Causal Discovery based on Observational Data and Process Knowledge in Industrial Processes
Industrial & Engineering Chemistry Research,
Liang Cao, Jianping Su, Yixiu Wang, Yankai Cao, Lim C. Siang, Jin Li, Jack Nicholas Saddler, and Bhushan Gopaluni
[PDF]
Click to enlarge image.
Abstract
Causal discovery approaches are gaining popularity in industrial processes. Existing causal discovery algorithms can indeed find some important causal relationships from industrial data, but at the same time, the algorithms may also give some incorrect causal relationships. In order to deal with this problem, we give four kinds of process knowledge definitions according to the special characteristics of complex industrial processes. Causal discovery algorithms will yield more accurate results and deeper insights if the process knowledge is properly addressed. Based on commercial-scale fluid catalytic cracker (FCC) unit data, we validate the effectiveness of the proposed methods with some state-of-the-art causal discovery algorithms.
Read or Download: PDF