
Deep Neural Network Approximation of
Nonlinear Model Predictive Control ?

Yankai Cao ∗ R. Bhushan Gopaluni ∗

∗Department of Chemical and Biological Engineering, Vancouver, BC,
Canada (e-mail:yankai.cao@ubc.ca;bhushan.gopaluni@ubc.ca.)

Abstract: This paper focuses on developing effective computational methods to enable the
real-time application of model predictive control (MPC) for nonlinear systems. To achieve this
goal, we follow the idea of approximating the MPC control law with a Deep Neural Network
(DNN). To train the deep neural network offline, we propose a new “optimize and train” method
that combines the steps of data generation and neural network training into a single high-
dimensional stochastic optimization problem. This approach directly optimizes the closed loop
performance of the DNN controller over a finite horizon for a number of initial states. The
large-scale optimization problem can be solved efficiently using parallel computing techniques.
The benefits of this approach over the conventional “optimize then train” protocol is illustrated
through numerical results.

Keywords: Model Predictive Control, Stochastic Optimization, Deep Neural Networks,
Nonlinear Systems

1. INTRODUCTION

Optimal real-time operation of a variety of industrial
systems (e.g., power networks, buildings, batteries, wind
turbines) requires control of nonlinear systems that are
typically subjected to a number of uncertain factors
(e.g., markets, weather, demands, and equipment failures).
Conventional single-loop low level controllers (e.g., PID
controllers) are easy to be deployed in real-time oper-
ations, however, their performance is often suboptimal.
Advanced control algorithms, such as model predictive
control (MPC), provide a general framework for control-
ling nonlinear systems under uncertainty. However, the
high computational latency of such approaches and the
lack of sufficiently robust nonlinear programming (NLP)
solvers, limits the scope of their applications (especially
for systems with fast dynamics).

One way to enable the real-time application of MPC is
based on the idea of explicit MPC (Bemporad et al.,
2002b,a; TøNdel et al., 2003). Explicit MPC computes
the optimal control law offline as a function of all pos-
sible states in different regions using multi-parametric
optimization. The online computational cost is limited to
determining the region to which the current state of the
system belongs and then apply a pre-determined control
law. However, the offline computational cost grows ex-
ponentially with the number of constraints and the size
of prediction/control horizons. Therefore, explicit MPC is
often computationally intractable for large systems. We
can mitigate this issue by eliminating redundant regions
of states (Geyer et al., 2008; Kvasnica et al., 2013) or by
identifying suboptimal partitions of regions (Johansen and
Grancharova, 2003; Summers et al., 2011).

? yankai.cao@ubc.ca;bhushan.gopaluni@ubc.ca

An alternative to explicit MPC is to approximate the
explicit control law with a neural network (Parisini and
Zoppoli, 1995; Csekő et al., 2015; Chen et al., 2018b;
Kumar et al., 2018; Spielberg et al., 2019). The hypothesis
of this approach is that a deep learning neural network can
sufficiently approximate the nonlinear behavior of MPC,
but at an online computational cost that is significantly
better than that of a full-fledged MPC. This is based on the
observation that neural networks with a sufficient number
of neurons and layers can approximate any nonlinear
mapping with arbitrary accuracy (Hornik et al., 1990). For
linear systems with quadratic cost function, the optimal
control law is piecewise affine on polytopes. A neural
network with rectified linear units as activation functions
can exactly represent piecewise affine optimal control laws.
Karg and Lucia (2018) provides a conservative upper
bound on the width and depth of a neural network required
to approximate the explicit MPC.

An essential aspect of the above-mentioned approaches is
the training of large dimensional neural networks. Many
researchers follow the “optimize then train” protocol. The
idea in these algorithms is to simulate the optimal con-
troller, generate corresponding state and optimal control
action data pairs and then use these data to train a
large dimensional neural network via supervised learning
to approximate the original optimal controller. This con-
ventional “optimize then train” protocol is not guaranteed
to work on nonlinear systems. For nonlinear systems, it
is possible that multiple optimal control actions exit for
the same initial state. Even if the uniqueness of optimal
control actions is guaranteed, the optimal control prob-
lem might have multiple local optimal control actions,
which are typically identified using local solvers due to
the prohibitive computational cost of global solvers. The
non-uniqueness of the state-action data pairs makes it

challenging to learn the underlying nonlinear mapping
from states to optimal control actions, as illustrated in
an example in Section 2. Moreover, for general nonlinear
systems, no neural network structure with finite neurons
can guarantee an exact representation of the MPC control
laws. The training error of the neural network can lead to
sub-optimal control actions, and the resulting errors could
potentially accumulate over time. Thus, eventually making
the neural network deviate significantly from the optimal
controller. Some researchers trained the neural network
with reinforcement learning (Bradtke, 1993; Vamvoudakis,
2017; Chen et al., 2018a). A limitation of these approaches
is that they cannot explicitly tackle constraints.

We propose a new “optimize and train” method that
combines the steps of data generation and neural network
training into one single stochastic optimization problem.
This approach directly optimizes the closed loop perfor-
mance of the DNN controller over a number of possible
initial states. The critical challenge arising in this ap-
proach is solving a large-scale nonlinear stochastic op-
timization problem. However, tremendous progress has
been made recently in the field of stochastic optimization
that allows us to design and implement efficient local and
global algorithms. For instance, recent work by Cao et al.
(2018) showed that the nonlinear stochastic optimization
problem, arising from designing control systems for wind
turbines, has approximately 7.5 million variables, and it
can be solved in less than 1.3 hours using parallel solvers.

The paper is organized as follows: Section 2 introduces ba-
sic nomenclature and the conventional approach to train a
DNN controller. Section 3 introduces a new “optimize and
train” method that combines the steps of data generation
and neural network training into one single optimization
problem. Section 4 discusses the computational aspects
of the new approach. Section 5 illustrates the numerical
performance of the proposed algorithm on an example.
The paper closes with final remarks and directions of
future work in Section 6.

2. “OPTIMIZE THEN TRAIN” METHOD

MPC is an advanced control strategy that repeatedly
solves the following optimal control problems PN (x0) at
each sample time step with the updated initial states x0

and prediction horizon N

min
x(k),u(k)

∑
k∈T

l(x(k), u(k)) + Vf (x(N)) (1a)

s.t. x(k + 1) = f(x(k), u(k)) (1b)

x(0) = x0 (1c)

x(k) ∈ X, x(N) ∈ Xf , u(k) ∈ U (1d)

∀k ∈ T (1e)

where T := [0, . . . , N − 1] is time step set, x ∈ Rnx are
the state variables, u ∈ Rnu are the controls, f(.) repre-
sents the nonlinear process dynamics, l(.) is the stage cost
function, Vf is the terminal cost function, X and Xf denote
diverse state constraints, U denotes input constraints. The
optimal control actions of this optimization problem are
denoted as u(x0) = (u(0;x0), u(1;x0), . . . , u(N − 1;x0)).
Due to the receding horizon nature of MPC, only the con-
trol action of the first step u(0;x0) is applied. Therefore,
the MPC control law is defined by κN (x0) = u(0;x0).

Although it is often computationally intractable to extract
an explicit MPC control law κN (.), evaluation of κN (x0)
for a specific value of the x0 is computationally inexpen-
sive. The central idea of “optimize then train” method is to
first generate a number of initial state scenarios x0,s, where
s ∈ S := [1, . . . , S] is a scenario set and S is the number
of scenarios. We then obtain κN (x0,s) = u(0;x0,s) by solv-
ing the corresponding optimal control problem PN (x0,s).
These generated data pairs (x0,s, κN (x0,s)) are used to
train a neural network that approximates the MPC control
law κN (.) via supervised learning. One challenge with this
approach is that, for nonlinear systems, multiple optimal
control actions might exist for the same initial state values.
In this case, the MPC control law κN (.) is a set-valued
function, and the MPC controller randomly selects one
element from the set. However, approximating set-valued
functions using samples is challenging. The following ex-
ample illustrates the problem of “optimize then train”
Method caused by the nonuniqueness in the data pairs.
It is also worth mentioning that even if the uniqueness of
optimal control actions is guaranteed, the optimal control
problem might have multiple local optimal control actions,
and we typically use local solvers because of the prohibitive
computational cost of global solvers.

Example 1. Approximating Set-Valued MPC Control Law.
Consider an illustrative example of the following form:

min
x(k),u(k)

1∑
k=0

x(k)2

s.t. x(1) = x(0)2 − u(0)2 (2)

x(0) = x0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
(0

)

MPC control law

DNN control law

training samples

Fig. 1. DNN control law trained with “optimize then train”
method

Example 1 shows a case study that is so simple that MPC
can drive the state to the origin in one step. In this case,
terminal cost, terminal constraints, or a long prediction
horizon is not necessary. The MPC control law can be
computed analytically κN (x0) = ±x0. We generated 100
samples by solving the corresponding optimal control
problems. The NLP solver chose either positive or negative
optimal control action depending on the initial guess.
Figure 1 shows the control law trained with the “optimize
then train” method. The neural network control law has
one input x0, one output u(0), and one hidden layer with
20 neurons. It is obvious that the trained control law,

shown in Figure 1, is significantly different from the MPC
control law. In fact, the DNN control law drives the states
to infinity very quickly. We highlight that this problem can
not be mitigated by increasing the number of samples or
choosing a different neural network architecture.

3. “OPTIMIZE AND TRAIN” METHOD

We propose to train the DNN controller to approximate
the MPC control law by solving the following optimization
problem:

min
π,xs(k),us(k)

∑
s∈S

∑
k∈T

l(xs(k), us(k)) + Vf (xs(N)) (3a)

s.t. xs(k + 1) = f(xs(k), us(k)) (3b)

us(k) = µ(π, xs(k)) (3c)

xs(0) = x0,s (3d)

xs(k) ∈ X, xs(N) ∈ Xf , us(k) ∈ U (3e)

∀s ∈ S,∀k ∈ T (3f)

where x0,s is a possible realization of the initial states x0

with s ∈ S, µ(.) represents the neural network controller,
and π denotes the controller settings (parameters of the
neural network). This formulation optimizes the closed-
loop performance of the DNN control law over the pre-
diction horizon N for a set of initial state scenarios. We
highlight that by removing the DNN control policy 3c, one
obtains a set of optimal control problems PN (x0,s) for each
initial state scenario. Consequently, one can think of this
approach as a restricted (conservative) form of MPC. The
level of conservativeness can be relaxed by increasing the
number of layers, the number of neurons per layer, and the
number of scenarios.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
(0

) MPC control law

DNN control law

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
(0

) MPC control law

DNN control law

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
(0

) MPC control law

DNN control law

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
(0

) MPC control law

DNN control law

Fig. 2. DNN control law trained with “optimize and train”
method

Instead of first optimizing control actions and then learn-
ing the control laws from data pairs between initial states
and control actions as the conventional “optimize then
train” approach does, the new “optimize and train” ap-
proach directly optimizes the control laws by solving only
one large-scale optimization problem. Directly optimizing
the control law avoids the difficulty caused by the non-
uniqueness of optimal control actions. Even if the MPC

control policy is set-valued, this approach learns a function
approximating a subset of κN (.) (DNN provides a one-to-
one mapping). Figure 2 illustrates the DNN controller laws
learned using this approach for Example 1. The number of
scenarios and neural network structure are kept the same
as those used with the “optimize then train” approach.
Problem 3 has multiple optimal solutions for this example.
The NLP solver runs with multiple random initial guesses.
We obtained four different DNN control laws. Each control
law is a good approximation to a subset of κN (.) and
provides closed-loop performance very close to the MPC
controller.

Another feature of our approach is that it directly opti-
mizes the closed loop performance over the following N
steps since the control policies of the following steps are
explicitly handled in the formulation. Because the control
actions are trained at every step within the prediction hori-
zon as a function of different state variables, we expect that
this approach would require significantly fewer samples for
training.

The last feature of this approach is that all constraints
are guaranteed to be satisfied for all initial state scenarios
considered in the optimization. We call these initial state
scenarios used in the optimization, training scenarios.
We highlight that this guarantee does not hold for the
“optimize then train” method because the training error of
the DNN can lead to sub-optimal or even infeasible control
actions, even for training scenarios.

It is clear that the optimization formulation does not
account for all possible initial states, instead only a small
subset are considered. How can we ensure constraints
satisfaction for all possible initial states? If the input
constraints are defined by a box set {u|u ≤ u(k) ≤ ū},
their satisfaction can be guaranteed by appropriate design
of the activation functions in the last layer of the DNN. In
addition, after obtaining the controller law µ(π, .) from the
optimization, we can check if all constraints are satisfied
using this control law for all initial states x(0) ∈ X0 by
solving the following optimization problem:

Cv(π) = max
x(0)∈X0,x(k),u(k)

‖[g(x)]+‖ (4a)

s.t. x(k + 1) = f(x(k), u(k)) (4b)

u(k) = µ(π, x(k)) (4c)

∀k ∈ T (4d)

where [z]+ := max{z, 0} and we assume that the state
constraints x(k) ∈ X, x(N) ∈ Xf have the general form
g(x) ≤ 0. This formulation finds the initial states that
maximize the constraint violations resulting from applying
control law µ(π, .). If Cv(π) = 0, then it means that the
control law µ(π, .) will not cause any constraint violation
for any initial state. In other words, the control law can
drive any state x0 ∈ X0 to Xf in N steps. Assume that
we can obtain a local control law µf (x0) = Kx0 that can
stabilize any states in Xf , then it is obvious that the DNN
control law is stable. If Cv(π) > 0, it implies that the
control law µ(π, .) will cause constraint violations, and
the above formulation provides the initial state/scenario
leading to the largest constraint violations. We can add
this scenario to scenario set S and resolve the optimization

formulation 3. Another way to improve the constraints
satisfaction is to choose tighter state constraints in the
optimization (e.g., solving formulation 3 with g(x) ≤ −ε),
where ε is a positive margin.

4. COMPUTATIONAL METHODS

The key challenge arising from the “optimize and train”
method is the solution of a large-scale nonlinear optimiza-
tion problem 3. By noticing that the only variables linking
different scenarios are the parameters of the DNN, problem
3 can be cast as a structured NLP of the form:

min
π,ys

∑
s∈S

gs(π, ys) (5a)

s.t. cs(π, ys) = 0, s ∈ S (5b)

ys ≥ 0, s ∈ S (5c)

Here, π is the controller settings and ys represents scenario
variables (associated with the states xs(k), control vari-
ables us(k), and auxiliary variables). General inequality
constraints can be transformed to this form by introducing
auxiliary variables. Problem 5 has the same structure as
the stochastic optimization problems, in which π is called
first-stage variables and ys is called second stage variables.
Therefore the structure of problem 5 can be exploited by
our existing solvers for two-stage stochastic optimization
problems.

If we solve the problem 5 following interior point methods,
the search steps are computed by solving linear systems.
A key observation is that the linear systems derived using
interior point methods have the block-bordered-diagonal
form (Kang et al., 2014; Zavala et al., 2008; Chiang et al.,
2014):


Kπ B

T
1 BT2 . . . BTS

B1 K1

B2 K2

...
. . .

BS KS




∆π
∆w1

∆w2

...
∆wS

 = −


rπ
r1

r2

...
rS

 , (6)

where ∆ws = (∆ys,∆λs) are the Newton steps,

Kπ = Wπ, (7a)

Ks =

[
Ws J

T
s

Js

]
, (7b)

Bs =

[
Qs
Ts

]
, (7c)

Js = ∇yscs(π, ys), Ts = ∇πcs(π, ys), Wπ = ∇π,πL, Ws =
∇ys,ysL + diag(ys)

−1diag(λs), Qs = ∇π,ysL, rπ = ∇πL,
rs = ∇ws

L, L(·) is the Lagrange function of problem 5,
and λs are the multipliers of ys.

Assuming that all Ks are of full rank, we can show with
the Schur complement method that the solution of the
Equation (6) is equivalent to that of the following system:(

Kπ −
∑
s∈S

BTs K
−1
s Bs

)
∆π=− rπ +

∑
s∈S

BTs K
−1
s rs (8a)

Ks∆ws=− rs −Bs∆π, s ∈ S. (8b)

Here, Z:=Kπ−
∑

s∈ΩB
T
s K

−1
s Bs is the Schur complement

matrix which has the same dimension as that of π. If some
Ks are not full rank, then diagonal modification is applied.
The idea of the interior point method coupled with Schur
complement method has been implemented in several
packages including PIPS-NLP Chiang et al. (2014). If the
dimension of π is small, then the solution of equation (8a)
is computationally cheap and the solution of equation (8b)
can be performed in parallel. However, the scalability of
Schur complement decomposition is significantly hindered
by the dimension of π (the solution of equation (8a)
induces dense linear algebra). One approach to circumvent
the bottlenecks of the Schur complement decomposition
is based on a clustering-based preconditioning technique
that adaptively aggregates (clusters) scenarios (Cao et al.,
2016). The preconditioner is designed in such a way that
it fully avoids dense linear algebra operations and can
thus tackle problems that Schur decomposition is unable
to. This strategy has shown significant improvement in
solution time when the number of coupling variables is
large.

Problem 5 can be implemented using Julia-based model-
ing package Plasmo.jl(Jalving et al., 2019). Plasmo.jl
facilitates the construction and analysis of structured op-
timization models. To achieve this goal, it leverages a hi-
erarchical graph abstraction wherein nodes and edges can
be associated with individual optimization models that are
linked together. Given a graph structure with models and
connections, Plasmo.jl can produce either a pure (flat-
tened) optimization model to be solved using off-the-shelf
optimization solvers such as IPOPT (Wächter and Biegler,
2006), or it can communicate graph structures to parallel
solvers such as PIPS-NLP and thus enable decomposition.

#call libraries
using Plasmo,JuMP, Ipopt
create two-stage model
graph = ModelGraph()
define first-stage variables in parent node
master = Model()
add_node!(graph,master)
@variable(master,pi)

create array of scenario models
scenm=Array(JuMP.Model,S)
for j in 1:S

get scenario model and append to parent node
scenm[j] = get_scenario_model(j)
add_node!(graph,scenm[j])

link children to parent variables
@linkconstraint(graph, master[:pi] == scenm[j][:pi])

end

solve two-stage program with PIPS-NLP
solver = PipsSolver()
alternatively, solve two-stage program as a general NLP with IPOPT
solver = IpoptSolver()
solve(graph,solver)

Fig. 3. Snippet of an implementation of problem 5 in
Plasmo.jl

The code snippet shown in Figure 4 illustrates how to
implement problem (5) in Plasmo.jl. As can be seen, the
individual scenario models are created and appended to
the parent node to create a two-level graph structure. The
structure is directly communicated to PIPS-NLP and thus
the solver can execute the parallel Schur decomposition
approach previously discussed. Note also that, under this

modeling framework, the user does not need to have
any knowledge of parallel computing. From the snippet,
we also note that Plasmo.jl can also create a general
(unstructured) NLP to be solved by off-the-shelf solvers
like IPOPT.

5. NUMERICAL CASE STUDY

The case study we consider is a quadtank problem with
the following dynamics (Raff et al., 2006):

dz1

dt
= − a1

A1

√
2g(z1 + x1s) (9a)

+
a3

A1

√
2g(z3 + x3s) +

γ1

A1
(v1 + u1s) (9b)

dz2

dt
= − a2

A2

√
2g(z2 + x2s) (9c)

+
a4

A2

√
2g(z4 + x4s) +

γ2

A2
(v2 + u2s) (9d)

dz3

dt
= − a3

A3

√
2g(z3 + x3s) +

(1− γ2)

A3
(v2 + u2s) (9e)

dz4

dt
= − a4

A4

√
2g(z4 + x4s) +

(1− γ1)

A4
(v1 + u1s) (9f)

where zi is deviation of water level in tank i from the
setpoint xs = [14cm 14cm 14cm 21.3cm]T , vi is the
deviation of the flow rate of pump i from the steady state
value us = [43.4ml/s 35.4ml/s]T , ai and Ai are tank
parameters, while γi are valve parameters. The objective is
to control the water levels x1 and x2 around the setpoints.
The stage cost is defined as below:

l = z2
1 + z2

2 + 0.01(v2
1 + v2

2). (10)

The controller also needs to satisfy the input and state
constraints at each stage

vmin ≤ v ≤ vmax (11a)

zmin ≤ z ≤ zmax (11b)

with vmin = [−43.4ml/s − 35.4ml/s]T , vmax =
[16.6ml/s 24.6ml/s]T , zmin = [−6.5cm − 6.5cm −
10.7cm −16.8cm]T and zmax = [14cm 14cm 13.8cm 6.7cm]T .

The dynamic model was discretized using an explicit Euler
discretization scheme with a prediction horizon of 20 steps
and a sampling time of 3 seconds. To train the DNN, we
generated 81 initial state scenarios with each state variable
discretized by 3 points (zi(t = 0) can take any value from
{max, 0,min}). The cumulative stage cost over 20 steps
is used to evaluate the performance of the controller. By
using the ideal NMPC, we need to solve 1620 optimization
problems. These 1620 data pairs are used to train the
DNN in the “train then optimize” approach, while the
“train and optimize” approach only uses the 81 initial
state scenarios to train the DNN. To test the performance
of the controllers, we generated 256 initial state scenarios
with each state variable discretized by 4 points. There
is some overlap between the training scenarios and test
scenarios to highlight the importance of these scenarios
with extreme initial states. All optimization problems are
modelled using JuMP and solved using IPOPT. The training
of DNN in the “train and optimize” method is performed
via the Julia Package Flux using the adam method with
5000 epochs. Our implementation runs on a PC with Intel
i7 CPU running at 2.2 GHz.

Table 1 compares the performance of different controllers.
Both “train then optimize” and “train and optimize”
methods consider the same DNN structure, which has
4 neurons in the input layer, 10 neurons in the first
hidden layer, 2 neurons in the second hidden layer, and
2 neurons in the last layer. Both hidden layers use the
activation function tanh. To guarantee the satisfaction of
input constraints, the last layer projects values in the
range of [−1, 1] to [vmin, vmax]. As expected, the ideal
NMPC provides the best performance. The accumulative
cost of the DNN controller trained by the “train and
optimize” method is very close to that of ideal NMPC.
The cost increase caused by switching from ideal NMPC
to DNN controller trained by the “train and optimize”
method is only 0.42 (in terms of test scenarios), while
the cost increase caused by switching to “train then
optimize” method is 4.3. Besides that, the constraint
violations caused by the “train and optimize” is only
5.8% of the constraint violations caused by the “train
then optimize” method. We highlight that the “train and
optimize” method can guarantee constraint satisfaction at
least for training scenarios, while the “train then optimize”
method cannot.

Table 1. Performance of different controllers

training testing

cost
Cons.

cost
Cons.

Viol. Viol.

ideal 582.18 0 488.53 0
“train then optimize” 582.64 1.85 492.83 1.85
“train and optimize” 582.29 0 488.95 0.109

Table 2 compares the averaged online and offline com-
putational time of different controllers. The online com-
putational time can be reduced from 16 ms to 0.04 ms
by switching from the ideal NMPC to DNN controller,
resulting in a speedup of 400 times. For large scale systems,
we can expect even better speedup. The huge reduction
in the online computational time is at the cost of offline
computational time to train the DNN. Table 1 shows that
the time to train the DNN controller is reasonable for this
problem. We can further reduce the offline computational
time by training the DNN on GPU for “train then opti-
mize” method, and on distributed memory HPC for “train
and optimize” methods.

Table 2. Comparison of averaged online and
offline computational time

online (s) offline (s)

ideal 0.016 -
“train then optimize” 4e-5 2134
“train and optimize” 4e-5 1194

Table 3. Performance of “train then optimize”
method with different DNN layers

of training Cons. training test Cons. test Cons.
layers cost Viol. [cm] cost Viol. [cm]

2 582.64 492.83 1.8502 1.8502
4 584.40 490.26 0.599 1.008
6 583.74 491.06 1.12 1.18
8 586.26 492.23 0.259 1.240
10 582.87 489.71 0.636 0.746
12 586.08 492.84 0.513 1.250

One might argue that the inferior performance of the
“train then optimize” method might be caused by the
choice of a simple DNN. Table 3 compares the performance
of the “train then optimize” method with different DNN
layers. The number of hidden layers ranges from 2 to 12.
The last hidden layer has 2 neurons, while the remaining
layers all have 10 neurons per layer. This table shows that
no matter how many layers we chose, the performance of
the “train then optimize” method is always inferior to the
performance of the “train and optimize” method in terms
of both cumulative cost and constraint violations.

6. CONCLUSION

Model Predictive Controllers (MPC) are widely used in
the industry on a wide range of processes including those
with nonlinear and stochastic characteristics. However, the
online implementation of nonlinear MPC is computation-
ally rather challenging due to the complexity of the un-
derlying optimization problem. We proposed a novel “All-
in-One” approach to approximate a nonlinear MPC with
constraints using a Deep Neural Network. This approach
directly optimizes the closed loop performance of the DNN
controller over a finite horizon for a number of initial states
using parallel computing techniques. This approach works
well even if the MPC control policy is set-valued, and it
provides performance that is close to that of the original
nonlinear MPC.

REFERENCES

Bemporad, A., Borrelli, F., Morari, M., et al. (2002a).
Model predictive control based on linear programming
—the explicit solution. IEEE Transactions on Auto-
matic Control, 47(12), 1974–1985.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002b). The explicit linear quadratic regulator
for constrained systems. Automatica, 38(1), 3–20.

Bradtke, S.J. (1993). Reinforcement learning applied
to linear quadratic regulation. In Advances in neural
information processing systems, 295–302.

Cao, Y., Laird, C.D., and Zavala, V.M. (2016). Clustering-
Based Preconditioning for Stochastic Programs. Com-
putational Optimization and Applications, 64, 379–406.

Cao, Y., Zavala, V.M., and D’Amato, F. (2018). Using
stochastic programming and statistical extrapolation
to mitigate long-term extreme loads in wind turbines.
Applied Energy, 230, 1230–1241.

Chen, S., Saulnier, K., Atanasov, N., Lee, D.D., Kumar,
V., Pappas, G.J., and Morari, M. (2018a). Approximat-
ing explicit model predictive control using constrained
neural networks. In 2018 Annual American Control
Conference (ACC), 1520–1527. IEEE.

Chen, Y., Shi, Y., and Zhang, B. (2018b). Optimal control
via neural networks: A convex approach. arXiv preprint
arXiv:1805.11835.

Chiang, N., Petra, C.G., and Zavala, V.M. (2014). Struc-
tured nonconvex optimization of large-scale energy sys-
tems using pips-nlp. In Power Systems Computation
Conference (PSCC), 2014, 1–7. IEEE.

Csekő, L.H., Kvasnica, M., and Lantos, B. (2015). Ex-
plicit mpc-based rbf neural network controller design
with discrete-time actual kalman filter for semiactive
suspension. IEEE Transactions on Control Systems
Technology, 23(5), 1736–1753.

Geyer, T., Torrisi, F.D., and Morari, M. (2008). Optimal
complexity reduction of polyhedral piecewise affine sys-
tems. Automatica, 44(7), 1728–1740.

Hornik, K., Stinchcombe, M., and White, H. (1990). Uni-
versal approximation of an unknown mapping and its
derivatives using multilayer feedforward networks. Neu-
ral networks, 3(5), 551–560.

Jalving, J., Cao, Y., and Zavala, V.M. (2019). Graph-
based modeling and simulation of complex systems.
Computers & Chemical Engineering, 125, 134–154.

Johansen, T.A. and Grancharova, A. (2003). Approximate
explicit constrained linear model predictive control via
orthogonal search tree. IEEE Transactions on Auto-
matic Control, 48(5), 810–815.

Kang, J., Cao, Y., Word, D.P., and Laird, C.D. (2014).
An interior-point method for efficient solution of
block-structured nlp problems using an implicit schur-
complement decomposition. Computers & Chemical
Engineering, 71, 563–573.

Karg, B. and Lucia, S. (2018). Efficient representation and
approximation of model predictive control laws via deep
learning. arXiv preprint arXiv:1806.10644.

Kumar, S.S.P., Tulsyan, A., Gopaluni, B., and Loewen,
P. (2018). A deep learning architecture for predictive
control. IFAC-PapersOnLine, 51(18), 512–517.

Kvasnica, M., Hled́ık, J., Rauová, I., and Fikar, M. (2013).
Complexity reduction of explicit model predictive con-
trol via separation. Automatica, 49(6), 1776–1781.

Parisini, T. and Zoppoli, R. (1995). A receding-horizon
regulator for nonlinear systems and a neural approxi-
mation. Automatica, 31(10), 1443–1451.

Raff, T., Huber, S., Nagy, Z.K., and Allgower, F. (2006).
Nonlinear model predictive control of a four tank sys-
tem: An experimental stability study. In 2006 IEEE
Conference on Computer Aided Control System Design,
2006 IEEE International Conference on Control Appli-
cations, 2006 IEEE International Symposium on Intel-
ligent Control, 237–242. IEEE.

Spielberg, S., Tulsyan, A., Lawrence, N., Loewen, P., and
Gopaluni, R. (2019). Towards self-driving processes: A
deep reinforcement learning approach to control. AIChE
Journal.

Summers, S., Jones, C.N., Lygeros, J., and Morari, M.
(2011). A multiresolution approximation method for
fast explicit model predictive control. IEEE Transac-
tions on Automatic Control, 56(11), 2530–2541.

TøNdel, P., Johansen, T.A., and Bemporad, A. (2003). An
algorithm for multi-parametric quadratic programming
and explicit mpc solutions. Automatica, 39(3), 489–497.

Vamvoudakis, K.G. (2017). Q-learning for continuous-time
linear systems: A model-free infinite horizon optimal
control approach. Systems & Control Letters, 100, 14–
20.

Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
Programming, 106(1), 25–57.

Zavala, V.M., Laird, C.D., and Biegler, L.T. (2008).
Interior-point decomposition approaches for parallel so-
lution of large-scale nonlinear parameter estimation
problems. Chemical Engineering Science, 63(19), 4834–
4845.

