: I) Linear evaluation: The pre-trained encoder is frozen, and a linear classifier
is added. Only the classifier is trained on the labeled dataset to map the embeddings to class
predictions, and the encoder parameters remain unchanged. II) Fine-tuning: A linear classifier is
added on top of the pre-trained encoder. Both the classifier and the encoder are updated during
supervised training. III) Transfer learning: The pre-trained encoder and the added linear classifier
are trained on a different dataset than the one used for self-supervised pre-training.

7

……

𝑥

……

𝑠1
𝑇 𝑠2

𝑇 𝑠𝑘𝑝𝑎𝑠𝑡

𝑇 𝑠𝑘𝑝𝑎𝑠𝑡+1

𝑇 𝑠𝐾
𝑇 𝑠𝑘𝑝𝑎𝑠𝑡+1

𝐹 𝑠𝑘𝑝𝑎𝑠𝑡

𝐹 𝑠2
𝐹 𝑠1

𝐹

……

𝑠𝐾
𝐹

𝑔𝐸
𝑇 𝑔𝐸

𝑇 𝑔𝐸
𝑇 𝑔𝐸

𝑇 𝑔𝐸
𝑇 𝑔𝐸

𝐹 𝑔𝐸
𝐹 𝑔𝐸

𝐹 𝑔𝐸
𝐹𝑔𝐸

𝐹

𝑔𝐴𝑅
𝑇 𝑔𝐴𝑅

𝐹

𝑐𝑇 𝑐𝐹

𝑔𝑝
𝑇 𝑔𝑝

𝐹

𝑥 ~𝐹𝐹𝑇

Maximize Similarity

ℒ𝑃
𝐹→𝑇 ℒ𝑃

𝑇→𝐹

ℒ𝐶

𝐡𝐓 𝐡𝐅

𝐬𝐓 𝐬𝐅

𝑧𝑇 𝑧𝐹

Time series windowing

Cross-domain predictive contrasting

Cross-domain contextual contrasting

Figure 4: Overall architecture of the proposed CDPCC framework. Our CDPCC model has six
components: time- and frequency-domain encoders (gTE and gFE), autoregressive models (gTAR and
gFAR), and non-linear projection heads (gTP and gFP). First, the input time series x is split into
K non-overlapping frames sT, each transformed into its spectral view sF via FFT. In the cross-
domain predictive contrasting module, time-based and frequency-based representations are produced
(hT = gTE(s

T) and hF = gFE(s
F)). The autoregressive models summarize the dynamics of the first

kpast frames (here, kpast = 3) to generate context vectors, which are then used to predict future
embeddings in the other domain. The cross-domain contextual contrasting module further aligns
these context vectors to learn discriminative feature representations.

4 Methodology210

In this section, we describe the proposed CDPCC framework in detail. The overall architecture of the211

CDPCC framework is shown in Figure 4. First, we slice the input data into non-overlapping frames of equal212

size. Each frame is then subjected to a fast Fourier transform (FFT) to extract its frequency components.213

Next, we introduce a cross-domain predictive contrasting module designed to capture the cross-domain214

dynamics of the data using an autoregressive model. In this module, the model performs a cross-domain215

prediction task, where it predicts the future embeddings of one domain using the context (past) of the other216

domain. We further maximize the agreement between the contexts of the same sample in the cross-domain217

contextual contrasting module. This contrastive task makes the final representation more discriminative.218

The following subsections provide a detailed description of each component.219

4.1 Time series windowing220

The CDPCC framework focuses on learning segment-level representations, where each frame or segment221

of the time series is encoded separately. In contrast to instance-level representations, which describe the222

entire time series, segment-level representations capture fine-grained details that might be overlooked in an223

8

instance-level approach. This is particularly important for tasks like fault detection, where faults may occur224

within short time intervals or with small magnitudes. To facilitate segment-level representation learning, we225

apply time series windowing to the input data. Specifically, a time series xi is split into K non-overlapping226

frames, each of size l, resulting in sTi = {sTi,1, sTi,2, . . . , sTi,K}, as defined below:227

sTi,k = xi[(k − 1) · l : k · l], 1 ≤ k ≤ K (1)

The key objective of contrastive learning methods is to maximize the similarity between different views of228

the same sample while minimizing its similarity to other samples. Typically, data augmentation techniques229

are employed to generate these different views. Hence, it is important to employ proper data augmentation230

techniques that preserve the underlying semantic meaning of the data. However, selecting appropriate aug-231

mentations can be challenging and is often highly specific to the task and data at hand. Previous work has232

shown that the composition of multiple augmentation methods can yield better downstream performance233

than relying on a single technique [50, 54]. Despite this, time series data presents unique challenges due234

to its inherent temporal dependencies. For example, common augmentations, such as cropping or shuffling,235

can disrupt the underlying temporal structures.236

237

In our CDPCC framework, instead of relying on augmentations to create different views, we exploit the238

inherent relationship between the time and frequency domains, which are distinct yet complementary views239

of the same data. The transformation between these domains, grounded in signal processing theory, ensures240

an invariance that remains valid across different time series datasets. Specifically, for each time-domain241

frame sTi,k, we first apply Hamming windowing to prevent spectral leakage. Then, we perform FFT on the242

Hamming-windowed frames to obtain the corresponding spectral view sFi,k, as defined below, i.e.:243

sFi,k = FFT(sTi,k ⊙ wh) (2)

where wh is the Hamming window function, which has the form:244

wh[n] = 0.54− 0.46 cos

(
2πn

l − 1

)
, 0 ≤ n < l (3)

Since FFT produces complex-valued outputs, we use the magnitude spectrum of the first l/2 frequency245

components. This ensures that we capture only the meaningful frequency components while respecting246

the symmetric property of the FFT output. This transformation results in the spectral representation247

sFi = {sFi,1, sFi,2, . . . , sFi,K} which serves as a natural alternative view to the time-domain representation sTi248

without the need for task-specific augmentations. Note that we use the superscript T to denote the time249

domain, while the superscript F denotes the frequency domain.250

4.2 Cross-domain predictive contrasting251

The cross-domain predictive contrasting module deploys a contrastive loss to capture cross-domain corre-252

lations and dynamic features between the time and frequency domains. After constructing the contrastive253

pairs sTi and sFi , we pass each of them to a domain-specific encoder to extract temporal and spectral features.254

Specifically, the time-domain encoder gTE encodes each frame sTi,k into a higher-dimensional embedding hT
i,k255

(i.e., hT
i,k = gTE(s

T
i,k)), while the frequency-domain encoder gFE transforms each frequency frame into its cor-256

responding embedding hF
i,k (i.e., hF

i,k = gFE(sFi,k)). The resulting embeddings for the time domain are denoted257

as hT
i = {hT

i,1, h
T
i,2, . . . , h

T
i,K}, where K is the total number of frames and hT

i,k ∈ Rd, with d representing258

9

the embedding dimension. Similarly, the frequency-domain embeddings are represented as hF
i , where the259

superscript F replaces T to indicate the frequency domain.260

261

Given the latent representations hT
i and hF

i , we use an autoregressive model gAR to summarize the262

dynamics of the first kpast frames in each domain. The autoregressive model gAR takes in the embeddings263

up to the kth
past frame and produces a context vector ci = gAR(hi,k≤kpast), where ci ∈ Rm. The context264

vector obtained from the time domain cTi is then used to predict the future spectral embeddings (hF
i,k for265

k > kpast), and vice versa.266

267

To predict future embeddings, we employ a simple log-bilinear model as proposed in [18]. The log-bilinear268

model serves as the score function that computes a similarity score between the predicted future embeddings269

and the actual embeddings. Specifically, the score function evaluates how well the context vector from one270

domain predicts the future embeddings in the opposite domain. We use one score function for each domain.271

Formally, the score functions are defined as:272

fT→F
i,k (cTi , h

F
i,k) = exp

(
(hF

i,k)
⊤WT→F

k cTi

)
, kpast < k ≤ K (4)

fF→T
i,k (cFi , h

T
i,k) = exp

(
(hT

i,k)
⊤WF→T

k cFi

)
, kpast < k ≤ K (5)

where WT→F
k and WF→T

k are learnable transformation matrices, each in Rd×m, and are unique to each step273

k between kpast and K.274

275

The key objective of the cross-domain prediction task is to maximize the similarity between the predicted276

cross-domain embeddings and the true ones of the same sample while minimizing the similarity with the277

future embeddings of other samples in the batch DB . Consequently, we compute the prediction losses LT→F
P278

and LF→T
P as follows:279

LT→F
P = − 1

NB(K − kpast)

NB∑
i=1

K∑
k=kpast+1

log

(
exp

(
(hF

i,k)
⊤WT→F

k cTi
)∑

n∈DB
exp ((hF

n)⊤W
T→F
k cTi)

)
(6)

LF→T
P = − 1

NB(K − kpast)

NB∑
i=1

K∑
k=kpast+1

log

(
exp

(
(hT

i,k)
⊤WF→T

k cFi
)∑

n∈DB
exp ((hT

n)⊤W
F→T
k cFi)

)
(7)

where, NB denotes the batch size.280

4.3 Cross-domain contextual contrasting281

The cross-domain contextual module is designed to learn discriminative features by maximizing the align-282

ment of time- and frequency-domain contexts of the same sample in the latent time-frequency space. This283

module uses a non-linear projection head, denoted as gp, which maps the context vectors cTi and cFi from284

the time and frequency domains into a lower-dimensional space where the contrastive loss is computed.285

Specifically, the time-domain context vector cTi is projected by gTp into the lower-dimensional representation286

zTi , while the frequency-domain context vector cFi is projected by gFp into zFi . Prior research suggests that287

adding projection heads in contrastive learning can reduce computational complexity and improve the gen-288

eralization of learned features [50, 55].289

290

10

Given a batch of NB samples, we obtain two contexts for each sample, one from each domain, resulting291

in 2NB contexts. The context representation pair (zTi , z
F
i) constitutes a positive pair, while the remaining292

(2NB–2) context representations from other samples in the batch serve as negative pairs. The goal is to293

maximize the similarity between the positive pair (the context representations of the same sample) while294

minimizing the similarity between the negative pairs. The cross-domain contextual contrastive loss, LC , is295

defined as follows:296

LC = − 1

NB

NB∑
i=1

log

(
exp

(
sim(zTi , z

F
i)/τ

)∑2NB
j=1 1[i̸=j] exp

(
sim(zTi , z

F
j)/τ

)) (8)

where sim(a, b) = a⊤b/(∥a∥∥b∥) denotes the dot product between two normalized vectors a and b (i.e., co-297

sine similarity), 1[i̸=j] is an indicator function that equals to 1 when i ̸= j, and τ is a temperature parameter.298

299

The total CDPCC loss, LT , combines the two predictive contrasting losses, LT→F
P and LF→T

P , with the300

contextual contrasting loss, LC , and is defined as follows:301

LT = λ1

(
LT→F

P + LF→T
P

)
+ λ2LC (9)

here, λ1 and λ2 are fixed scalar hyperparameters that control the relative contributions of each loss term.302

5 Experiments303

We evaluate the proposed CDPCC framework against seven baseline methods across three diverse datasets.304

The performance is assessed in the context of fault detection under both supervised learning and transfer305

learning scenarios. Detailed descriptions of the experimental setups and results are provided in the following306

subsections.307

5.1 Experimental set-up308

This subsection outlines the experimental framework used to evaluate the proposed CDPCC framework.309

This includes a detailed description of the datasets, the baseline methods used for benchmarking, and the310

training and testing protocols followed.311

5.1.1 Datasets312

We evaluate our proposed model using three publicly available benchmarks. First, we use the simulated313

Continuous Stirred Tank Heater (CSTH) dataset to assess the performance in a controlled environment.314

Next, we test the model on the industrial Arc Loss dataset, which offers a large-scale setting to evaluate the315

robustness of the CDPCC framework. Additionally, we use the Fault Diagnosis (FD) dataset to examine316

the transferability of the learned features in a transfer learning setup. Specifically, we use the FD-A dataset317

(collected under operating condition A) for pre-training and the FD-B dataset (collected under operating318

condition B) for fine-tuning. Table 1 summarizes key statistics for each dataset.319

320

Continuous stirred tank heater (CSTH) dataset. The CSTH system simulates the dynamic be-321

havior of a nonlinear process where hot water and cold water are mixed and heated by steam in a tank [56].322

The system operates under a closed-loop control mechanism to regulate the tank temperature, level, and323

CW flow. Measurements include temperature, CW flow, and tank level, recorded under normal or faulty324

11

Table 1: Datasets statistics.

Dataset L p Ntrain Nval Ntest C
CSTH 200 3 6300 900 1800 2

Arc Loss 1101 96 2258 323 645 2
FD-A 5120 1 8184 2728 - 3
FD-B 5120 1 128 64 13450 3

12.5

15.0

17.5

Le
ve

l (
m

A)

 Y = 0

12

14

16
 Y = 1

10

15 ramp

 Y = 1

12

14

16
 Y = 1

10

11

12

Te
m

pe
ra

tu
re

 (m
A)

10.00

10.25

10.50

10.75

10.0

10.5

11.0

8

9

10

pulse

0 50 100 150 200
Time (s)

10

15

20

CW
 fl

ow
 (m

A)

0 50 100 150 200
Time (s)

5.0

7.5

10.0

12.5

oscillations

0 50 100 150 200
Time (s)

6

8

0 50 100 150 200
Time (s)

7.5

10.0

12.5

15.0

Figure 5: Visualization of normal and faulty operating conditions in the CSTH dataset. The first
column, (Y = 0), represents normal operation, while the other three columns, (Y = 1), correspond to
faulty operating conditions. Three different types of faults are considered: i) oscillations in CW flow
measurements, ii) a ramp change in tank level measurements, and iii) an abrupt pulse disturbance
in temperature measurements.

operating conditions. Faults include abrupt pulse changes in level transmitter signals, random parameter325

changes in the temperature controller, and sinusoidal noise in the CW flow controller output. The goal is to326

classify each input signal as either corresponding to normal (Y = 0) or faulty (Y = 1) conditions. Figure 5327

provides a visual comparison between process measurements recorded during a normal operating condition328

(Y = 0) and three faulty operating conditions (Y = 1).329

330

Arc Loss dataset. The Arc Loss benchmark dataset originates from an industrial pyrometallurgical331

smelting process, where high-grade oxidized ore deposits are converted into refined base metals [57]. This332

process involves multiple stages, including grinding, drying, dehydrating, and smelting in a direct current333

electric arc furnace (DC EAF). The DC EAF employs plasma arcs to produce the necessary heat but is334

prone to arc loss faults, which are disruptions that lead to temperature fluctuations and decreased smelting335

efficiency. The dataset captures operational data to accurately classify whether the data correspond to nor-336

mal conditions (Y = 0) or faulty conditions due to an arc loss event (Y = 1). The dataset was preprocessed337

following the workflow outlined in [58]. Figure 6 illustrates the severity of the arc loss event on the process338

by providing a side-by-side comparison of process measurements recorded during normal (Y = 0) and faulty339

(Y = 1) operating conditions. Compared to stable operating conditions, the faulty regime exhibits increased340

variability, abrupt changes, and fluctuations in multiple process variables.341

342

Fault diagnosis (FD) dataset. The FD dataset was collected from an electromechanical drive system343

12

0
200

400
600

800
1000

Time Steps 0

20

40

60

80

100
Va

ria
ble

 In
de

x

4

3

2

1

0

1

2

Am
pl

itu
de

Y = 0

0
200

400
600

800
1000

Time Steps 0

20

40

60

80

100

Va
ria

ble
 In

de
x

4

3

2

1

0

1

2

Am
pl

itu
de

Y = 1

Am
pl

itu
de

Figure 6: Visualization of normal and arc loss operating conditions in the Arc Loss dataset. The
left-hand side figure (Y = 0) represents normal operation, where process variables remain relatively
stable. The right-hand side figure (Y = 1) corresponds to faulty operation due to an arc loss event.

designed to monitor the condition of rolling bearings and detect failures [59]. The dataset includes three344

classes: undamaged (Y = 0), inner damaged (Y = 1), and outer damaged (Y = 2) bearings. Figure 7345

provides a visual comparison of time-domain vibration signals recorded under the three conditions. Data346

were collected under four different conditions (A, B, C, and D), each representing a distinct domain. We use347

the FD-A and FD-B subsets to evaluate the transferability of the learned features. Specifically, we pre-train348

our models on the FD-A dataset and then fine-tune and test them using the FD-B dataset. To formulate349

a realistic transfer learning scenario, the fine-tuning set (FD-B) is limited to a small subset of 128 samples350

only.351

5.1.2 Baselines352

We evaluate our proposed model against seven baselines. This includes four state-of-the-art time series353

contrastive learning methods: SimCLR, CPC, TCC, and T-FC. We also include a non-deep learning354

model, DTW+1NN, a similarity measure approach that sets a baseline performance level. To evaluate the355

impact of pre-training, we consider two additional scenarios: (i) Random Initialization (RI): training356

a linear classifier on top of randomly initialized and frozen encoders gTE and gFE ; and (ii) Supervised:357

training the CDPCC framework in a fully supervised manner. Both use the same architecture as the358

CDPCC framework employed for contrastive learning. We focus our comparison on time series contrastive359

learning frameworks rather than traditional fault detection methods, as the training protocols for these360

approaches differ fundamentally. We refer interested readers to our previous work [9, 58], where traditional361

fault detection methods are evaluated on the CSTH and Arc Loss datasets.362

5.1.3 Technical details363

We employ a hold-out strategy for model evaluation. We conduct a random search over a predefined search364

space to identify a well-performing model configuration. The best-performing models in the validation phase365

13

0 1000 2000 3000 4000 5000

2

0

2

Am
pl

itu
de

 Y = 0 (Healthy)

0 1000 2000 3000 4000 5000

0.5

0.0

0.5

Am
pl

itu
de

 Y = 1 (Inner Fault)

0 1000 2000 3000 4000 5000
Time Steps

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

 Y = 2 (Outer Fault)

Figure 7: Visualization of time-domain vibration signals in the FD dataset. Each plot represents a
vibration signal recorded under different bearing conditions: (top) healthy (Y = 0), (middle) inner
fault (Y = 1), and (bottom) outer fault (Y = 2).

are then evaluated on the testing set, with results reported on this final set. We use a 3-block 1D convolu-366

tional architecture followed by a non-linear projection layer for both gTE and gFE . For simplicity, we opted367

for a standard LSTM architecture with two layers for gTAR and gFAR. The projection heads gTP and gFP368

are 2-layer fully connected networks without parameter sharing. Readers can find the hyperparameter set-369

tings for each dataset in the respective configuration files (/config files/*) in the paper GitHub repository.370

371

The models are trained for 100 epochs, with early stopping based on validation performance. We set372

τ = 0.2, λ1 = 0.7, and λ2 = 0.3 in the loss function. Results are reported as the mean and standard deviation373

across five independent runs using the same data split. The standard deviation for DTW+1NN results is374

zero, as the model is deterministic.375

5.2 Results376

This subsection presents the results for downstream fault detection performance across all datasets for our377

proposed CDPCC and baseline methods. First, we conduct a linear evaluation experiment to evaluate the378

quality of the learned representations in our proposed approach compared to those learned using baseline379

approaches. We further examine the transferability of the learned features by conducting a transfer learning380

experiment.381

5.2.1 Linear evaluation of learned representations382

To evaluate the performance of our CDPCC model, we employ a linear evaluation protocol. In this eval-383

uation, all parameters of the pre-trained model are frozen, and a new linear layer is added to map the384

14

representations to predictions. This linear layer is then trained on the labeled training set.385

386

Five evaluation metrics are used to comprehensively evaluate the performance. Accuracy is calculated387

as the ratio of correctly predicted samples to the total number of testing samples. Precision (i.e., positive388

predictive value (PPV)) measures the percentage of accurately predicted faulty samples out of all faulty pre-389

dictions, while recall (i.e., true positive rate (TPR)) quantifies the proportion of correctly predicted faulty390

samples compared to the total number of faulty samples. The false positive rate (FPR) represents the ratio391

of false positive predictions to the total number of normal samples. To maintain a consistent notation where392

greater values indicate better performance, we instead report (1 - FPR). Next, the F1 score represents the393

harmonic mean of precision and recall. The comparison is performed using the CSTH and Arc Loss datasets.394

The experimental results are summarized in Table 2.395

396

The linear evaluation results in Table 2 demonstrate that CDPCC outperforms state-of-the-art time397

series contrastive learning methods across CSTH and Arc Loss datasets. It ranks highest on the Arc Loss398

dataset and second on the CSTH dataset, with results close to the supervised approach. Moreover, CDPCC399

consistently outperforms the DTW+1NN and RI baselines by a significant margin. This indicates that400

contrastive pre-training allows the model to learn informative feature representations that are useful for401

downstream tasks.402

403

Next, CDPCC achieves superior performance relative to instance-level contrastive learning methods (e.g.,404

SimCLR and T-FC). Unlike models that encode an entire time series into a single embedding, CDPCC pre-405

serves localized temporal variations, which are critical for fault detection tasks. The superior performance406

of segment-level contrastive learning methods (e.g., CDPCC, CPC, and TCC) relative to instance-level con-407

trastive learning methods suggests that local temporal features are more valuable than global features in408

time series for fault detection tasks.409

410

Despite CPC, TCC, and CDPCC use predictive contrastive learning (i.e., predicting future embeddings411

from the past), CDPCC achieves better performance. CPC and TCC predict future embeddings within the412

same domain (time domain), while CDPCC performs cross-domain prediction between the time and fre-413

quency domains. This forces the model to learn consistent and informative representations in both domains.414

Furthermore, CDPCC surpasses T-FC, which only aligns time and frequency representations without explic-415

itly incorporating predictive objectives. The predictive contrastive objective in CDPCC enhances feature416

robustness, leading to better fault detection performance.417

418

Finally, SimCLR relies on manual augmentations to generate contrastive pairs. These augmentations419

introduce arbitrary transformations that may not always preserve the underlying time series semantics,420

leading to degraded representations. In contrast, CDPCC leverages the natural transformation between421

time and frequency domains to generate contrastive pairs, which makes CDPCC more robust and eliminates422

the need for manual augmentation tuning.423

5.2.2 Transfer learning experiment424

We conduct a transfer learning experiment to evaluate the transferability of the features learned by our CD-425

PCC model. The evaluation is performed using the FD-A and FD-B datasets in a transfer learning setting.426

Specifically, we pre-train the models on the FD-A dataset (source dataset) and then fine-tune and test them427

15

Table 2: Performance Comparison of CDPCC and baseline approaches on CSTH and Arc Loss
datasets. Bold values indicate the best performance in each metric.

Model Accuracy (%) PPV (%) TPR (%) 1-FPR (%) F1 (%)

CSTH
DTW+1NN 81.17 ± 0.00 96.38 ± 0.00 64.89 ± 0.00 97.55 ± 0.00 77.56 ± 0.00
RI 87.72 ± 0.74 90.71 ± 1.61 82.93 ± 1.72 92.13 ± 1.59 86.62 ± 0.83
Supervised 99.55 ± 0.18 99.71 ± 0.25 99.40 ± 0.23 99.71 ± 0.25 99.55 ± 0.18
SimCLR 82.42 ± 2.40 86.74 ± 2.72 76.37 ± 4.11 88.18 ± 2.67 81.16 ± 2.76
CPC 97.32 ± 0.60 98.69 ± 1.10 95.88 ± 0.84 98.71 ± 1.10 97.26 ± 0.60
TCC 97.25 ± 0.43 98.04 ± 0.74 96.08 ± 0.78 98.06 ± 0.74 97.05 ± 0.46
T-FC 95.59 ± 0.65 98.79 ± 0.22 92.07 ± 1.20 98.86 ± 0.19 95.31 ± 0.73
CDPCC 99.29 ± 0.18 99.53 ± 0.23 99.04 ± 0.30 99.53 ± 0.23 99.29 ± 0.18

Arc Loss
DTW+1NN 64.96 ± 0.00 65.52 ± 0.00 64.31 ± 0.00 65.63 ± 0.00 64.91 ± 0.00
RI 68.13 ± 1.50 65.47 ± 1.40 78.57 ± 3.97 57.41 ± 3.88 71.37 ± 1.69
Supervised 75. 62 ± 0.60 71.86 ± 1.06 85.14 ± 3.06 65.93 ± 2.81 77.89 ± 0.88
SimCLR 66.28 ± 1.51 62.17 ± 0.85 83.93 ± 3.27 47.84 ± 1.42 71.41 ± 1.65
CPC 69.82 ± 1.12 69.13 ± 1.54 76.56 ± 7.45 64.76 ± 6.08 72.41 ± 2.45
TCC 74.88 ± 0.47 71.19 ± 2.32 85.15 ± 5.82 64.39 ± 6.21 77.35 ± 1.18
T-FC 69.29 ± 0.90 67.13 ± 0.55 77.79 ± 1.24 61.07 ± 0.80 72.06 ± 0.76
CDPCC 75.88 ± 0.67 72.95 ± 1.64 83.22 ± 3.68 68.39 ± 3.92 77.96 ± 0.94

on the FD-B dataset (target dataset). In this comparison, we exclude the DTW+1NN and random initializa-428

tion models. The performance is evaluated using two metrics: accuracy and macro-averaged F1 score (MF1).429

430

As reported in Table 3, contrastive learning methods outperform the supervised approach in the transfer431

learning experiment. This is because contrastive learning methods learn more generalizable representations432

compared to supervised learning, which tends to extract dataset-specific features. Moreover, CDPCC is the433

best-performing model among all contrastive learning methods.434

435

Notably, T-FC and CDPCC achieve the highest performance, showing that incorporating time and fre-436

quency domain information improves transferability (generalizability). Unlike other contrastive learning437

methods, which construct positive pairs based only on the temporal axis, T-FC and CDPCC promote time-438

frequency consistency, ensuring that representations remain invariant across datasets. While T-FC aligns439

time and frequency representations, CDPCC further improves cross-domain learning by introducing a predic-440

tive contrastive task between the time and frequency domains. This forces the model to learn representations441

that are not only aligned but also predictive across domains, leading to superior generalization.442

Table 3: Transfer learning experiment results. Results are reported on FD-B dataset. Bold values
indicate the best performance in each column.

Model Accuracy (%) MF1 (%)

Supervised 60.87 ± 4.37 56.77 ± 6.42
SimCLR 54.39 ± 5.62 57.99 ± 12.86
CPC 79.33 ± 1.33 84.63 ± 1.01
TCC 84.97 ± 1.14 88.98 ± 0.83
T-FC 89.34 ± 3.79 91.62 ± 8.26
CDPCC 89.86 ± 0.52 92.55 ± 0.38

16

5.3 Analysis443

In this subsection, we evaluate the performance of the CDPCC model under various conditions. We first444

examine its effectiveness with limited labeled data, then analyze the impact of key hyperparameters, and445

finally explore the contributions of different model components.446

5.3.1 Few-labeled data scenarios447

In this section, we evaluate the effectiveness of the CDPCC model in scenarios where only a small amount448

of labeled data is available. We compare the performance of two classifiers: one trained directly on raw data449

features and another trained on features extracted using the proposed CDPCC model. Both classifiers are450

trained on varying amounts of labeled data, specifically 1%, 5%, 10%, 25%, 50%, 75%, and 100% of the451

available training set. This experiment uses a simple 3-block 1D CNN model as the classifier.452

453

Supervised Baseline. First, we examine the performance of the supervised 1D-CNN classifier across454

different sizes of labeled data for both the CSTH and Arc Loss datasets. On the CSTH dataset, the classifier455

achieves 79.6% accuracy with just 1% of labeled data, improving to 98.1% when the entire dataset is used.456

On the Arc Loss dataset, the classifier starts at 65.5% accuracy with 1% labeled data and reaches 72.5%457

with the entire dataset. These results are shown in Figure 8 (blue curve).458

459

CDPCC Model. Next, we explore whether the CDPCC model improves data efficiency compared460

to the supervised baseline. We follow the same training approach as before, but this time, the 1D-CNN is461

trained on features extracted by the CDPCC model rather than directly on raw data. The feature extractor462

from the CDPCC model remains fixed during the training process, and the 1D-CNN classifier is trained463

until convergence. The results are presented in Figure 8 (orange curve).464

465

Training the 1D-CNN classifier on CDPCC-extracted features results in noticeable improvements in466

accuracy. For instance, with just 1% of labeled data, the CDPCC-based classifier achieves 86.2% accuracy467

on the CSTH dataset and 67.2% on the Arc Loss dataset, representing a 6.6% and 1.7% improvement over468

the baseline, respectively. Even with the entire dataset, the CDPCC-based classifier continues to outperform469

the supervised baseline. Furthermore, the CDPCC model demonstrates better data efficiency; for example,470

with 50% of the labeled data, it surpasses the supervised baseline classifier trained on the full dataset for471

both CSTH and Arc Loss datasets. Similarly, with only 1% of labeled data, the CDPCC-based classifier472

achieves better performance than the baseline using 5% of the labels (i.e., a 5× gain in data efficiency).473

5.3.2 Sensitivity analysis474

Here, we perform sensitivity analysis experiments to examine the influence of two key hyperparameters: the475

total number of frames, K, and the number of predicted future frames, (K − kpast). The parameter K is476

related to the time series windowing module, while kpast is critical in the cross-domain predictive contrasting477

module.478

479

First, we evaluate model performance on the CSTH and Arc Loss datasets by varying the total number480

of frames K from 5 to 15. A smaller K results in larger frames, meaning each frame contains more time481

steps. The left-hand side of Figure 9 shows how K affects prediction accuracy. As observed, using a higher482

number of frames can negatively impact accuracy, likely due to the reduced information in each frame,483

17

1 5 10 25 50 75 100
Percentage of Labeled Data (%)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
Pr

ed
ict

io
n

Ac
cu

ra
cy

 (%
)

CSTH

1D-CNN on Raw Features
1D-CNN on CDPCC Features

1 5 10 25 50 75 100
Percentage of Labeled Data (%)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Pr
ed

ict
io

n
Ac

cu
ra

cy
 (%

)

Arc Loss
1D-CNN on Raw Features
1D-CNN on CDPCC Features

Figure 8: Comparison of prediction accuracy between 1D-CNN models trained on raw features and
CDPCC features across the CSTH and Arc Loss datasets on varying amounts of labeled data.

6 8 10 12 14
K

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Ac
cu

ra
cy

 (%
)

CSTH
Arc Loss

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 kpast/K

97.0

97.5

98.0

98.5

99.0

99.5

100.0
Ac

cu
ra

cy
 (%

)

CSTH
Arc Loss

70

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

70

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

Figure 9: Sensitivity analysis experimental results on CSTH (blue) and Arc Loss (green) datasets.
Left: The impact of the total number of frames K on prediction performance. Right: The effect
of the number of future frames on prediction performance. Red dots highlight the highest accuracy
values for each dataset.

leading to potential spectral leakage. We find that K = 10 yields the best results; hence, we use this value484

in all subsequent experiments.485

486

Next, the right-hand side of Figure 9 shows the impact of kpast on performance, with the x-axis repre-487

senting the ratio of future frames to the total number of frames, (1 − kpast/K). The results indicate that488

increasing this percentage generally improves performance. However, predicting too large a percentage can489

negatively affect performance, as it reduces the amount of past data available to train the autoregressive490

model. We find that predicting 30% of the total frames provides optimal performance, and therefore, we set491

(1− kpast/K) to 30% in our experiments (i.e, kpast = 0.7K).492

18

5.3.3 Ablation study493

To examine the contribution of each component in CDPCC, we conduct an ablation study on the CSTH494

dataset. We compare the full CDPCC model with three variations: (i) w/o predictive contrasting: removes495

the cross-domain predictive contrasting losses (LT→F
P and LF→T

P), (ii) w/o contextual contrasting: removes496

the cross-domain contextual contrasting loss (LC), and (iii) w/o projection layers: removes the projection497

layers (gTP and gFP), computing the contrastive loss directly on the contexts (cT and cF) rather than the498

projections (zT and zF). Table 4 shows the results. The results indicate that each component is crucial for499

the CDPCC, as removing any of them leads to a noticeable decrease in accuracy.500

501

In addition, we evaluate the choice of the autoregressive model architecture by replacing the LSTM with502

GRU and Transformer models of similar parameter sizes. Both replacements result in a significant drop in503

accuracy, suggesting that LSTM is a better architecture choice for CDPCC.504

Table 4: Ablation results on the CSTH dataset

Avg. Accuracy

CDPCC 99.29%
w/o Predictive Contrasting (λ1 = 0) 97.70% (-1.59%)
w/o Contextual Contrasting (λ2 = 0) 98.45% (-0.84%)
w/o Projection Layers (gTP and gFP) 98.39% (-0.90%)

Autoregressive model gAR architectures
LSTM 99.29%

→ GRU 98.49% (-0.80%)
→ Transformer 86.95% (-12.34%)

6 Conclusion505

In this paper, we propose CDPCC, a novel contrastive learning framework designed to extract informative506

latent representations from time series data. CDPCC is specifically designed to capture the cross-domain507

dynamics between time and frequency features of time series signals. The framework first splits the time508

series into non-overlapping frames, applying FFT to each frame to create its spectral view. The cross-domain509

predictive contrasting module then learns correlations and dynamic patterns between the time and frequency510

domains. Additionally, we propose a cross-domain contextual contrasting module to capture discriminative511

features. Experimental results demonstrate that a linear classifier trained on the features learned by CDPCC512

performs comparably to fully supervised models. Moreover, CDPCC proves highly efficient in few-labeled513

and transfer learning scenarios—achieving superior performance with only 50% of labeled data compared to514

fully supervised training on the entire labeled dataset.515

Acknowledgement516

We gratefully acknowledge the financial support from the Natural Sciences and Engineering Research Council517

of Canada (NSERC).518

19

References519

[1] M. Khan, A. Haleem, and M. Javaid, “Changes and improvements in industry 5.0: A strategic520

approach to overcome the challenges of industry 4.0,” Green Technologies and Sustainability,521

vol. 1, no. 2, p. 100 020, 2023, issn: 2949-7361.522

[2] Y.-J. Park, S.-K. S. Fan, and C.-Y. Hsu, “A review on fault detection and process diagnostics in523

industrial processes,” Processes, vol. 8, no. 9, 2020, issn: 2227-9717. doi: 10.3390/pr8091123.524

[3] D. Miljković, “Fault detection methods: A literature survey,” in 2011 Proceedings of the 34th525

International Convention MIPRO, 2011, pp. 750–755.526

[4] E. Russell, L. Chiang, and R. Braatz, Data-Driven Methods for Fault Detection and Diagnosis527

in Chemical Processes. Jan. 2000, isbn: 978-1-4471-1133-7. doi: 10.1007/978-1-4471-0409-528

4.529

[5] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A review of process fault530

detection and diagnosis: Part i: Quantitative model-based methods,” Computers Chemical531

Engineering, vol. 27, no. 3, pp. 293–311, 2003, issn: 0098-1354. doi: https://doi.org/10.532

1016/S0098-1354(02)00160-6.533

[6] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri, “A review of process fault detec-534

tion and diagnosis: Part ii: Qualitative models and search strategies,” Computers Chemical535

Engineering, vol. 27, no. 3, pp. 313–326, 2003, issn: 0098-1354. doi: https://doi.org/10.536

1016/S0098-1354(02)00161-8.537

[7] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, “A review of process538

fault detection and diagnosis: Part iii: Process history based methods,” Computers Chemical539

Engineering, vol. 27, no. 3, pp. 327–346, 2003, issn: 0098-1354. doi: https://doi.org/10.540

1016/S0098-1354(02)00162-X.541

[8] S. Qiu et al., “Deep learning techniques in intelligent fault diagnosis and prognosis for industrial542

systems: A review,” Sensors, vol. 23, no. 3, 2023, issn: 1424-8220. doi: 10.3390/s23031305.543

[9] I. Yousef, A. Tulsyan, S. L. Shah, and R. B. Gopaluni, “Visual analytics for process monitoring:544

Leveraging time-series imaging for enhanced interpretability,” Journal of Process Control,545

vol. 132, p. 103 127, 2023, issn: 0959-1524. doi: https://doi.org/10.1016/j.jprocont.546

2023.103127.547

[10] L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales, “Self-supervised representation learn-548

ing: Introduction, advances, and challenges,” IEEE Signal Processing Magazine, vol. 39, no. 3,549

pp. 42–62, May 2022, issn: 1558-0792. doi: 10.1109/msp.2021.3134634.550

[11] U. Ozbulak et al., Know your self-supervised learning: A survey on image-based generative and551

discriminative training, 2023. arXiv: 2305.13689 [cs.CV].552

[12] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon, A survey on contrastive553

self-supervised learning, 2021. arXiv: 2011.00362 [cs.CV].554

[13] U. Ozbulak et al., Know your self-supervised learning: A survey on image-based generative and555

discriminative training, 2023. arXiv: 2305.13689.556

20

[14] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, A simple framework for contrastive learning557

of visual representations, 2020. arXiv: 2002.05709 [cs.LG]. [Online]. Available: https://558

arxiv.org/abs/2002.05709.559

[15] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting560

image rotations,” ArXiv, vol. abs/1803.07728, 2018.561

[16] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw562

puzzles,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling,563

Eds., Cham: Springer International Publishing, 2016, pp. 69–84, isbn: 978-3-319-46466-4.564

[17] R. Zhang, P. Isola, and A. A. Efros, Colorful image colorization, 2016. arXiv: 1603.08511565

[cs.CV].566

[18] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive567

coding,” ArXiv, vol. abs/1807.03748, 2018.568

[19] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive representation learning: A frame-569

work and review,” IEEE Access, vol. 8, pp. 193 907–193 934, 2020, issn: 2169-3536. doi: 10.570

1109/access.2020.3031549.571

[20] P. Kumar, P. Rawat, and S. Chauhan, “Contrastive self-supervised learning: Review, progress,572

challenges and future research directions,” International Journal of Multimedia Information573

Retrieval, vol. 11, no. 4, pp. 461–488, 2022, issn: 2192-662X. doi: 10.1007/s13735-022-574

00245-6.575

[21] Z. Yue et al., “Ts2vec: Towards universal representation of time series,” in AAAI Conference576

on Artificial Intelligence, 2021.577

[22] L. Yang and linda Qiao, “Unsupervised time-series representation learning with iterative bi-578

linear temporal-spectral fusion,” in International Conference on Machine Learning, 2022.579

[23] L. Zhang, S. Frank, J. Kim, X. Jin, and M. Leach, “A systematic feature extraction and580

selection framework for data-driven whole-building automated fault detection and diagnostics581

in commercial buildings,” Building and Environment, vol. 186, p. 107 338, 2020, issn: 0360-582

1323. doi: https://doi.org/10.1016/j.buildenv.2020.107338. [Online]. Available:583

https://www.sciencedirect.com/science/article/pii/S0360132320307071.584

[24] M. Altaf, T. Akram, M. A. Khan, M. Iqbal, M. M. I. Ch, and C.-H. Hsu, “A new statistical585

features based approach for bearing fault diagnosis using vibration signals,” Sensors, vol. 22,586

no. 5, 2022, issn: 1424-8220. doi: 10.3390/s22052012. [Online]. Available: https://www.587

mdpi.com/1424-8220/22/5/2012.588

[25] S. Velliangiri, S. Alagumuthukrishnan, and S. I. Thankumar joseph, “A review of dimension-589

ality reduction techniques for efficient computation,” Procedia Computer Science, vol. 165,590

pp. 104–111, 2019, 2nd International Conference on Recent Trends in Advanced Comput-591

ing ICRTAC -DISRUP - TIV INNOVATION , 2019 November 11-12, 2019, issn: 1877-0509.592

doi: https://doi.org/10.1016/j.procs.2020.01.079. [Online]. Available: https:593

//www.sciencedirect.com/science/article/pii/S1877050920300879.594

21

[26] M. Noruzi Nashalji, M. Aliyari Shoorehdeli, and M. Teshnehlab, “Fault detection of the ten-595

nessee eastman process using improved pca and neural classifier,” in Soft Computing in Indus-596

trial Applications, X.-Z. Gao, A. Gaspar-Cunha, M. Köppen, G. Schaefer, and J. Wang, Eds.,597

Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 41–50.598

[27] T. J. Rato and M. S. Reis, “Fault detection in the tennessee eastman benchmark process using599

dynamic principal components analysis based on decorrelated residuals (dpca-dr),” Chemo-600

metrics and Intelligent Laboratory Systems, vol. 125, pp. 101–108, 2013, issn: 0169-7439. doi:601

https://doi.org/10.1016/j.chemolab.2013.04.002. [Online]. Available: https://www.602

sciencedirect.com/science/article/pii/S0169743913000592.603

[28] Y. Zhang, W. Du, Y. Fan, and L. Zhang, “Process fault detection using directional kernel604

partial least squares,” Industrial & Engineering Chemistry Research, vol. 54, no. 9, pp. 2509–605

2518, 2015. doi: 10.1021/ie501502t. eprint: https://doi.org/10.1021/ie501502t.606

[29] J. Dong, K. Zhang, Y. Huang, G. Li, and K. Peng, “Adaptive total pls based quality-relevant607

process monitoring with application to the tennessee eastman process,”Neurocomputing, vol. 154,608

pp. 77–85, 2015, issn: 0925-2312. doi: https : / / doi . org / 10 . 1016 / j . neucom . 2014 .609

12.017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/610

S0925231214016816.611

[30] Z. Chen, S. X. Ding, K. Zhang, Z. Li, and Z. Hu, “Canonical correlation analysis-based fault612

detection methods with application to alumina evaporation process,” Control Engineering613

Practice, vol. 46, pp. 51–58, 2016, issn: 0967-0661. doi: https://doi.org/10.1016/j.614

conengprac.2015.10.006. [Online]. Available: https://www.sciencedirect.com/science/615

article/pii/S0967066115300332.616

[31] Z. Chen, S. X. Ding, T. Peng, C. Yang, and W. Gui, “Fault detection for non-gaussian processes617

using generalized canonical correlation analysis and randomized algorithms,” IEEE Transac-618

tions on Industrial Electronics, vol. 65, no. 2, pp. 1559–1567, 2018. doi: 10.1109/TIE.2017.619

2733501.620

[32] J. Yu and Y. Zhang, “Challenges and opportunities of deep learning-based process fault de-621

tection and diagnosis: A review,” Neural Comput. Appl., vol. 35, no. 1, pp. 211–252, Nov.622

2022, issn: 0941-0643. doi: 10.1007/s00521- 022- 08017- 3. [Online]. Available: https:623

//doi.org/10.1007/s00521-022-08017-3.624

[33] Z. Zhu et al., “A review of the application of deep learning in intelligent fault diagnosis of625

rotating machinery,” Measurement, vol. 206, p. 112 346, 2023, issn: 0263-2241. doi: https:626

//doi.org/10.1016/j.measurement.2022.112346.627

[34] O. Fink, Q. Wang, M. Svensén, P. Dersin, W.-J. Lee, and M. Ducoffe, “Potential, challenges628

and future directions for deep learning in prognostics and health management applications,”629

Engineering Applications of Artificial Intelligence, vol. 92, p. 103 678, 2020, issn: 0952-1976.630

doi: https://doi.org/10.1016/j.engappai.2020.103678. [Online]. Available: https:631

//www.sciencedirect.com/science/article/pii/S0952197620301184.632

22

[35] N. Amruthnath and T. Gupta, “A research study on unsupervised machine learning algorithms633

for early fault detection in predictive maintenance,” in 2018 5th International Conference on634

Industrial Engineering and Applications (ICIEA), 2018, pp. 355–361. doi: 10.1109/IEA.635

2018.8387124.636

[36] K. Yan, J. Huang, W. Shen, and Z. Ji, “Unsupervised learning for fault detection and diagnosis637

of air handling units,” Energy and Buildings, vol. 210, p. 109 689, 2020, issn: 0378-7788. doi:638

https://doi.org/10.1016/j.enbuild.2019.109689. [Online]. Available: https://www.639

sciencedirect.com/science/article/pii/S0378778819320134.640

[37] L. Schmarje, M. Santarossa, S.-M. Schröder, and R. Koch, “A survey on semi-, self-and un-641

supervised learning for image classification,” IEEE Access, vol. PP, pp. 1–1, May 2021. doi:642

10.1109/ACCESS.2021.3084358.643

[38] R. Balestriero et al., A cookbook of self-supervised learning, 2023. arXiv: 2304.12210 [cs.LG].644

[Online]. Available: https://arxiv.org/abs/2304.12210.645

[39] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, Deep clustering for unsupervised learning646

of visual features, 2019. arXiv: 1807.05520 [cs.CV].647

[40] Z. Wu, Y. Xiong, S. Yu, and D. Lin, Unsupervised feature learning via non-parametric instance-648

level discrimination, 2018. arXiv: 1805.01978 [cs.CV]. [Online]. Available: https://arxiv.649

org/abs/1805.01978.650

[41] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by con-651

text prediction,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015,652

pp. 1422–1430. doi: 10.1109/ICCV.2015.167.653

[42] Y. LeCun and I. Misra, Self-supervised learning: The dark matter of intelligence, Facebook654

AI Blog, 2020. [Online]. Available: https://ai.facebook.com/blog/self-supervised-655

learning-the-dark-matter-of-intelligence/.656

[43] S. Deldari, H. Xue, A. Saeed, J. He, D. V. Smith, and F. D. Salim, Beyond just vision:657

A review on self-supervised representation learning on multimodal and temporal data, 2022.658

arXiv: 2206.02353 [cs.LG].659

[44] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, Momentum contrast for unsupervised visual660

representation learning, 2020. arXiv: 1911.05722 [cs.CV].661

[45] X. Chen, H. Fan, R. Girshick, and K. He, Improved baselines with momentum contrastive662

learning, 2020. arXiv: 2003.04297 [cs.CV].663

[46] J.-B. Grill et al., Bootstrap your own latent: A new approach to self-supervised learning, 2020.664

arXiv: 2006.07733 [cs.LG].665

[47] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, Unsupervised learning666

of visual features by contrasting cluster assignments, 2021. arXiv: 2006.09882 [cs.CV].667

[48] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations668

in vector space, 2013. arXiv: 1301.3781 [cs.CL]. [Online]. Available: https://arxiv.org/669

abs/1301.3781.670

23

[49] N. Reimers and I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,671

2019. arXiv: 1908.10084 [cs.CL]. [Online]. Available: https://arxiv.org/abs/1908.10084.672

[50] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, A simple framework for contrastive learning673

of visual representations, 2020. arXiv: 2002.05709 [cs.LG]. [Online]. Available: https://674

arxiv.org/abs/2002.05709.675

[51] F. Falck, S. K. Sarkar, S. Roy, and S. L. Hyland, “Contrastive representation learning for676

electroencephalogram classification,” in ML4H@NeurIPS, 2020. [Online]. Available: https:677

//api.semanticscholar.org/CorpusID:229781944.678

[52] E. Eldele et al., Time-series representation learning via temporal and contextual contrasting,679

2021. arXiv: 2106.14112 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2106.14112.680

[53] X. Zhang, Z. Zhao, T. Tsiligkaridis, and M. Zitnik, Self-supervised contrastive pre-training681

for time series via time-frequency consistency, 2022. arXiv: 2206.08496 [cs.LG]. [Online].682

Available: https://arxiv.org/abs/2206.08496.683

[54] T. T. Um et al., “Data augmentation of wearable sensor data for parkinson’s disease monitoring684

using convolutional neural networks,” in Proceedings of the 19th ACM International Conference685

on Multimodal Interaction, ser. ICMI ’17, ACM, Nov. 2017. doi: 10.1145/3136755.3136817.686

[55] K. Gupta, T. Ajanthan, A. van den Hengel, and S. Gould, Understanding and improving the687

role of projection head in self-supervised learning, 2022. arXiv: 2212.11491 [cs.LG]. [Online].688

Available: https://arxiv.org/abs/2212.11491.689

[56] N. F. Thornhill, S. C. Patwardhan, and S. L. Shah, “A continuous stirred tank heater simula-690

tion model with applications,” Journal of Process Control, vol. 18, no. 3, pp. 347–360, 2008,691

Festschrift honouring Professor Dale Seborg, issn: 0959-1524. doi: https://doi.org/10.692

1016/j.jprocont.2007.07.006.693

[57] I. Yousef, L. D. Rippon, C. Prévost, S. L. Shah, and R. B. Gopaluni, “The arc loss challenge:694

A novel industrial benchmark for process analytics and machine learning,” Journal of Process695

Control, vol. 128, p. 103 023, 2023, issn: 0959-1524. doi: https://doi.org/10.1016/j.696

jprocont.2023.103023.697

[58] L. Rippon et al., “Representation learning and predictive classification: Application with an698

electric arc furnace,” Computers Chemical Engineering, vol. 150, p. 107 304, 2021, issn: 0098-699

1354. doi: https://doi.org/10.1016/j.compchemeng.2021.107304.700

[59] C. Lessmeier, J. K. Kimotho, D. Zimmer, and W. Sextro, “Condition monitoring of bearing701

damage in electromechanical drive systems by using motor current signals of electric motors: A702

benchmark data set for data-driven classification,” in European Conference of the Prognostics703

and Health Management Society, 2016.704

24

