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Abstract: Hybrid-powered liquefied natural gas (LNG) vessels can reduce the greenhouse gas (GHG) emissions 
of marine transport through CO2 reductions. These reductions can be offset by CH4 emissions, generally highest 
at low engine loads due to methane slip. Efficient operation of LNG engines is therefore mandatory to achieve the 
required GHG emissions reduction. Using a hybrid LNG-battery powertrain provides additional degrees of 
freedom to modify the operation and mitigate GHG emissions; however, the optimal power allocation between 
the LNG engine and the battery system must be developed specific to the operation of the vessel. This paper 
studies the feasibility of using the twin delayed deep deterministic policy gradient (TD3), soft actor-critic (SAC), 
and proximal policy optimization (PPO) deep reinforcement learning (DRL) agents as part of the energy 
management system (EMS) of a hybrid-powered LNG vessel. The objective of the EMS is to reduce cumulative 
GHG emissions from sailing trips by optimally allocating power between the engine and battery of the vessel 
under study. The TD3 and SAC agents performed better than the PPO agent in terms of GHG emissions reduction 
and significantly better in terms of battery health maintenance. The PPO agent was excluded from further analysis 
due to its poor performance. The GHG reduction efficiency of both the TD3 and SAC agents, alongside the 
existing control strategy, was evaluated by normalizing emission reductions against the expected maximum 
reductions estimated using sequential least squares programming offline optimization. The reductions were 
calculated relative to a baseline of sailing trips without hybridization. The TD3 agent demonstrated improvements 
in the GHG reduction efficiencies by 19.80% on the training dataset and 18.64% on the test dataset compared to 
the existing control strategy, while the SAC agent achieved improvements of 11.46% and 7.61%, respectively. 
These results demonstrate that TD3 and SAC outperform the existing control strategy, with their generalized 
policies enabling online decision-making across various power demand profiles. The achieved reductions in GHG 
emissions were mainly driven by minimizing methane slip.

Key words: Real-time optimal control, Hybrid electric propulsion system, Reinforcement learning, Energy 
management, Methane slip reduction

1 Introduction
International shipping accounts for about 3% of global greenhouse gas (GHG) emissions which is equivalent to 
the aviation industry [1]. Shipping emissions are estimated to increase by 23% by 2035 compared to 2015 
emissions if no additional policy measures are established, and could account for 10% of global GHG emissions 
by 2050[1,2]. The International Maritime Organization (IMO) has set targets in the 2023 IMO strategy to reduce 
shipping GHG emissions. The strategy outlines specific checkpoints to reach net-zero GHG emissions by 2050, 
which include an annual GHG emissions reduction of 20-30% and 70-80% by 2030 and 2040, respectively [3]. 
Both reduction checkpoints are relative to the estimated emissions from 2008.

There is a potential to reduce emissions from maritime transportation by 75-85% using currently available 
technologies such as hybridization, alternative fuels, and optimization of operations [4]. Such significant reduction 
efforts are required to ensure absolute reductions in GHG emissions from maritime transportation, as reduction 
efforts are offset by the fast growth of the maritime industry [4]. Hybridization enables the efficient use of multiple 
technologies such as batteries and combustion engines while lowering environmental impacts [4,5]. Alternative 
fuels such as methanol and ethanol, liquified natural gas (LNG) and hydrogen are considered potential green 
options for the maritime industry [6]. LNG is a near-term solution to reduce tank to wake NOx, SOx, PM, and CO2 
emissions, with renewable LNG providing a longer-term solution of well to wake GHG emission reductions.  For 
both LNG and renewable LNG, unintended methane emissions can potentially lead to an increase in GHG 
emissions. Higher methane emissions at low engine loads, caused by methane slip due to factors such as 
incomplete combustion and low flame speeds, offset any carbon dioxide emission reductions achieved by using 
LNG as a fuel [4,7–9]. Effective operation of an LNG engine is therefore mandatory to ensure an adequate GHG 
emissions reduction (e.g., by minimizing low load operation). Operational measures such as energy management 
have the potential to reduce shipping carbon dioxide emissions by 1-10% [4]. Energy management systems (EMS) 
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are considered important to achieve higher energy efficiencies for hybrid-powered vessels by optimally 
controlling the vessel’s power sources based on the unique advantages of each power source [5,10,11].

EMS for hybrid-powered vehicles can be classified into three categories: rule-based, optimization-based, and 
learning-based [11]. Rule-based EMSs are control systems developed using operational guidelines or modes that 
are established using human expertise or mathematical models. The primary goal of optimization-based EMSs is 
to find the optimal control sequence of an energy management task by converting the task to a mathematical 
optimization problem and solving the problem subject to certain constraints. Learning-based methods are used to 
derive optimal control strategies by learning from available data with no requirement for an explicit model [11].

EMS for hybrid-powered LNG vessels have used rule-based and optimization-based approaches, though there are 
not yet any learning-based examples. Yanbiao Feng et al. [12] used a surrogate-based global optimization search 
algorithm to simultaneously optimize the power train component sizes and the propulsion control of an LNG-
fueled hybrid powered electric ship. The performance was compared against reference diesel-mechanical and 
LNG-mechanical systems where the ship is mechanically propelled without an energy storage system. Ailong Fan 
et al. [13] used fuzzy logic control with particle swarm optimization to control the power distribution in a hybrid-
powered diesel-LNG ship. The objective was to reduce fuel consumption and carbon dioxide emissions; however, 
methane slip was not considered. Similarly, in [14,15], rule-based approaches were used to develop EMSs for 
hybrid-powered LNG ships to reduce carbon dioxide emissions but, again, methane slip was not considered. Bo 
Pang et al. [16] used genetic algorithm global optimization to determine the optimal sizes of the LNG engines and 
battery energy storage system (BESS) to retrofit a ship’s diesel-electric propulsion system. The objective of the 
optimization was to reduce the BESS and LNG engines investment costs, fuel costs, BESS degradation costs, and 
GHG emissions. The authors also propose an extended Kalman filter (EKF) based model predictive control (MPC) 
algorithm for real-time optimal power control of the ship’s LNG engines and BESS. Existing EMSs for hybrid-
powered LNG vessels mainly utilize rule-based control strategies, which are known for their poor dynamic 
response to changes, and optimization approaches that rely on highly accurate forecast models. There is a gap in 
research exploring control strategies that offer improved dynamic response without depending on forecast models. 
Learning-based methods address this gap by providing adaptive control without the need for forecast models.

Reinforcement Learning (RL), a subset of learning-based methods, is a model-free machine learning method that 
consists of two components: an agent and an environment. The agent interacts with the environment and learns 
an optimal control strategy that maximizes a reward signal received from the environment [11]. The use of RL 
methods to optimally control the EMS of hybrid-powered vessels has been studied, with the optimization 
objectives embedded within the RL agent’s reward function. Peng Wu et al. [17] used a double-Q agent to control 
the power load distribution of a hybrid fuel cell and battery-powered ship by training the double-Q agent using 
historical sailing power profiles. The objective was to reduce the reduce the operational costs of the ship which 
included fuel and degradation costs. In Ref. [18,19], the work was extended to the continuous state space using a 
double deep Q-network and to the continuous state and action spaces using a twin delayed deep deterministic 
policy gradient (TD3). The three RL methods used were found to achieve near-optimal cost performance when 
compared to benchmark cost reductions achieved by deterministic dynamic programming (DDP). Chengya Shang 
et al. [20] proposed a deep Q network to control the power load distribution of a diesel hybrid-powered ship with 
the objective of reducing operational costs. The performance of the deep Q network was comparable to the 
benchmark cost reductions achieved by mixed integer quadratic programming. Wongwan Jung & Daejun Chang 
[21] also proposed a deep Q network to control the power load distribution of a liquid hydrogen hybrid-powered 
ship. The proposed RL method, however, led to an increase in operational costs when tested on power profiles 
not used for training the RL agent, while using dynamic programming outputs as a benchmark. The studies 
implemented have shown the feasibility of using RL to optimally control the power load distribution of hybrid-
powered ships by embedding the optimization objective in the RL agent’s reward function. Tiewei Song et al. 
[22] proposed a hybrid penalized proximal policy optimization (HP3O) based EMS that utilizes a continuous actor 
network to control a diesel-electric ship’s generator power and cruising speed, and a discrete actor network that 
determines the activity status of the generators. The objective was to minimize the operational costs of the ship 
while maintaining operational constraints. The problem was formulated as a constrained Markov decision process 
to handle constraints related to power and velocity limits. The solution obtained using HP3O was comparable to 
the optimal solution obtained using mixed integer linear programming. These studies highlighted the viability of 
using RL to optimize power load distribution in hybrid-powered vessels by structuring the agent's reward function 
around cost reduction targets. However, the emphasis was largely on cutting operational costs, which may not 
directly lead to improved environmental efficiency [17].
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2 Problem Statement
This paper explores the feasibility of using online deep RL (DRL) methods, namely TD3, soft actor-critic (SAC) 
and proximal policy optimization (PPO) to control the power load distribution of a hybrid-powered LNG vessel. 
The objective of the DRL agents is to minimize the cumulative GHG emissions generated during typical sailing 
trips while considering the effects of methane slip as well as CO2 emissions. Due to its non-linear load dependence, 
methane slip can have an outsized impact on the total GHG emissions for a given vessel application. To the best 
of the authors’ knowledge, the application of DRL to control the EMS of hybrid-powered LNG vessels to reduce 
total exhaust stack GHG emissions has not been explored in existing literature. DRL methods offer the advantage 
of implementing an online model-free control system that is able to learn and adapt based on the data provided. 
However, the performance of DRL methods is subject to the quality and quantity of training data. Real-world 
vessel operation data was available to train and test the DRL agents used in this study and was provided by an 
industry partner. In contrast, for online optimization-based methods such as MPC, where even though solutions 
close to global optima can be determined, the performance of the control system is quite sensitive to inaccuracies 
in the provided model and disturbances in the environment under control. Knowledge of future states of a given 
environment is also required to take a control action, whereas DRL methods only require knowledge of the current 
state of the environment [11]. This article is organized as follows. Section 3 describes the characteristics of the 
vessel under study. Section 4 defines the three DRL methods used in this study. Section 5 details the characteristics 
of the RL environment. The results and conclusions are presented in section 6 and section 7, respectively.

3 Candidate Vessel
The vessel considered in this work is a hybrid-powered, LNG, roll-on roll-off ferry that operates in the Canadian 
Salish Sea. The characteristics of the vessel are summarized in Table 1. Typical power demand profiles of the 
vessel’s sailings are illustrated in Figure 1. The red line represents the average power demand, and the blue lines 
represent the 198 individual sailing trips used in this study. Each trip services the same ports and variations in the 
power demand are due to externalities such as marine traffic, tides and currents, vessel loading, weather, crew 
choices, ad hoc schedule changes, and/or auxiliary power requirements. The vessel is operated at low loads at the 
start and end of the trips and is operated at a high load for most of the duration of the trips. Figure 1 illustrates the 
high variability in the power demand profiles, both in terms of the power demand value and length of the trips. 
These variabilities demonstrate the need for methods which consider the instantaneous operation of the vessel, 
and not just nominal operation. 

Table 1: Characteristics of the hybrid-powered LNG vessel under study.

Characteristic Value
Vessel type Roll-on roll-off ferry
Build year 2021

Installed engine power 2 × 4770 kW
Fueling Low pressure dual fuel (LNG + pilot diesel) or diesel

Battery Capacity 2034 kWh
Maximum battery charge rate 2000 kW

Maximum battery discharge rate 800 kW

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5061656

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



4

 
Figure 1: Typical power demand profiles of the hybrid-powered LNG vessel under study. The red line represents the 

average power demand whereas the blue lines represent the 198 individual sailing trips.

A schematic of the vessel’s hybrid system and proposed EMS is depicted in Figure 2. The vessel’s hybrid system 
is composed of two LNG-fueled engine generators, a battery and two electric propulsion motors. The vessel is 
generally operated using a single engine, as this operational mode has been determined to result in lower 
cumulative GHG emissions by increasing the average engine load [7,8]. The purpose of the EMS proposed in this 
paper is to control the delivered power between the engine and the battery while maintaining battery operational 
constraints. The control objective is to reduce the cumulative GHG emissions of sailing trips, including GHG 
contributions from both CO2 and CH4. The EMS provides the suggested engine power at the next time step, given 
inputs of the battery state of charge (SOC), engine power, and vessel power demand at the current time step. 

Figure 2: Schematic of the hybrid-powered setup and the energy management system. The powertrain consists of two 
LNG-fueled engines and associated generators, a battery, and two electric propulsion motors.

3.1 Emission Factors
The instantaneous CO2 and CH4 emissions from the engine were estimated as a function of engine load based on 
experimentally measured emission factors [8]. The emission factors were calculated using 1-minute averages of 
emission rates over fixed engine loads. Figure 3 depicts the GHG emission factors of the vessel in kilogram carbon 
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dioxide equivalent per hour (kg CO2,eq/hr) against the vessel’s engine load. The CO2,eq emission rates include CO2 
and CH4, with the latter considered using a 20-year global warming potential (GWP20) of 85.5 (midpoint  of 
reported 84-87 [23]). The correlation between the emission rates in CO2,eq and engine load is non-linear. A linear 
correlation would have been observed if CO2 emissions were solely considered. The total CO2,eq emission rate 
peaks at an engine load of 32% due to the combination of high CH4 emissions (due to methane slip at low load), 
and increased CO2 emissions relative to very low load operation. This peak emission load is the region that must 
be avoided to minimize total CO2,eq emissions for a given sailing.  The minimum emission rate at operational 
loads between 20-100% is at an engine load of 74%. The non-linear nature of the total GHG emission rates from 
the hybrid-powered LNG ferry indicates that an increase in engine load is not necessarily associated with an 
increase in GHG emission rates. This phenomenon is the subject of exploitation in the proposed EMS.

Figure 3: Measured GHG emission rates in kg carbon dioxide equivalent per hour versus the vessel’s engine load. 
The emission rates peak at an engine load of 32%. The minimum emission rate at operational loads between 20-100% 

is at an engine load of 74%.

Equation (1) describes the instantaneous GHG emission rate as a function of engine load fitted to a fourth-degree 
polynomial.

𝑔(𝐿) =
4

𝑖=0
𝛼𝑖𝐿𝑖 #(1)

Where 𝑔(𝐿) is the instantaneous GHG emission rate in kg CO2,eq/hr, 𝛼𝑖 are the polynomial coefficients, and 𝐿 is 
the engine load.

3.2 Battery State of Charge
A model of the vessel’s battery is required to simulate the SOC dynamics so that the SOC can be considered in 
the RL environment (described in Section 4). A constant battery charge and discharge efficiency of 92% was used 
to simulate the SOC dynamics as per equation (2).

𝐵𝑠𝑜𝑐,𝑡+1 = 𝐵𝑠𝑜𝑐,𝑡 +
1

𝑄𝑐𝑎𝑝

𝑡+1

𝑡
𝑄𝑑𝑡 #(2)

Where 𝐵𝑠𝑜𝑐,𝑡 and 𝐵𝑠𝑜𝑐,𝑡+1 are the battery SOC at time 𝑡 and 𝑡+1, respectively, 𝑄𝑐𝑎𝑝 is the battery capacity corrected 
for its state of health (SOH), and 𝑄 is the charge rate corrected for efficiency.
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The efficiency value of 92% was taken as the mid-point value of the overall Li-ion battery efficiency (85-
99%[24]). The battery SOH, obtained from the vessel’s historical data, is approximately 82.75%. A total of 21 
random sailing SOC profiles were used to assess the performance of the constant efficiency model. The average 
R2 and mean squared error (MSE) of the model over the 21 SOC profiles were found to be 0.90 and 0.001, 
respectively. Figure 4 illustrates a sample plot that compares the actual and predicted SOC profiles using the 
constant efficiency model.

Figure 4: A sample SOC profile plot that compares the actual SOC to the predicted SOC of a sailing trip using the 
constant efficiency model. The R2 and MSE for this plot are 0.99 and 0.0004, respectively.

4 Deep Reinforcement Learning
RL is a subfield of machine learning in which an agent learns how to map situations to actions in order to maximize 
a reward signal. The agent learns by interacting with an environment of a finite task (episodic) or an infinite task 
(continuous) through a trial-and-error approach [25]. At every time step 𝑡, the RL agent is provided with a state 
𝑠𝑡 from the environment. The agent then selects an action 𝑎𝑡 based on a policy 𝜋(𝑎𝑡|𝑠𝑡) and receives a reward 𝑟𝑡. 
The policy is a mapping from state 𝑠𝑡 to an action 𝑎𝑡 and can be either deterministic or stochastic. The environment 
then transitions to a new state 𝑠𝑡+1 according to the dynamics of the environment or a model, with a reward 
function ℛ(𝑠,𝑎) and state transition probability ℘(𝑠𝑡+1│𝑠𝑡,𝑎𝑡) [26]. At each state, the agent aims to maximize the 
expectation of the long-term return described in Equation (3), which is the sum of the discounted reward received 
by the agent over the future [25].

𝐺𝑡 =
∞

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1  #(3)

Where 𝐺𝑡 is the return received 𝑘 time steps in the future discounted by a rate of 𝛾 ∈ (0,1].

The state-value function defined in equation (4) is the expected return when starting in state 𝑠 and thereafter 
following a policy 𝜋. The action-value function defined in Equation (5) is the expected return when starting in 
state 𝑠, taking action 𝑎, and then following policy 𝜋 thereafter [25].

𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡│𝑠𝑡 = 𝑠]#(4)

𝑄𝜋(𝑠,𝑎) = 𝔼𝜋[𝐺𝑡│𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]#(5)

Where 𝑉𝜋(𝑠) is the state-value function, 𝑄𝜋(𝑠,𝑎) is the action-value function (Q-function) and 𝔼𝜋 denotes the 
expectation under policy 𝜋.

The objective while training an RL agent is to find an optimal policy 𝜋∗ that maximizes the total return received 
by the agent. The state-value function and action-value function associated with an optimal policy are called the 
optimal state-value and optimal action-value functions and are defined in Equations (6) and (7), respectively [25].
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𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠) #(6)

𝑄∗(𝑠,𝑎) = max
𝜋

𝑄𝜋(𝑠,𝑎) #(7)

Where 𝑉∗(𝑠) is the optimal state-value function and 𝑄∗(𝑠,𝑎) is the optimal action-value function. Equations (6) 
and (7) hold for all states under an optimal policy.

DRL is an integration between deep learning and RL in which a deep neural network is used to estimate 
components of RL such as the value function, policy, state transition function, or reward function [26]. Deep 
neural networks have demonstrated their capability as universal function approximators, making them suitable for 
approximating value functions and policies in complex tasks with inputs of high dimensionality [27]. Actor-critic 
methods are a subclass of policy gradient methods that learn approximations to both the policy and value 
functions. The actor refers to the policy that is learned whereas the critic refers to the value function that is learned. 
The actor is used by the RL agent to take actions and the critic evaluates the actions taken [25]. The three RL 
methods utilized in this paper, namely, TD3, SAC, and PPO are online DRL actor-critic methods. The online 
nature means that the RL agents make decisions at each time step. Brief descriptions of the three DRL methods 
are outlined in this section.

4.1 Twin Delayed Deep Deterministic Policy Gradient
TD3 is an actor-critic method developed by Scott Fujimoto et al. [28] as an extension to the deep deterministic 
policy gradient (DDPG) algorithm [29]. TD3 addresses the Q-value overestimation bias and function 
approximation errors in actor-critic methods. TD3 is composed of one actor network, 𝜋𝜙, and two critic networks, 
𝑄𝜃1 and 𝑄𝜃2, where 𝜙, 𝜃1, and 𝜃2 represent the parameters of the neural networks. TD3 is also composed of one 
target actor network, 𝜋𝜙′, and two target critic networks, 𝑄𝜃′1 and 𝑄𝜃′2, where 𝜙′, 𝜃′1, and 𝜃′2 represent the parameters 
of the target networks [28].

The actor network is updated based on the gradient defined in Equation (8) as per the deterministic policy gradient 
algorithm [30].

∇𝐽(𝜙) = 𝔼𝑠~𝜌𝜋
[∇𝑎𝑄𝜋(𝑠,𝑎)|𝑎=𝜋(𝑠)∇𝜙𝜋𝜙(𝑠)]#(8)

Where 𝐽(𝜙) is the objective function and 𝑝𝜋 is the state marginal distribution.

TD3 uses a single target update value 𝑦, as defined in Equation (9), that is calculated using the minimum of the 
two Q values estimated by the target critic networks. The use of the minimum Q value leads to a reduction in the 
overestimation bias [28]. The target update 𝑦 is used in the loss function that is used to update the critic parameters 
𝜃𝑖.

𝑦←𝑟 + 𝛾 𝑚𝑖𝑛𝑖=1,2𝑄𝜃′𝑖
(𝑠′,𝑎)#(9)

The action 𝑎 is the action selected by the target actor network plus a small amount of random noise 𝜀 as defined 
in Equation (10) and 𝑠′ is the next state. The added noise leads to the smoothing of the value estimate by 
bootstrapping off of similar state-action value estimates [28].

𝑎←𝜋𝜙′(𝑠′) + 𝜀,

𝜀 ~𝑐𝑙𝑖𝑝(𝒩(0,𝜎), ― 𝑐,𝑐)#(11)

Where 𝒩(0,𝜎) is a gaussian distribution with mean 0 and standard deviation 𝜎, and c is the noise clipping factor.

The update of the actor network in TD3 is delayed with respect to the critic networks. The delayed actor network 
update leads to the use of a value estimate with a lower variance that results in policy updates of higher quality 
[28]. 

4.2 Soft Actor-Critic
SAC is an RL algorithm developed by Tuomas Haarnoja et al. [31] that combines the advantages of policy 
optimization and entropy maximization through the use of a stochastic actor and a maximum entropy objective. 
SAC was found to exceed DDPG in both efficiency and final performance. RL with maximum entropy aims to 
optimize policies for the dual objective of maximizing both the expected return and the expected entropy of the 
policy. The maximum entropy objective defined in Equation (12) allows the policy to explore more and identify 
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different modes of near-optimal behavior, and improves the learning speed of SAC compared to other state-of-
the-art methods [31].

𝐽(𝜋) =
𝑇

𝑡=0
𝔼(𝑠𝑡,𝑎𝑡)~𝑝𝜋

[𝑟(𝑠𝑡,𝑎𝑡) + 𝛼ℋ(𝜋( ∙ │𝑠𝑡))] #(12)

Where 𝐽(𝜋) is the maximum entropy objective, 𝑟(𝑠𝑡,𝑎𝑡) is the reward, ℋ(𝜋( ∙ │𝑠𝑡)) is the entropy term, and 𝛼 is 
the temperature parameter that controls the importance of the entropy term against the reward.

SAC is composed of one actor network 𝜋𝜙, two critic networks 𝑄𝜃1 and 𝑄𝜃2 and two target critic networks 𝑄𝜃′1 
and 𝑄𝜃′2 [32]. The soft Q-function, defined in Equation (13), is used in the SAC algorithm instead of the 
traditional Q-function [33].

𝑄∗
𝑠𝑜𝑓𝑡 = 𝑟𝑡 + 𝐸(𝑠𝑡+1,…)~𝑝𝜋[

∞

𝑙=1

(𝛾𝑙𝑟𝑡+𝑙 + 𝛼ℋ(𝜋( ∙ │𝑠𝑡+𝑙)))]#(13)

Where 𝑄∗
𝑠𝑜𝑓𝑡 is the soft Q-function.

4.3 Proximal Policy Optimization
PPO is an RL algorithm developed by John Schulman et al. [34] that has some benefits from the Trust Region 
Policy Optimization (TRPO) method but with much better empirical sample complexity and ease of 
implementation. TRPO maximizes a surrogate objective defined in Equation (14). Maximization of equation 
(14) leads to excessively large policy updates [34].

𝐿𝐶𝑃𝐼(𝜃) = 𝔼𝑡[ 𝜋𝜃(𝑎𝑡│𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑

(𝑎𝑡│𝑠𝑡)
𝐴𝑡] = 𝔼[𝑟𝑡(𝜃)𝐴𝑡]#(14)

Where 𝐿𝐶𝑃𝐼(𝜃) is the surrogate objective, CPI is conservative policy iteration, 𝜃 and 𝜃𝑜𝑙𝑑 are the new and old 

policy parameters, 𝑟𝑡(𝜃) is the probability ratio 
𝜋𝜃(𝑎𝑡│𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡│𝑠𝑡) and 𝐴𝑡 is the advantage function. The advantage 

function can be mathematically defined as the difference between the action-value and state-value. The advantage 
function describes how much better it is to take a certain action at a state, compared to randomly selecting an 
action according to the policy being followed [35].

PPO uses a modified surrogate objective, defined in Equation (15), that clips the probability ratio 𝑟𝑡(𝜃) to keep 
the ratio within a certain interval [1 ― 𝜖, 1 + 𝜖]. Clipping the probability ratio prevents the policy updates from 
deviating too far from the previous policy [34].

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼𝑡[min (𝑟𝑡(𝜃)𝐴𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 ― 𝜖, 1 + 𝜖)𝐴𝑡)]#(15)

Where 𝐿𝐶𝐿𝐼𝑃 is the clipped surrogate objective and 𝜖 is the clipping factor.

To further enhance stability and encourage exploration, PPO’s objective function can be augmented with 
additional terms. These include the value function error term, which ensures better alignment between the 
estimated and actual returns, and the entropy bonus, which encourages exploration by promoting more diverse 
actions. The resulting objective function balances policy improvement, value estimation, and exploration [34], 
and is defined in Equation (15).

𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃) = 𝔼𝑡[𝐿𝐶𝐿𝐼𝑃(𝜃) ― 𝑐1𝐿𝑉𝐹 + 𝑐2𝑆[𝜋𝜃](𝑠𝑡)]#(16)

Where 𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃) is the modified objective, 𝐿𝑉𝐹 is the value function error term, 𝑆[𝜋𝜃](𝑠𝑡) is the entropy 
bonus term, and 𝑐1 and 𝑐2 are coefficients.

5 Deep Reinforcement Learning Energy Management System
TD3, SAC and PPO were evaluated as DRL control agents to suggest EMS strategies for measured instantaneous 
environments. The objective of the DRL agents is to select the optimal engine power for a given specific state of 
the vessel, as illustrated in Figure 2. It should be noted that selecting the engine power also defines the share of 
electrical power supplied to/from the battery, as the combination of these must satisfy the total vessel power 
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demand. The selection of the optimal engine power by the DRL agents is done on the basis of minimizing 
cumulative sailing trip GHG emissions and adhering to the battery’s operational constraints. The state of the vessel 
at a given time step is defined in the RL environment’s state space, the action is defined in the action space, and 
the reward function is designed to incentivize the agent to take actions that minimize cumulative GHG emissions 
while adhering to the battery’s operational constraints.

5.1 Data Preparation
Data signals that were collected during the vessel’s sailing trips included travel time, engine power, battery 
power and battery SOC. The vessel’s power demand, which is required to train the DRL agents, was calculated 
as the sum of the engine power and battery power as per Equation (17).

𝑃𝑡𝑜𝑡,𝑡 = 𝑃𝑒𝑛𝑔,𝑡 + 𝑃𝑏𝑎𝑡,𝑡#(17)

Where 𝑃𝑡𝑜𝑡,𝑡 is the total power demand, 𝑃𝑒𝑛𝑔,𝑡 is the engine power, and 𝑃𝑏𝑎𝑡,𝑡 is the battery power at time 𝑡.

The data was collected at a 1-hertz frequency for a total of 198 sailing trips. Each data signal was converted into 
a 1-minute average to reduce noise and match the time resolution of the estimated GHG emission factors. A time 
step of one minute was therefore also used in the RL environment. The power demand and engine power were 
normalized by their respective maximum values. The data was divided into a training dataset, composed of 178 
sailing trips, and a test dataset of 20 sailing trips. The test dataset was used to test the performance of the DRL 
agents on sailing trips the agents had not been trained on. The training dataset was then augmented to create more 
training examples by randomly sampling a set of 2 sailing trips iteratively without repetition and averaging their 
profiles. A total of 1000 augmented sailing trip profiles were generated adding up to a total of 1178 training 
examples. In the context of this paper, one sailing profile represents one finite episode in the RL environment. 
Sailing trip profiles from the training dataset were randomly sampled during each DRL agent training iteration.

All code used in this study was written in Python. The stable_baselines3 library was used to set up the TD3, SAC, 
and PPO agents. The RL environment was set up using OpenAI’s gymnasium library. The Optuna library was 
used for hyperparameter tuning.

5.2 State Space
The state space used in the RL environment is a 4-dimensional continuous array as defined in Equation (18). 
The state space represents the input to the DRL agents during training and testing.

𝑺𝒕 = [𝑡𝑛𝑜𝑟𝑚,𝑃𝑑𝑒𝑚,𝑡,𝐿𝑡,𝐵𝑠𝑜𝑐,𝑡]𝑇#(18)

Where 𝑺𝒕 is the state space array at time 𝑡, 𝑡𝑛𝑜𝑟𝑚 is the normalized time with respect to the maximum trip 
duration, 𝑃𝑑𝑒𝑚,𝑡 is the normalized power demand, 𝐿𝑡 is the engine load (normalized engine power), and 𝐵𝑠𝑜𝑐,𝑡 is 
the battery SOC at time 𝑡. The maximum trip duration is known during the training of the RL agents. In terms of 
real-life applications, the maximum trip duration would be the estimated time of arrival of the vessel in minutes. 
The state space defined in (18) describes all the necessary information at each time step that is relevant for the 
agent to select an optimal action.

During the training of the DRL agents, the initial states of the episodes were set as the initial states of the actual 
sailing trips, except for the battery SOC, which was randomized between 0.75-0.85 to increase the exploration of 
the agents. Subsequent time and power demand values were taken from the actual sailing trip profiles as the DRL 
agents were required to learn policies based on the historical power demand profiles. Subsequent engine load 
values were dependent on the actions taken by the agent and subsequent SOC values were calculated using 
Equation (2).

5.3 Action Space
The action space used in the RL environment is a 1-dimensional continuous array as defined in Equation (19). 
The action space represents the action taken by the agent given a certain state.

𝑨𝒕 = [𝐿𝑡+1]#(19)

Where 𝑨𝒕 is the action space array at time 𝑡 and 𝐿𝑡+1 is the engine load at time 𝑡 + 1. The agent selects the 
engine load at the next time step. The battery power at time 𝑡+1 is calculated using Equation (17). The action 
selected by the agent dictates whether the battery is operated in charge or discharge mode.
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5.4 Reward Function
The reward function was designed to support the agent in learning a policy that minimizes cumulative GHG 
emissions while working within the battery’s operational constraints. The reward function consists of multiple 
components, each rewarding the agent for a specific behavior.

The first part of the reward function consisted of a reward, with values between 0-1, that incentivizes state 
transitions that lower cumulative GHG emissions between successive time steps. The first part of the reward 
function is defined in Equation (20).

𝑟𝑔ℎ𝑔,𝑡+1 = exp ( ― ∫𝑡+1
𝑡 𝑔(𝐿) 𝑑𝑡

𝛽1 ) #(20)

Where 𝑟𝑔ℎ𝑔,𝑡+1 is the time step GHG reward, ∫𝑡+1
𝑡 𝑔(𝐿)𝑑𝑡 is the amount of GHG emissions released within one 

time step, and 𝛽1 is a factor used to scale the reward.

The second part of the reward function consisted of battery constraint violation penalties. A reward of -1 was 
provided to the agent if any of the constraints were violated. The constraints included the maximum battery 
charge and discharge rates, and the SOC levels required to maintain battery health (SOC = [0.30,0.85]). The 
episode was truncated early if the battery was over or undercharged (i.e., if SOC ∉  [0,1]) to enforce a hard 
constraint. The rewards placed on constraint violations are defined in Equations (21)-(23). Negative power 
values in the range defined in Equation (21) represent battery charging.

𝑟𝑃𝑏𝑎𝑡,𝑡+1 = { ―1,  𝑖𝑓 𝑃𝑏𝑎𝑡,𝑡+1 ∉ [ ―2000, 800] 𝑘𝑊
0,  𝑒𝑙𝑠𝑒.#(21)

𝑟𝐵𝑆𝑂𝐶,𝑡+1 = { ―1,  𝑖𝑓 𝐵𝑆𝑂𝐶,𝑡+1 ∉ [0.30, 0.85]
0,  𝑒𝑙𝑠𝑒.#(22)

𝑟𝐵𝑐ℎ𝑟𝑔,𝑡+1 = { ―1 𝑎𝑛𝑑 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒,  𝑖𝑓 𝐵𝑆𝑂𝐶,𝑡+1 ∉ [0.00, 1.00]
0,  𝑒𝑙𝑠𝑒.#(23)

Where 𝑟𝑃𝑏𝑎𝑡,𝑡+1 is the battery power penalty, 𝑟𝐵𝑆𝑂𝐶,𝑡+1 is the battery SOC penalty, and 𝑟𝐵𝑐ℎ𝑟𝑔,𝑡+1 is the 
overcharge/undercharge penalty.

The final part of the reward function consisted of a terminal (final) state battery charging penalty defined in 
Equation (24). The terminal reward function penalized the agent based on its deviation from the target final 
SOC (0.85). If the SOC is not at 0.85 by the end of the episode, the battery is charged at a rate of 2000 kW 
(41.9% engine load), and the associated GHG emissions are calculated accordingly.

𝑟𝑡𝑒𝑟𝑚 = 𝑐𝑙𝑖𝑝(𝛽2 ―
 𝑔(41.9%)∆𝑡𝑐ℎ𝑟𝑔

𝛽3
, ― 𝛽2, + 𝛽2)#(24)

Where 𝑟𝑡𝑒𝑟𝑚 is the terminal reward, 𝑔(41.9%) is the GHG emission rate at an engine load of 2000 kW, ∆𝑡𝑐ℎ𝑟𝑔 is 
the battery charging time, 𝛽2 is a factor used to set the limits for the reward/penalty, and 𝛽3 is a factor used to 
scale the terminal reward.

The selection of 𝛽2 should ensure that the terminal reward does not overshadow time step rewards to a great 
extent. The maximum terminal reward of + 𝛽2 is achieved if the final SOC is 0.85. Final SOC levels higher 
than 0.85 do not result in a higher reward so the agent does not receive an incentive to charge the battery above 
a final SOC of 0.85.

The total reward for each state transition is defined in Equation (25).

𝑅𝑡+1 = { 𝑟𝑔ℎ𝑔,𝑡+1 + 𝑟𝑃𝑏𝑎𝑡,𝑡+1 + 𝑟𝐵𝑆𝑂𝐶,𝑡+1 + 𝑟𝐵𝑐ℎ𝑟𝑔,𝑡+1,  𝑡𝑛𝑜𝑟𝑚 < 1
𝑟𝑔ℎ𝑔,𝑡+1 + 𝑟𝑃𝑏𝑎𝑡,𝑡+1 + 𝑟𝐵𝑆𝑂𝐶,𝑡+1 + 𝑟𝐵𝑐ℎ𝑟𝑔,  𝑡+1 + 𝑟𝑡𝑒𝑟𝑚,  𝑡𝑛𝑜𝑟𝑚 = 1#(25)

Where 𝑅𝑡+1 is the total reward at the end of each time step.

5.5 Hyperparameter Tuning
The hyperparameters of the DRL agents were tuned using the Optuna library with a total run time of 8 hours or 
100 trials. The objective was the maximization of the final total reward received by the agent after 100,000 time 
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steps. The tree-structured parzen estimator was used as the parameter sampler during the hyperparameter tuning 
process. The TD3, SAC, and PPO agents were tested using both the Huber loss function and the mean squared 
error (MSE) loss function for critic loss calculation. TD3 performed best with the Huber loss function, while SAC 
and PPO showed better performance with MSE. The final hyperparameters of the TD3, SAC, and PPO agents are 
summarized in Table 2, Table 3, and Table 4, respectively. Normal action noise with linear decay was used during 
the training of the TD3 agent, and the parameters of the noise were also subjected to hyperparameter tuning.

Table 2: Hyperparameters of the TD3 agent tuned using the Optuna library.

Hyperparameter Value
Discount factor, γ 0.99
Learning rate, 𝛼 9.94×10-4

Batch size 128
Buffer size 100,000

Polyak coefficient, 𝜏 0.02
Training frequency 1 step

Action noise initial standard deviation, 𝜎𝑖𝑛𝑖𝑡 0.37
Action noise final standard deviation, 𝜎𝑓𝑖𝑛 0.07

Noise decay steps 10,000
Actor network size [500, 400]
Critic network size [500, 400]

Table 3: Hyperparameters of the SAC agent tuned using the Optuna library.

Hyperparameter Value
Discount factor, γ 1
Learning rate, 𝛼 9.98×10-3

Batch size 1024
Buffer size 100,000

Polyak coefficient, 𝜏 0.005
Training frequency 4 steps
Actor network size [400, 300]
Critic network size [400. 300]

Table 4: Hyperparameters of the PPO agent tuned using the Optuna library.

Hyperparameter Value
Discount factor, γ 0.9
Learning rate, 𝛼 3.64×10-4

Batch size 32
Number of update steps 512

Entropy coefficient 1.07×10-3

Clip range, 𝜖 0.3
Number of epochs 20

Generalized advantage estimator trade-off, 𝜆 0.99
Max gradient clipping value 1
Value function coefficient 0.75

Actor network size [64, 64]
Critic network size [64, 64]
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6 DRL Agents Training Performance Assessment
Each DRL agent was trained for a total of 100,000 timesteps using five different random seeds, and learning 
curves were generated to assess the learning performance of the agents. The learning curves of the DRL agents 
are illustrated in Figure 5. The learning curves indicate the performance of the DRL agents as training progresses 
in terms of the mean episode reward and the mean episode length, which are both expected to increase as training 
progresses until convergence. An increasing mean episode reward as training progresses indicates that the DRL 
agents are learning policies that maximize GHG reductions and minimize operational constraints. An increasing 
mean episode length indicates that the DRL agents are learning policies that minimize episode truncations as per 
Equation 23. The mean episode length is expected to increase up to a value of 169, which is the average duration 
of a complete sailing trip. The shaded regions represent the standard error over the values obtained from the five 
different training trials. The performances of TD3 and SAC were recorded against training episodes, whereas the 
performance of PPO was recorded against training time steps due to the characteristics of the stable_baselines3 
logger.

Figure 5 (a) and (b) show that the TD3 agent learns a policy that accumulates a greater mean episode reward (~55) 
compared to the SAC (~42) and PPO (~24) agents. Over the five training iterations, the TD3 and SAC agents 
consistently learned policies that complied with the vessel’s operational constraints. However, for four of the five 
iterations, the PPO agent learned policies that violated the vessel’s SOC constraint (i.e., SOC ∉ [0,1]). Figure 5 
(b) shows that the PPO agent failed to learn a stable policy that converges to a maximal reward. Figure 5 (c) 
illustrates that the SAC agent learns a policy that minimizes episode truncations during training faster than the 
TD3 agent. Figure 5 (d) indicates that the PPO agent learns a policy that minimizes episode truncations; however, 
adherence to constraints is inconsistent across episodes. The minimal shaded regions in the SAC learning curves 
are due to the agent’s use of a stochastic policy with entropy maximization which is known to stabilize training 
[31].

Figure 5: Learning curves of the TD3 and SAC agents after 100,000 time steps of training. (a) and (b) represent the 
mean episode reward calculated as training progresses, while (c) and (d) represent the mean episode length.
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6.1 GHG Reduction and Battery Health Performance of the DRL Agents
The total GHG emissions, which include emissions during sailing plus any emissions to recharge the battery to a 
final SOC level of 0.85, were calculated for the engine profiles generated by the DRL agents for measured vessel 
power demands. The GHG emissions reductions achieved by the DRL agents for the hybrid power system (natural 
gas engine + battery) were compared to a baseline in which the same sailing trips were simulated with no battery 
use (i.e., no hybridization). Equation 26 was used to calculate the GHG reduction percentages for each sailing 
trip. The GHG reductions relative to the baseline were used to assess the performance of the DRL agents. The 
assessment was performed using the 178 training dataset examples and the 20 test dataset examples. For this 
application phase, SAC and PPO were configured to select actions deterministically, while they were kept in their 
original stochastic form during training. TD3 employs a deterministic policy which was used in both the training 
and application phases.

𝐸𝑟𝑒𝑑% =
𝐸𝑁𝐻 ― 𝐸𝑅𝐿

𝐸𝑁𝐻
× 100%#(27)

Where 𝐸𝑟𝑒𝑑% is the emissions reduction %, 𝐸𝑁𝐻 is the amount of GHG emissions associated with a sailing trip 
simulated with no hybridization in kg CO2,eq, and 𝐸𝑅𝐿 is the amount of GHG emissions associated with a sailing 
trip simulated with a DRL control agent in kg CO2,eq.

Table 5 summarizes the performance of the DRL agents in terms of GHG reductions. The results show that TD3 
is the best performing DRL agent in terms of GHG reduction performance followed by SAC and then PPO. The 
comparable results between the training and test datasets show that the learned policies can be effectively applied 
to new power demand profiles that the agents have not been trained on.

Table 5: GHG reduction performance of the TD3, SAC, and PPO agents averaged over 178 training examples and 20 
test examples.

GHG Reduction (%)
Algorithm

Training Examples Test Examples
TD3 14.62 13.42
SAC 12.19 11.42
PPO 10.79 9.41

The DRL agents were also evaluated based on their ability to maintain the vessel’s battery health by operating 
within the SOC limits of 0.30 to 0.85. Sailings controlled by the TD3 and SAC agents agent were outside of these 
limits for less than one minute per trip for the training and test datasets, respectively. In contrast, the PPO agent-
controlled trips average just above 21 minutes per trip outside these limits for the training and test datasets, 
respectively. These results demonstrate that the TD3 and SAC agents effectively manage the vessel’s power 
distribution while maintaining battery health, whereas the PPO agent shows poor performance in this regard. The 
times of operation outside the battery health SOC limits are summarized in Table 6.

Table 6: Average time of operation outside the battery health SOC limits for the sailings controlled by the TD3, SAC, 
and PPO agents.

Time of Operation (mins)
Algorithm

Training Examples Test Examples
TD3 0.69 1.00
SAC 0.80 0.70
PPO 21.61 23.35

Figure 6 illustrates an example of the power load distribution for a sample sailing trip from the test dataset for the 
TD3 and SAC agents. PPO’s results are excluded due to its inferior GHG reduction performance and battery 
operational constraint compliance. The power load distribution set by the DRL agents in simulation was compared 
to the actual power load distribution (i.e., not controlled by DRL) that occurred during the course of the sailing 
trips. Figure 6 (a) and (c) show the TD3 agent’s power load distribution and SOC profiles compared to actual 
operational scenarios, while Figure 6 (b) and (d) show the same comparisons for the SAC agent. The sailing trip 
(i.e., power demand) considered in  Figure 6 is identical for both the TD3 and SAC agents. For the trip duration 
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from minutes 20 to 140, the engine load and battery power profiles selected by the DRL agents closely resemble 
the actual operational scenarios. The major differences are observed at the beginning (minutes 0-20) and the end 
(minutes 140+) of the sailing trip. This behavior is consistent across most sailing trips in both the training and test 
datasets. To assess the generality of this behavior, the absolute deviation of the engine load selected by the DRL 
agents from the actual engine loads was analyzed. Figure 7 shows the engine load deviations for both the TD3 
and SAC agents across all sailing trips in the training and test datasets. As illustrated in Figure 7, the most 
significant variations occur at the beginning and end of the sailing trips.

Figure 6: Comparison plots of power and SOC profiles for a sample sailing trip from the test dataset for TD3, (a) and 
(c), and SAC, (b) and (d).
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Figure 7: Deviations of the DRL selected engine loads from the actual operational engine loads. (a) and (b) represent 
the training dataset absolute engine load deviations for the TD3 and SAC agents, respectively. (c) and (d) represent 

the test dataset absolute engine load deviations for the TD3 and SAC agents, respectively. Each data point on the 
plots represents a data sample from a one-minute time step.

6.2 GHG Emissions Reduction Performance Compared to Offline Optimization
Sequential least squares programming (SLSQP) was used to estimate the maximum possible theoretical GHG 
emissions reductions that can be achieved by optimizing the engine load profile of the sailing trips through offline 
optimization. The solutions of the offline optimization problem represent hypothetical references used to establish 
best-case scenarios of power load distribution. Unlike online optimization using RL, SLSQP requires prior 
knowledge of the entire power demand profile for each sailing trip. The optimization task was set up as a 
constrained optimization problem, with constraints set on the engine power, battery SOC, and battery power 
limits. The objective function included the cumulative GHG emissions from each episode plus the emissions 
released when recharging the battery to a final SOC level of 0.85. Each sailing trip was optimized individually. 
The constrained optimization problem was solved using the SciPy library.

Optimal engine load profiles were generated using SLSQP. The optimization process took a total of 10.35 hours 
to determine the optimal engine load profiles for all 198 sailing trips. Figure 8 illustrates an example of an optimal 
solution to the optimization problem for the same sailing trip used in Figure 6. The GHG emissions reductions 
achieved by the TD3 and SAC agents across all 198 trips were normalized against the reductions achieved by the 
SLSQP optimizer. Reductions based on the actual control strategy (i.e., peak shaving + load leveling) were also 
normalized to assess the improvement in GHG reductions by the TD3 and SAC agents. The normalized reduction 
reflects the GHG reduction efficiency of each strategy and is defined in Equation 28.

𝐸𝑒𝑓𝑓% =
𝐸𝑁𝐻 ― 𝐸𝐶𝑆

𝐸𝑁𝐻 ― 𝐸𝑆𝐿𝑆𝑄𝑃
× 100%#(29)
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Where 𝐸𝑒𝑓𝑓% is the GHG reduction efficiency, 𝐸𝐶𝑆 is the amount of GHG emissions associated with a sailing trip 
following a particular control strategy (actual/RL/SLSQP) in kg CO2,eq, and 𝐸𝑆𝐿𝑆𝑄𝑃 is the amount of GHG 
emissions associated with a sailing trip simulated with offline optimization using SLSQP in kg CO2,eq.

The average GHG emissions reductions achieved by the different control strategies and their respective reduction 
efficiencies are summarized in Table 7. The TD3 agent showed reduction efficiency improvements of 19.80% 
and 18.64%, for the training and test datasets respectively, compared to the actual control strategy while the SAC 
agent showed improvements of 11.46% and 7.61%. The results indicate that both the TD3 and SAC agents provide 
more efficient control strategies than the actual approach, with the TD3 agent outperforming the SAC agent.

Figure 8: Power (a) and SOC (b) profiles obtained from the SLSQP optimization for a sample sailing trip from the 
test dataset.

Table 7: Average GHG emissions reductions achieved by the actual sailing operations, the TD3 and SAC agents 
(online optimization), and SLSQP (offline optimization). The emissions reductions were calculated against emissions 

from the same sailing trips simulated with no battery use.

Training Dataset Test Dataset

Strategy Average Emissions 
Reduction (kg 

CO2,eq)

Reduction 
Efficiency (%)

Average Emissions 
Reduction (kg 

CO2,eq)

Reduction 
Efficiency (%)

Actual Conditions 1258 61.37 1143 60.90
TD3 (Online) 1664 81.17 1493 79.54
SAC (Online) 1493 72.83 1286 68.51

SLSQP (Offline) 2050 100 1877 100

The GHG emissions reductions were further divided into CH4 and CO2 reductions in Table 8. The TD3 and SAC 
agents as well as the SLSQP optimizer led to an increase in the total CO2 emissions by <2% while significantly 
reducing CH4 emissions.  This increase in CO2 emissions is attributed to the more complete oxidation of CH4 to 
CO2.  The preferential reduction in CH4 emissions is driven by the tendency to avoid engine loads with high GHG 
emission rates that are driven by the non-linear nature of CH4 emissions with engine load as described in Figure 
3, and by the high GWP of CH4. Notably, all GHG reductions achieved were the result of minimizing methane 
slip.
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Table 8: Average CH4 and CO2 reductions achieved by the TD3 and SAC agents as well as the SLSQP optimizer, 
compared against the same sailing trips with no battery use.

Dataset & Algorithm Methane Emissions
Reduction (%)

Carbon Dioxide Emissions 
Reduction (%)

Training Dataset (TD3) 26.84 -1.31
Test Dataset (TD3) 25.02 -1.44

Training Dataset (SAC) 22.61 -1.54
Test Dataset (SAC) 21.42 -1.63

Training Dataset (SLSQP) 33.34 -1.49
Test Dataset (SLSQP) 31.88 -1.64

7 Conclusion and Future Work
The adoption of hybrid-powered LNG powertrains offers significant potential for reducing maritime GHG 
emissions, but its success depends on an effective EMS to optimize powertrain performance. This study developed 
a DRL-based EMS to minimize GHG emissions by controlling power distribution between the engine and battery 
of a hybrid LNG vessel while adhering to battery operational constraints.

Three DRL algorithms—TD3, SAC, and PPO—were assessed for feasibility in this context. TD3 and SAC 
emerged as the best-performing algorithms, demonstrating superior GHG reduction and compliance with battery 
constraints. The TD3 agent achieved GHG reduction efficiencies of 81.17% and 79.54% on training and test 
datasets, representing improvements of 19.80% and 18.64% over the vessel's actual control strategy. Similarly, 
the SAC agent achieved efficiencies of 72.83% and 68.51%, with improvements of 11.46% and 7.61%. In contrast, 
the PPO agent exhibited inferior GHG reduction performance and frequent violations of the SOC constraint. The 
GHG reductions that were achieved were primarily driven by reductions in methane slip through the optimization 
of the vessel's engine load. The 'model-free' nature of the DRL algorithms enabled training with real-world data, 
enhancing their practicality for dynamic maritime energy management scenarios.

Future work would incorporate vessel velocity optimization to further support the GHG reduction objective. The 
findings demonstrate that TD3 and SAC are viable tools for operators seeking to enhance environmental 
sustainability and operational efficiency in hybrid-powered LNG vessels, paving the way for broader adoption of 
intelligent EMS in maritime transport.
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Figure 1: Typical power demand profiles of the hybrid-powered LNG vessel under study. The red line 
represents the average power demand whereas the blue lines represent the 198 individual sailing trips.

Figure 2: Schematic of the hybrid-powered setup and the energy management system. The powertrain 
consists of two LNG-fueled engines and associated generators, a battery, and two electric propulsion 
motors.

Figure 3: Measured GHG emission rates in kg carbon dioxide equivalent per hour versus the vessel’s 
engine load. The emission rates peak at an engine load of 32%. The minimum emission rate at 
operational loads between 20-100% is at an engine load of 74%.

Figure 4: A sample SOC profile plot that compares the actual SOC to the predicted SOC of a sailing 
trip using the constant efficiency model. The R2 and MSE for this plot are 0.99 and 0.0004, 
respectively.

Figure 5: Learning curves of the TD3 and SAC agents after 100,000 time steps of training. (a) and (b) 
represent the mean episode reward calculated as training progresses, while (c) and (d) represent the 
mean episode length.

Figure 6: Comparison plots of power and SOC profiles for a sample sailing trip from the test dataset 
for TD3, (a) and (c), and SAC, (b) and (d).

Figure 7: Deviations of the DRL selected engine loads from the actual operational engine loads. (a) 
and (b) represent the training dataset absolute engine load deviations for the TD3 and SAC agents, 
respectively. (c) and (d) represent the test dataset absolute engine load deviations for the TD3 and 
SAC agents, respectively. Each data point on the plots represents a data sample from a one-minute 
time step.

Figure 8: Power (a) and SOC (b) profiles obtained from the SLSQP optimization for a sample sailing 
trip from the test dataset.
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